VLBA ACQUISITION MEMO #372

MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS 01886

20 October 1993

Telephone: 508-692-4764

Fax: 617-981-0590

To:

VLBA Data Acquisition Group

From:

Alan E.E. Rogers

Subject:

Contours of "triple-cap"-heads

The equilibrium contour for a single-cap-head has a radius of curvature R given by [1]

$$R = (p + L) / \theta \tag{1}$$

where p = characteristic bending length of the tape. θ is the half-wrap angle and L is half the head length. For a head with multiple contact areas (see VLBA Acquisition Memos 305, 356, and 365) made of the same material an equilibrium contour will be established when -

- 1] The radius of curvature is uniform.
- 2] The boundary conditions between contact regions are satisfied.

The first condition establishes a constant pressure (for low tape speeds - fluid mechanics are ignored in this static analysis) which results in a uniform wear rate across all areas of contact.

In the regions where the tape is not supported, the tape profile (after a constant and a slope are removed) is given by

$$\left(\frac{p^2}{R}\right)e^{-x/p} \tag{2}$$

where x is the distance from the edge of a contact region. The boundary condition of continuity in slope across the head whose geometry is given in Figure 1 is

$$\theta = (LI/R) + \left(\frac{2p}{R}\right)\left(1 - e^{-L2/p}\right) + \left(\frac{2L3}{R}\right) + p/R \tag{3}$$

in order for the individual slopes to add up to the half-wrap angle θ . From (3)

$$R = \left(LI + 2p\left(1 - e^{-L2/p}\right) + 2L3 + p\right)/\theta \tag{4}$$

The deviations of the contour from a straight line can be computed in a straightforward manner by joining the individual sections. Table 1 gives the radius of curvature and "deflections" for x = 150; x = 350 and x = 350 microns.

Tape Thickness µm	Characteristic* Bending Length µm	Radius of Curvature	dI	d2	d3
1	2	2936	3.8	14.2	21.1
10	65	4786	2.4	10.8	17.1
16	132	5987	1.9	9.2	14.9
26	274	7923	1.4	7.3	12.0

Sensitivity to tape tension and thickness

One of the major advantages of a long head (large L > p) is that the radius of curvature becomes relatively insensitive to tape thickness and tension because changing p has little influence on the value of R. For example, dropping the tension of 16 μ m tape from 10" to 5" H_20 increases the value of p from 132 to 187 microns which in turn allows (4) to be satisfied with an effective reduction in L3 from 50 to 15 microns. A gap opens at the outer edge of the outrigger leaving full contact across the entire "center-cap". Also with a single-cap and $L \sim p$ increasing the tension or going from a thick to a thin tape can result in the tape lifting off the gap and contacting only at the edges of the head. This occurs when $g_i > g_s$ in equations 5 and 6 of [1]. When the distance from the gap to the outer edge of the outrigger is greater than the characteristic length of the tape this "lift-off" condition cannot occur.

[1] Rogers and Hinteregger, "Measurement of magnetic tape abrasivity by interchanging tape thickness", *Tribology Transactions*, vol. 36, pp. 139-143, 1993.

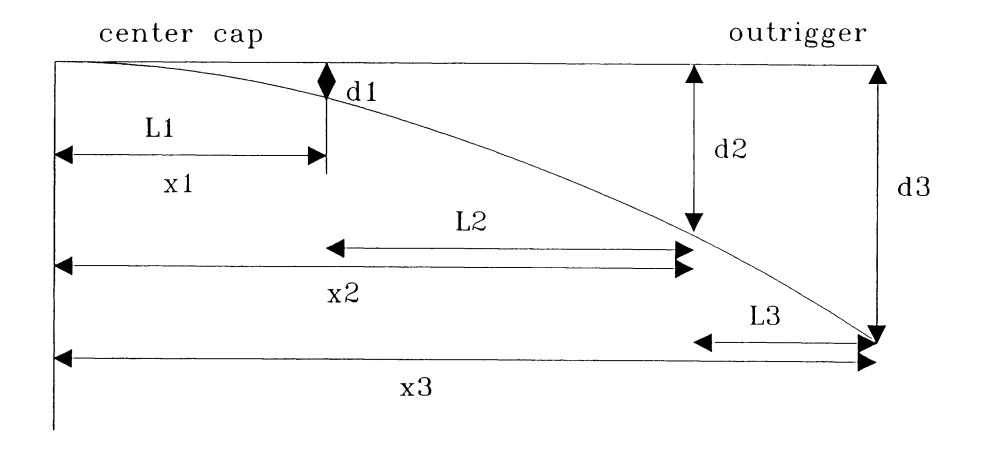


Fig. 1 Profile for 16 um tape x1=150;x2=350;x4=450 vertical scale expanded by factor of 10