
VLB Aim AY MEMO No. / 6 2 

VLBA Data Structures 

T.J. Pearson, 

Caltech 

December 11, 1982 

This note is a contribution to discussion in the Computer Group 
meetings about data base formats for the VLBA (visibility data and 
images). We agreed that VLBA data should be treated in a similar way to 
VLA data in the AIPS package. The data structures described below are 
suggestions as to how AIPS might be improved. The suggestions are 
derived from my discussions with Keith Shortridge, who has recently 
begun a major overhaul of the data reduction system used by Caltech 
optical astronomers. In fact much of the following is extracted bodily 
from a memorandum written by Shortridge for another purpose. Where the 
suggestions are concrete, they are based closely on STARLINK practice 
(or intended practice). (STARLINK is the British network of VAXes, used 
for astronomical image processing at several different observatories and 
university departments.) 

How should VLBA data be be stored on disk? i.e., what data format 
should be used? This is the wrong question to ask: the correct 
question being how do we hide the way the data is actually stored on 
disk, by providing access routines that are sufficiently comprehensive 
and efficient that nobody need know the actual data format. This allows 
us the luxury of having a complex format, probably using some form of 
linked-list structure, which will allow us to add new data to the format 
in a way that is transparent to the higher level programs. This may not 
appear to be a problem when one thinks only of the raw data, but the 
operations associated with data reduction can add many forms of 
additional data to the simple set of correlation coefficients that comes 
from the correlator. It is not adequate to just leave some amount of 
unused space in the file and hope that this will be enough. 

Thus our requirement is for data structures with a dynamic format 
that allows parts of the data to be missing and allows new data to be 
added at will. The price we shall have to pay for this is that the 
actual data format on disk will be too intricate to allow uncontrolled 
access to it (either by users writing their own programs, or by systems 
experts who get tempted to take short cuts!). So there will have to be 
a set of standard routines which everyone can use to access these data 
structures. 



VLBA Data structures Page 2 

Goal s 

(1) Simplicity. All the data handling we ever want to do should be 

available through a small set of subroutines accessing the data 

structure. 

(2) Real expandability. In the sense that any new calibration or other 

information fits into the scheme without any modification. 

(3) Self documenting. The data format should be self-documenting at the 
software level. An enquiry program can be written which will describe 
exactly what is in any file produced by these routines, and programs can 
be written to make use of this. (None of the "if it's set to zero it 
probably isn't really an hour angle" stuff, which turns up all to often 
in many formats.) 

(4) Use ordinary files of the host operating system. Each logically 

separate structure is a separate file and all the usual host operations 

(backup, copy, protect etc) can be used. 

(5) Program driven. Probably the most important point of all. The 

programs should be in control, and not constrained by the data formats 

that have been chosen. 

(6) Efficiency. Data should not occupy more space than necessary. 

Access to data should be rapid when this matters, for example when 

accessing a bulky image; efficiency can be sacrificed to the other 

goals when accessing ancillary parameters. 

The STARLINK scheme 

All data are treated using the data structures, and an open-ended, 
self-documenting data format is used. A set of FORTRAN-callable 
subroutines are available to access any part of the data, without the 
higher-level routine having to know anything about the actual data 
format. For example: suppose the data you are working on is called 
SPECTRUM1. It has associated with it all sorts of things you don't even 
necessarily know about, but as a minimum, something like: 

SPECTRUM1.XDATA contains the wavelengths of each element of the data, 

SPECTRUM1.YDATA contains the flux at each wavelength, 

SPECTRUM1.XUNITS is 'Angstrom'. 
SPECTRUM1.YUNITS is 'erg/(cm

2
sA)', 

SPECTRUM1.XLABEL is 'Wavelength', 
SPECTRUM1.YLABEL is 'Flux Density'. 

You can get any of these by calling a subroutine, giving it the name of 
the field you want. You can easily write a program that will display 
not only this spectrum, but also a pretty large variety of other data 
structures, given the basic name of the structure, and the knowledge 
that it contains fields called XDATA, YDATA, XUNITS, YUNITS, XLABEL, and 
Y L A B E L . Routines are available to find out the details of the 
structure. If this looks a little like FITS, it is: it is easy to 
translate an arbitrary FITS file into a data structure of this sort. 



VLBA Data structures Page 3 

There are two parts to the design of such a data structure system: 
the subroutine interface, and the actual record structure of the files. 
As an example, the basic subroutines needed include the following: 

1 . Associate a structure name with a file: "I want to use file 

2DFPIX.001 and I want to call the structure in it INPUT". 

2 . Create an entry for a variable in a structure: "Please make 
space in the structure for a floating-point element called 
OUTPUT.X.DATA". 

3 . Write a variable: "Please copy 17 elements from array X into 

the structure element OUTPUT.CALIB". 

4 . Read a variable: "Please copy the structure element 

INPUT.OBS.TELESCOPE into character variable N E Y E " . 

5 . Map a variable (for input and output): this involves mapping 
part of the data structure into virtual memory and returning a 
pointer to the calling program. It is more efficient than 
using read or write for large elements. 

6 . Unmap a variable (release the virtual memory). 

7 . Enquiry routines: "Is there an element called OUTPUT.HENRY?", 

"What is the format of entry OUTPUT.HENRY?" (answer: 

floating-point, character, array dimension 400, etc). 

8 . Copy a data structure. 

9 . Close the file associated with the data structure. 

The read and write routines translate the format of the data into that 
required by the program, if necessary; so that for example a general 
contouring program which expects images to be 32-bit floating point 
numbers can work on a 16-bit integer image. The repertoire of data 
types includes integer, character, floating-point, arrays, etc. Note 
that elements can themselves be structures, creating a hierarchical 
database. 

The disk file format is the most critical part of the design as it 

cannot be changed later. Each element will have to have associated with 

it at least the following: 

Name, 

Up pointer to higher-level structure, 

Down pointer to next level (only for structures), 
Forward pointer to next on same level, 
Back pointer to last on same level. 
Type code (byte, integer, etc), 
Location of data in file, 
Number of dimensions, 
Size in each dimension. 


