		REPORT	7/15/80	14:24:45	
12	VLBI ARRAY COMPUTER			3 JULY 80	
3			* ** ** * * * *	2 (72) (0 7	T 4
4 5	I. Introduction	VLB	ARKAY	MEMU	NO. 7
- 6	Both computing hardware and c	lata anal	vsis ara dava	loping suffic	ciently
7	rapidly that accurate predictions	for the	computing nee	ds of the VL	B
8	array are not possible. This repo	ort will.	instead. exa	mine the rea	uirements
9	of a ten antenna array on computin	ng facili	ties current1	y available	in
10	Charlottesville.	•		•	
11					
12	II. Post-correlation Processing.				
13	A. Continuum				
14	1) In the current Charlottes	ville sys	tem the first	post-correl:	ation step
15	is to correct the data for	r pecular	ities in the	processor and	đ to
16	pre-average the 0.2 second	1 integra	tions from th	e correlator	to .
17	several seconds in order (to reduce	the volume o	f the data.	In newer
18	correlators such as those	correlators such as those at Cal-Tech and Haystack much of this			
19	step is done on-line by th	step is done on-line by the correlator/computer. In Charlottes-			
20	ville this is done in the	IBM 360.			
21					
22 -	2) Following pre-averaging is	s the fri	nge fitting s	tep which rea	sults
23	in the estimates of the co	omplex co	rrelation coe	fficient, gr	oup
24 -	delay and fringe delay rai	te from d	ata coherentl	y averaged fo	or several
25	minutes. This step is als	so done i	n the IBM 360	in Charlotte	esville.
20	2) After fringe fitting the	4.4 1	dided second	مقدات أمماً مع	
20	57 Alter fringe fitting the c	Jata 15 e	dited, removi	ng bad data.	
20	4) Current prestize is to only	librata t	he correlatio	n emolitudes	,
30	to Janskys using measured	system t	amparaturas a	nd antenna	
31	sensitivities. Except in	certain	ohase referen	cing experim	ents
32	phase calibration is consi	idered ho	celess at thi	s stage and	is
33	ignored.				
34					,
35	5) Finally the phases are ite	cratively	calibrated a	nd the map	
36	produced by a technique kn	nown as s	elf calibrati	on or hybrid	
37	mapping. In this techniqu	ue the cu	rrent model o	f the source	
38	(CLEAN point components or	r the ini	tial guess) i	s used to	
.39	calibrate the phases relat	tive to a	n arbitrary p	osition in th	he
40	sky. This technique makes	s use of	the fact that	the number	
41	of calibration phases need	ded is N-	i and the num	ber of obser	ved
42	phases is $N^*(N-1)/2$ where	N is the	number of an	tennas invol	ved.
43	Similar amplitude calibra	tion is a	iso possible	and likely	
44	necessary for 1.3 cm obser	rvations.	For VLBI ob	servations t	his
45	step is currently done on	the Char	lottesville V	AX using the	

REPORT 7/15/80 14:24:45

46 Cal-Tech VLBI package but in the future the VLA package will '47 almost certainly be used. Thus the Fred Schwab's self-calibration 48 program was used for timing purposes for this report. 49 50 B. Spectral Line 1) Program DECODE preaverages the correlator output. 51 52 53 2) Program AVERAGE corrects clock drifts, residual phase delay 54 rates and makes instrumental phase corrections; then averages both the cross and auto correlations. 55 56 57 3) Program BOG transforms the auto correlations to obtain source 58 spectra and then corrects auto and cross correlations for 59 effects of the bandpass 60 61 4) Program CVEL corrects the data for the Earth's motion. 62 63 5) Program CAL calibrates the cross correlations using the 64 total power spectra obtained from the autocorrelations. 65 66 6) Program PHSREF calibrates phases relative to a reference feature. 67 68 7) Program SWAMP, used in editing the data, displays coherent fits 69 to each spectral channel; usually used several times. 70 71 8) Programs SWAMP, JANET and DUNE produce a fringe rate map 72 prior to aperature synthesis. 73 74 After the above programs are run, the data are fully calibrated 75 and can be analysed by VLA spectral line software. 76 77 III. Computing requirments .78 79 A. Continuum 80 81: Computing requirments for various stages of processing were determined 82 from timing the processing of sample data in the appropriate computer. 83 Correction, preaveraging and fringe fitting were done in the IBM 360; 84 the CPU time requirments for these steps are shown in Table 1. 85 86 87 88 89 90 91.

92 93 94 Table 1 95 Continuum: pre - Mapmaking (IBM 360 CPU times) 96 97. Array hour (10 ant.) Step Baseline hour 98 99 correction and 0.80 min. 36.1 min. 100 preaveraging 0.45 min. 20.5 min. 101 fringe fitting 102 1.25 min. 103 Total 56.6 min. 104 105 Editing and initial amplitude calibration use so little CPU time 106 that their requirments are negligible compared to the uncertainty in the other steps and are thus ignored. However, editing and calibration 107 are the stages which require the most user interaction and are normally 108 repeated several times. If in the future amplitude calibration is 109 110 done using VLA software initial amplitude calibration may become non-'111 trivial in the computing budget (see the self calibration description 112 for a crude estimate of the time requirments). 113 To determine the time requirments for self calibration, a VLA data set 114 using 10 antennas with 35,763 data points was used. This is approximately 115 the amount of data in 12 hours of 1 minute integrations from a ten 116 antenna array. For this test, Fred Schwab's self calibrations program 117 was used to do both amplitude and phase self calibration. 118 The REAL run times for the MODCOMP were recorded and the results are 119 summarized in Table 2. For comparison IBM 360 CPU times for the same 120 mapping and CLEANing tasks are also shown in Table 2. 121 It is not clear how many iterations through the self calibration 122 procedure will be necessary for 10 antenna data but 10 is probably a 123 safe guess. 124 TABLE 2 125 126 Continuum: Mapping and CLEANing 127 128 Step MODCOMP real time IBM 360 CPU time 129 130 Maping 256X256 cells 5.5 min. 6.2 mia. CLEAN 127X127 500 comp. 8.3 min. 8.2 min. 131 132 Self calibration 17.2 min. 133 (full complex) .134 135 Total (1 pass) 31.0 min. 136. 137 Per source (10 passes) 310. min. = 5.2 hrs.

138 139 B. Spectral Line. 140 The CPU time required for programs 1-8 were determined from sample data 141 processed on the IBM 360. These results are summarized in Table 3. 142 143 TABLE 3 144 Spectral Line: pre - Mapmaking (IBM 360 CPU times) 145 STEP 146 Baseline hour. Array hour ______ 147 ____ DECODE 36.0 min 148 149 AVERAGE 23.4 min 0.52 min 150 BOG 0.21 min . 9.5 min 151 CVEL 1,64 min 73.8 min 152 CAL 0.48 min 21.6 min 153 PHSREF 0.83 min 37.4 min 154 SWAMP >0.7 min >31.0 min 155 SWAMP, JANET, DUNE 0.11 min 5.0 min • • • • 156 157 TOTAL 5.29 min 237.6 min = 4.0 hr158 159 Since VLA spectral line software is not yet avaliable, an estimate 160 of the computing requirments must be made from the continuum test. The mapping and CLEANing could be done as for continuum maps but separately 161 162 for each frequency channel. In the following estimates 256 spectral 163 channels were assumed; Table 4 shows these estimates. 164 165 TABLE 4 Spectral line: MODCOMP real time. 166 167 168 STEP MODCOMP real time 169 Map making (256 X 256 X 256) 1408. min = 23.5 hr170 CLEAN (127 X 127 X 256) 500 comp. 2125. min = 35.4 hr171 172 173 Total 3533. min = 58.9 hr174 = 2.5 day 175 176 IV. Hardware and Software Development. 177 178 A. Continuum 179 180 If VLA software is used for editing and calibration then no independent software development past the fringe fitting stage will 181 be necessary. The speed of the correlator correction, pre-averaging 182 and fringe fitting could be improved up to a factor of 10 with the 183

```
184 use of an Array Processor. In view of the large amount of CPU time
185 required for these sleps, an Array Processor would appear to be vital.
186 In addition, the development of more sophisticated calibration and
187 fringe fitting techniques may be able to take advantage of the large number
188 of baselines to make substantial improvments in sensitivity over the ourrent
189 techniques. However, such techniques are likely to significantly
190 increase the computing requirments.
191
          The MODCOMP self-calibration programs described above make limited use
192
    of an array processor. These programs will undoubtedly be improved; for
193 instance, an experimental version of a CLEANing program of the type designed
194
    by B. Clark did an equivalent CLEAN to the one described in Table 2 in
195
    1.4 min. MODCOMP real time.
196
197
        B. Spectral Line
198
          Many of the programs described in Section II could be adapted to
199
200
     use with an array processor, reducing the enormous computing load.
201 Past the calibration stage, VLA software will be completely adequate
202 and no independent development is necessary. Since spectral line
203 mapping and CLEANing for VLA data produce similar problems it is likely
204 that a more efficient method than the one discussed here will be
205 developed.
```

100 Appendix to VLBA Memo #4 Computer Useage : 203 200 or How much is that in real money? 4150 W. Cotton and J. Benson 28 Aug 1980 509 600 The purpose of this appendix is to update VLBA memo #4 and to 7.515 state the estimated post-correlation computer requirments. As in all 800 such estimates, the numbers quoted here should be viewed with some 930 skepticism. 1500 I. Continuum Fringe Fitting. 11.00 1200 1300 The values given in VLBA memo #4 in Table 1 were based on Mk II 14.85 values and are not entirely relevant to the VLBA. Estimates of Mk III 1520 fringe searching are based on values obtained from A. Rogers at 1620 Haystack from their experience with the Mk III correlator. One example: 1700 8.5 min of data searched, 2 sec preaveraging, 14 tracks 1809 Disk I/O = 40 sec 1930 mostly FFT search = 120 sec. 2520 search window = $\emptyset.8$ Hz and $\emptyset.5$ microsec. 2100 2200 The figures given above were based on a firmware FFT which does a full 2300 complex 1%24 point FFT in 200 millisec.: the advertised time for the 2100 same operation on an FPS array processor is 6 millisec. A crude 2529 conversion of the above values to the useage on a machine with an array 2600 processor is Ø.25 CPU-Hr / baseline hour; or 11 such systems to keep 2703 up with the processor. It should be noted that the time is 80% disk I/O. 2800 This requirment can be reduced in several ways: 1) the fringe search 29.3 window can be restricted and data preaveraged for longer times. If 32.70 the amount of I/O can be reduced by a factor of $1\emptyset$ then one computer 3100 plus array processor will be sufficient. 2) In the case of strong 3200 sources, either the amount of data recorded can be reduced and/or 33.48 only a subset of the data used for the fringe search. 3491 35*.*°Ø II. Useage Requirments. 3600 3700 In order to estimate the amount of computing required Table 1A 3800 uses the values given above and in VLBA memo #4. 'The requirments 39.00 are expressed in units of a minicomputer (such as a VAX) with an 4E9Ø array processor. 4100 Table 1A 4200 · , 4300 Total Computer Useage Requirments 4400 4500 Process No. Minicomputer + Ap 1 4620 ------Cont. pre-mapping . 4720 . 1 4822 Ø.5 Cont. mapping 4909 Spectral pre-mapping * Sec. 1 5000 Spectral mapping *: 1 3.5 5100 Total 5200 53ØØ * Spectral line observations assumed 20% of the time.