
The AIPS Database Structure and the VLBA

W. D. Cotton
12 January 1983

Introduction.

Most of the astronomical data obtained with the VLBA
will be processed through the AIPS system or its successor
so it is desirable to have a post-correlation database
compatable with that used in AIPS. From the standpoint of
software managment and simplicity of operation the most
desirable solution to the VLBA post-processing problem is to
have all operations run as AIPS tasks using the AIPS
database structure. This approach would eliminate the
problems involved with maintaining separate database formats
and with translating data between formats. Using a format
incompatable with AIPS databases would result in a serious
duplication of effort and needlessly complicate the software
effort required to process VLBA data. The purpose of this
memo is. to describe the current form and use of the AIPS
database and to give suggestions for its use for VLBA
post-correlation processing.

ULu AIPS database structure.
AIPS data files are structures very much like FITS

files on tape. There are two basic types of data sets 1)
regularly spaced arrays (ie. maps) and 2) irregularly
spaced arrays (ie. uv data). Additional types may be added
if necessary. Since VLBA data will be predominantly of the
second type most of the following comments will be directed
towards this type of dataset. There are three
distinguishable parts of the AIPS database structure: the
catalog header, the main data file and extension files.

A. Catalog header.

The catalog header contains information about a
database such as source name, observing date, the amount of
data, details of the structure of the main data file and the
existance of and number of any extension files. The catalog
header record currently has a fixed structure which,
although more general than those of previous data reduction
systems, is the least flexible portion of the AIPS database.

The current AIPS binary, fixed size header format was
adopted for reasons of efficiency. The details of the
structure and contents have been changed several times in
the past in response to changing needs; the most recent
change was done in January 1983. The structure of the AIPS
catalog header will undoubtedly respond to the needs of the
VLBA. The current description of the catalog header from
the AIPS manual is given in Appendix A.

AIPS Database Page 2

B'. Main Data file.

The form of the uv data files in AIPS is a sequence of
logical records containing a regular, rectangular array of
data (eg. correlator lags, spectral channels, time etc.)
and a number of "random" parameters describing the array (u,
v, w, time, baseline etc.). The number and order of the
random parameters is given in the catalog header. At the
present time there is no limit on the number of random
parameters but there is space in the catalog header for the
labels for only the first seven. Thus with more than seven
random parameters the order is not completely specified.
(Currently AIPS does not use more than seven random
parameters).

The data array in each record is also described in the
catalog header which gives the number of axes, the axis
type, the dimension of each axis, the axis value increment,
a reference pixel (needs be neither integer nor in the
bounds of the array given) and the axis value at the
reference pixel. The format of the current catalog header
allows up to seven dimensions. The current convention is to
have RA, Dec, Stokes type and Frequency as an axis even if
that axis is degenerate. This allows a convenient way to
specify position, frequency etc. This structure requires
that there be~ a uniform spacing along each axis which may
present problems for the VLBA (eg. when observations are
made in the bandwidth synthesis mode). This limitation of
the current AIPS might be circumvented by use of channel
number instead of frequency.

The order of logical records in the data file can be
changed if necessary. The AIPS manual description of the
contents of and access to uv databases is given in Appendix
B.

C. Extension Files

Extension files are used to store information not
contained in the catalog header or the main data file. An
example of an extension file is the History file which is
carried along with all AIPS data files. This file contains
ASCII records describing all processing which has been done
on the data in the file. Other current extension files are
the antenna files, the self-calibration solution files and
the VLBI fringe fitting solution files.

Extension files contain a header record containing
general information? for instance Antenna file headers
carry time information like the Greenwich Sidereal Time at
IAT midnight for the reference date* Extension file entries
consist of fixed length logical records which may be complex
data structures. VLBA data bases could use extension files
to store antenna logs, correlator logs, calibration tables,
correlator models etc. The structure of a typical extension
file, the Antenna file, as described in the AIPS manual is
shown in Appendix C.

AIPS Database Page 3

JLUL. AIPS Database Access
AIPS programs generally access the main data files

sequentially which allows reading large blocks of data at a
time and overlapping I/O and computation by means of double
buffering. In order to increase I/O speed, DMA transfer
requests are sent directly to system utilities rather that
using FORTRAN I/O, This allows programs to directly access
the I/O buffer removing one core-to-core copy of the data.
The I/O routines are quite fast and are probably comparable
in speed with mapping virtual memory onto the data base.
The AIPS I/O routines have been designed to maximize speed
and flexibility at the cost of increasing the complexity of
their use. (The uv data file access routines are described
in Appendix B). It may sometime be desirable to add a
higher level of more programmer-friendly routines at a cost
of reduced preformance.

I/O to extension files is generally sequential but the
routines which handle the I/O are capable of random access
and mixed reads and writes. This increased flexibility
comes at a cost of reduced speed. However, since the
extension files are generally much smaller than the main
data file the reduced I/O speed is usually not serious.

liLt. Limitations of MPS database £QL the. VLB A.
- The AIPS conventions and file handling are inelegant

from the point of view of a computer scientist (AIPS was
designed by astronomers for astromomers). In the
development of AIPS, elegance was sacrificed in order to
minimize machine dependence and to maximize efficiency. The
need for reduced machine dependence and efficient I/O exist
for VLBA as well as VLA processing. Operations on VLBA
datasets will be very similar to current AIPS uv data
access, i.e. sequential access to substantial fractions of
or all of a database. The AIPS approach is quite efficient
for this type of operation.

- The current catalog header is designed for efficiency
but is rather inflexible. In the current AIPS changes in
the catalog header require corresponding changes in all
affected programs. Several possible solutions have been
suggested, the most elegant but most difficult of which is
to change the AIPS catalog header to partially or wholly
consist of a FITS type header containing ASCII entries of
the form "KEYWORD = value". This would give databases the
great flexibility of the FITS tape format.

A modification of the scheme described above is to keep
the current catalog header but add an ASCII extension file
which contains keywords and values not contained in the
header. This would be an adequate although unsatisfying
solution. A third solution is to use the history file to
keep the additional information. The current convention in
AIPS is to make history entries in the form "KEYWORD =value"

AIPS Database Page 4

so that this information is easily available.

- Logical records in both main data files and extension
files are fixed length. This might result in inefficient
use of storage media for instance if scan oriented records
were used and not all antennas were observing all the time.
If visibility (baseline) oriented records were used this
problem would be much less serious.

- AIPS uv databases currently do not have an associated
gain table. Changes made to an AIPS database are applied
directly to the data and a new database is created. This
scheme protects the original database and allows more
efficient I/O in uv data handling routines but probably uses
too much disk space to be used for unaveraged VLBA data.
There is no fundamental problem with adding VLA-like gain
table extension files to AlPS-like databases.

- AIPS uv data is not indexed, thus to find a specific
record the file must be searched. This has not proven to be
a serious problem in AIPS because most operations are done
on a sufficiently large fraction of the database. In
several applications (eg. averaging, self-calibration,
mapping) the data sets are sorted so that data needed at the
same time will be contiguous. For most prefringe fitting
applications baseline-time ordering should be sufficient for
VLBA processing. If a fixed data order can be adopted prior
to fringe fitting, data files could be indexed; however,
sorting would destroy the meaning of such an index.

1U strengths g£ the AXES database.
- With the exception of the catalog header the AIPS

database is rather flexible with a self documenting format.

- Use of the AIPS data base structure will allow use of
AIPS fast I/O routines which will reduce software
development costs and managment problems.

- Use of the AIPS database structure and routines will
be relatively machine independent as opposed to schemes
which involve mapping virtual memory onto the disk data
file. The VLBA will likely be used for much longer than the
useable lifetime of a given model of computer so it is
important to minimize the problems involved with changing
computers. Since there are an increasing number of non-NRAO
AIPS systems in use such an approach also makes it more
feasable for a user with special processing needs to use a
computer at his home institution.

- If VLBA post-correlation processing is incorporated
into AIPS, one post-correlation control program could handle
all astronomical processing. This could avoid the problems
facing a VLA user encountering different systems on the DEC
10, the PDPs and the VAXes. The interface to the correlator
might be implemented as a special AIPS task which accepts

AIPS Database Page 5

correlator output and creates an AIPS uv database. This
task could run as an AIPS batch job. Use of this technique
would allow the full power of the AIPS command language and
all of its utilities to be used for the data acquisition and
would allow immediate interactive monitoring and preliminary
analysis of the data while acquisition proceeds.

VI. Conclusions
It appears to be both desirable and feasable to use the

AIPS database for VLBA post-correlation data. Since AIPS or
its successor will be used for a substantial fraction of the
astronomical processing use of an AlPS-like data base would
result in a better integrated system as well as reduce
software management problems. Adoption of the AIPS approach
will minimize hardware dependence which will allow delaying
decisions about the specific computers to be used and will
reduce the problems of upgrading the computer.

The fixed record length in AIPS data files will put
some constraints on how the data is stored ±£ optimize disk
use. But, due to the simplicity of a fixed record length
data access may be much faster than, for example, linked
list data structures.

Most operations on a VLBA dataset will involve
sequential access of a large fraction of the data. The AIPS
database structure is well suited for this type of operation
and allows the use of fast I/O routines.

AIPS Database Page 6

APPENDIX A
Hap Catalog Files: CAnOOOOO

A. Overview

Function: Map catalog files contain descriptions of the format
and contents of standard map files.

Names and Locations: There is a map catalog file on each disk
on which maps can be stored. The catalog refers only to maps
and associated files on its own disk volume. The catalogs
have physical names corresponding to "CAnOOOOO", where n is
the disk volume (1,2,...9) where the catalog resides.

B. Data Structures and usage notes

File Structure: Each catalog file contains a one block (256-word)
header, a number of one block catalog entries, and a number of
catalog directory blocks at the end. The header block contains
principally the number of catalog blocks in the file; this is set when
the file is initialized. The directory blocks contain a 32-byte
reference to each catalog block. The directory is used to speed
catalog searches and also contains the map status words that register
map file activity.

A catalog to store N entries must have enough space for
N + 1 + CEIL[N/NLPR] blocks (i.e. catalog blocks +
header + directory), where NLPR is defined below and is 16 on normal
machines.

Catalog Blocks:

OFFSET LENGTH TYPE POINTER

0 8 C*8 K40BJ= 1
8 8 C*8 K4TEL= 3

16 8 C*8 K4INS= 5
24 8 C*8 K40BS= 7
32 8 C*8 K4D0B55 9
40 8 C*8 K4DMP= 11
48 8 C*8 K4BUN= 13
56 7*8 C*8(7) K4PTP= 15

(K2PTPN= 7)
112 7*8 C*8(7) K4CTP= 29

(K2CTPN= 7)
168 8 R*8 K8BSC— 22
176 8 R*8 K8BZE= 23

184 56 R*8(7) K8CRV= 24 (K2CTPN= 7)

DESCRIPTION

Source name
Telescope, i.e. 'VLA1
e.g. receiver or correlator
Observer name
Observation date in format 'DD/MM/YY1

Date map created in format 'DD/MM/YY1

Map units, i.e. 'JY/BEAM »
Random Parameter types

Coordinate type, i.e. 'LL1

Map scaling factor
Map offset factor: Real value =
BSCALE * pixel + BZERO
Coordinate value at reference pixel

28
28
28
4
4
4
4
4

2
2

14

2

2

2
12

6

2
2
2
4
4
4
2
2

8
8
8
8
4

20
20
28

Page 7

R*4 (7) K 4 C I O 61
(K2CTPN= 7)

R*4(7) K4CRP= 68
(K2CTPNSS 7)

R*4(7) K4CRT= 75
(K2CTPN= 7)

R*4 K4EPO= 82
R*4 K4DMX= 83
R*4 K4DMN= 84
R*4 K4BLK= 85

1*2(2) K2GCN=171

1*2 K2PCN=173
1*2 K2DIM=174
1*2(7) K2NAX=175

(K2CTPN= 7)
1*2 K2BPX-182

1*2 K2INH=183

1*2 K2IMS=184
C*12 K4IMN= 93

(K4IMNO= 1)
C*6 K4IMC= 93

(K4IMCO=13)
C*2 K4PTY= 93

(K4PTYO=19)
1*2 K2IMU=195
1*2 K2NIT=196
R*4 K4BMJ= 99
R*4 K4BMN=100
R*4 K4BPA=101
1*2 K2TYP=203

1*2 K2ALT=204

R*8 K80RA= 52
R*8 K80DE= 53
R*8 K8RST= 54
R*8 K8ARV= 55

R*4 K4ARP=111

1*2(10) K2EXT=227
(K2EXTN=10)

1*2(10) K2VER=237
(K2EXTN=10)

1*2(14)

Coordinate value increment along axis'
Coordinate Reference Pixel

Coordinate Rotation Angles

Epoch of coordinates (years)
Real value of data maximum
Real value of data minumum
Value of indeterminate pixel (real
maps only)
Number of random par. groups given as
a Pseudo-I*4 number
Number of random parameters
Number of coordinate axes
Number of pixels on each axis

Code for pixel type: 1 integer,
2 real, 3 dbl prec, 4 complex, 5 dbl
prec complex
For integer maps: < 0 the value of an
indeterminate pixel, > 0 the number
of bits used to represent noise est.
= 0 no blanking of pixels
Image sequence no.
Image name
Character offset in packed string
Image class
Character offset in packed string
Map physical type (i.e. 'MA'^UV')
Character offset in packed string
Image user ID number
clean iterations
Beam major axis in degrees
Beam minor axis in degrees
Beam position angle in degrees
Clean map type: 1-4 => normal,
components, residual, points
Velocity reference frame: 1-3
=> LSR, Helio, Observer +
256 if radio definition.
Antenna pointing Right Ascension
Antenna pointing Declination
Rest frequency of line (Hz)
Alternate ref pixel value
(frequency or velocity)
Alternate ref pixel location
(frequency or velocity)
Names of subsidiary file types
(i.e. 1 PL1) 2 char unpacked form
Number of versions of corresponding
subsidiary file
Reserved

COMMENTS

AIPS Database Page 8

General

1. Standard names are given for the pointer variables. The values
for the pointers are computed by the subroutine VHDRIN and are
machine-dependent. The values given above are for standard 16-
bit machines. The values are found in the common /HDRVAL/ via
includes 1DHDR.INC1 and 'CHDR.INC'. The characters of each C*8
variable are packed separately (and left-justified) in* as many
real variables as required. The image name, class, and physical
type are packed as a 20-character string in as many real variables
as required.

2. The header contains 256 words and should be contained in the arrays
(e.g.) HEAD2(256),HEAD4(128) and HEAD8(64) which are equivalenced
Pointers of the type K2... should refer to HEAD2 locations, K4...
to HEAD4 locations, and K8... to HEAD8 locations.
E.g. HEAD8(R8BSC) contains the R*8 map scaling factor.

Specific

Byte 16s
Byte 56:

Byte 112:

Byte 184:

Byte 324:
Byte 328:

332
Byte 336:

Byte 340:

Byte 344:
Byte 364:

Byte 366
Byte 368
Byte 380
Byte 444

Byte 464

Byte 484:

Any special equipment etc. used during observations
Random parameters are those associated with an irregularly
gridded "array". See latest FITS (u-v) paper for details.
Seven coordinates!11 Four will commonly be used; RA,
DEC, FREQ and STOKES.
In keeping with the FITS format convention, angles are
expressed in degrees.
Somewhat astronomically specific. 1950.0 is used.
The real value of the max/min, not the pixel value
is used.
The value used to specify that a pixel is undefined. Used
only for floating point maps.
Cannot use an 1*4 format in some machines, hence this
double 1*2 format.
See Byte 56:
Confused at the moment. If negative, then this is the value
used as the pixel value for indeterminate pixels. If > 0,
then this is the number of bits used to represent the
quality of a pixel value. In this ease, the true pixel
value = (stored / 2 ** #bits) * BSCALE + BZERO. The
noise at each pixel is represented by the lsb's, with zero
meaning the least reliable.
bits in a map pixel to represent the inherent signal
to noise of the data point.
The user mapname-sequence number
The user mapname-name
The user mapname-class
The types of subsidiary files associated with the
map are given by a two letter designation? eg.'HI1

for history files, 'PL* plot file.
The current highest version number of the associated file
type listed in the same relative array position in the
previous type listing.
Beginning of 14 spare words.

AIPS Database Page 9

D. Subroutines

CATDIR searches, lists, and modifies the catalog directory
CATIO reads and writes catalog blocks and can modify status
CATOPN opens the catalog file on a given volume
MCREAT, MAPOPN, MAPCLS, and MDESTR handle most of the

catalog bookkeeping while creating, opening, closing,
or destroying map files.

AIPS Database Page 10

APPENDIX E
DESCRIPTION OF AIPS UV DATA BASE 25 Feb. 82

This document is to describe the current implementation of a UV
data base in AIPS.

The bulk of the UV data is stored as reals in a form which is
similar to the FITS random data format. Necessary
information about the data is kept in the catalog header record and
one or more antenna (AN) files. In particular, the order of the
random and uniform parameters is given in the catalog header. This
information can be easily obtained via the subroutine UVPGET
(see below). Data from one or more arrays may be combined in one
data base so the information specific to each array is kept in the
antenna (AN) files, one per array. The information in these AN files
includes frequency, date of observation, location of array center,
location of the antennas etc. The array number is included in the
baseline information (see below). The time in each array is offset
from the date given in the AN file by 5 days times (array # - 1) to
avoid confusion.

Other extension files are history (HI), gain tables (GA) and
plot (PL) files. Other types may be added if necessary.

1) Order of the data in a record.

As for FITS, uv data records contain two kinds of data; first
are the random parameters (u, v, w, time, etc). The number and order
of the random parameters are given in the catalog header. The types
currently in use are:

'U ' u spatial frequency coordinate (wavelength at
the reference frequency in the catalog header,
v spatial frequency coordinate,
w spatial frequency coordinate,
ant #2 + 256*(ant #1) + 0.01*(array # - 1)
relative time in IAT days + 5.*(array # -1)
(VLBI) group delay residual used (microsec.)
(VLBI) Fringe rate residual used (mHz)

Other random parameters may be added as needed although there is a
limit of 7 which can be named in the catalog header.

Following the random parameters comes the data array. The
order, number of values on each axis, reference pixel, reference
value at the reference pixel, and the increment are given in the
catalogue header as in the case of images. In principle the order
is completely arbitrary but in many tasks it is assumed that the
'COMPLEX' axis is first. 'STOKES','FREQ','RA' and 'DEC' axes must
be present even if the dimension is 1. The types currently in use are:

Visibility, (Real, Imaginary, Weight)
Polarization (1=RR, 2=LL, 3=RL, 4=LR)
Frequency (Hz)
Right Ascension (degrees)
Declination (degrees)
(VLBI) group delay residual
(VLBI) fringe rate residual

'V
'W
'BASELINE
'TIME1
'DELAY
'RATE

'COMPLEX
'STOKES
'FREQ
•RA
'DEC
•DELAY
•RATE

AIPS Database Page 11

In order to facilitate use of the catalogue header subroutine
UVPGET is available. This subroutine determines the order of the
data and other useful information and places this information in
common /UVHDR/. The use of UVPGET is explained in the precursor
comments for UVPGET which follow:

C
C
C
C
C
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c-

UVPGET determines pointers and other information from a UV CATBLK.
The address relative to the start of a vis record for the real part
for a given spectral channel (CHAN) and stokes parameter (ICOR)
is given by :

NRPARM+(CHAN-1)*INCF+(ICOR-ICORO)*INCS
Inputs: From common /MAPHDR/

CATBLK(256) 1*2 Catalogue block
CAT4 R*4 same as CATBLK
CAT8 R*8 same as CATBLK

Output: In common /UVHDR/
SOURCE(2)
ILOCU
ILOCV
ILOCW
ILOCT
ILOCB
JLOCC
JLOCS
JLOCF
JLOCR
JLOCD
INCS
INCF
ICORO
NRPARM
LREC
NVIS(2)
FREQ
RA
DEC
NCOR
I SORT
I ERR

R*4
1*2
1*2
1*2
1*2
1*2
1*2
1*2
1*2
1*2
1*2
1*2
1*2
1*2
1*2
1*2
1*4
R*8
R*8
R*8
1*2
C*2
1*2

Packed source name.
Offset from beginning of vis record of U

V
W
Time

Baseline
Order in data of complex values
Order in data of Stokes' parameters.
Order in data of Frequency.
Order in data of RA
Order in data of dec.
Increment in data for stokes (see above)
Increment in data for freq. (see above)
Stokes value of first value.
Number of random parameters
Length in values of a vis record.
Number of visibilities
Frequency (Hz)
Right ascension (1950) deg.
Declination (1950) deg.
Number of correlators
Sort order
Return error code: 0=>OK,

1, 2, 5, 1 : not all normal rand parms
2, 3, 6, 7 : not all normal axes
4, 5, 6, 1 : wrong bytes/value

2) UV data specific catalogue header values

The following catalogue header locations (using the notation
of the /HDRVAL/ common) have uses specific to uv databases:

CAT4(K4CRT+JLOCD) Any rotation of UV from the normal RA-Dec
relation. >0 => ccw.
Not used.
Not used,
•uv*
NVIS(1) NVIS = pseudo 1*4 # vis. rec.
NVIS(2)
Sort order (2 char, see below)
(sort order ***' indicates unsorted data)

CAT8(K8BSC)
CAT8(K8BZE)
CAT4(K4PTY)
CATBLK(K2GCN)
CATBLK(K2GCN+1)
CATBLK(K2TYP)

AIPS Database Page 12

Following is the HELP file explaining the sort order code:

SORT
Type: Adverb (character string, 2 bytes)
Use: Specify which order data are to be sorted into. Two

are packed into SORT with the second key to vary fastest.
Legal values are:

B => baseline number
T => time order
U => u spatial freq. coordinate
V => v spatial freq. coordinate
W => w spatial freq. coordinate
R => baseline length.
P => baseline position angle.
X => descending ABS(u)
Y => descending ABS(v)
Z => ascending ABS(u)
M => ascending ABS(v)

For example SORT='XYl is required by APMAP.
Tasks:

UVSRT Sorts UV data.

3) Routines to access uv data bases.

Routines UVINIT and UVDISK are the uv database analogues of
MINIT and MDISK used for maps. Their use is described in their
precursor comments which follow:

SUBROUTINE UVINIT (OP, LUN, FIND, NVIS, VISOFF, LREC, NPIO,
* BUFSZ, BUFFER, BO, BP, BIND, IERR)

C
C UVINIT sets up bookkeeping for the UV data I/O routine UVDISK.
C I/O for these routines is double buffered (if possible)
C quick return I/O. UVDISK will run much more efficiently if
C on disk LREC*NPIO*BP is an integral number of blocks. Otherwise
C partial writes or oversize reads will have to be done.
C Minimum disk I/O is one block. Smaller calls to UVINIT may be
C as long as the buffer is large enough (double buffer req).
C The buffer size should include an extra NBPS bytes for each
C buffer for non tape read if NPIO records does not
C correspond to an integral number of disk sectors (NBPS bytes).
C 2*NBPS extra bytes required for each buffer for write.
C
c Inputs:
c OP R*4 OP code, 1 READ1 or 'WRIT' for desired operation.
c LUN 1*2 Logical unit number of file.
c FIND 1*2 FTAB pointer for file returned by ZOPEN.
c NVIS P 1*4 Number of visibilities to be transfered.
c VISOFF P 1*4 Offset in vis. rec. of first vis. rec. from BO.
c LREC 1*2 Number of values in a visibility record.
c NPIO 1*2 Number of visibilities per call to UVDISK.
c Determines block size for tape I/O
c BUFSZ 1*2 Size in bytes of the buffer.
c If 32767 given, 32768 is assumed.
c BUFFER() 1*2 Buffer
c BO P 1*4 Block offset to begin transfer from (1-relative)

AIPS Database Page 13

c
c

BP 1*2 Bytes per value in the vis. record.
Vr c Output:
c NPIO 1*2 For WRITE, the max. number of visibilities
c which can be accepted.
c BIND 1*2 Pointer in BUFFER for WRITE operations.
c IERR 1*2 Return error code:
c 0 => OK
c 1 => file not open in FTAB
c 2 => invalid input parameter.
c 3 => I/O error
c 4 => End of file.
c p 7 => buffer too small

c Note: VISOFF < and BO are additive.
c
c

UVINIT sets and UVDISK uses values in the FTAB:

C FTAB(FIND+O)
C 1
C 2-3
C
C
C 4-5
C 6
C 7
C 8
C 9
C 10
C 11
C 12
C 13
C 14
C
C
C 15
c

SUBROUTINE UVDISK (OP, LUN, FIND, BUFFER, NIO, BIND, IERR)
C
C UVDISK reads and writes records of arbitrary length especially
C uv visibility data. Operation is faster if blocks of data
C are integral numbers of disk blocks. There are three operations
C which can be invoked: READ, WRITE and FLUSH (OPcodes READ,
C WRIT and FLSH).
C
C READ reads the next sequential block of data as specified to
C UVINIT and returns the number of visibilities in NIO and
C the pointer in BUFFER to the first word of this data.
C
C WRIT arranges data in a buffer until it is full. Then as
C many full blocks as possible are written to the disk with the
C remainder left for the next disk write. For tape I/O data
C is always written with the block size specified to UVINIT;
C one I/O operation per call. For disk write, left-over data
C is transfered to the beginning of buffer 1 if that is the
C next buffer to be filled. Value of NIO in the call is the
C number of vis. rec. to be added to the buffer and may be fewer
C than the number speecified to UVINIT. On return NIO is the

= LUN
= # Bytes per I/O
= # vis. records left to transfer.

For double buffer read, 1 more I/O will have
been done than indicated.

= Block offset for next I/O.
= byte offset of next I/O
= bytes per value
= Current buffer #, -1 => single buffering
= OPcode 1 = read, 2 = write.
= Values per visibility record.
= # vis. records per UVDISK call
= max. # vis. per buffer.
= # vis. processed in this buffer.
= Buffer pointer for start of current buffer.(values)

Used for WRIT only; includes any data carried over
from the last write.

= Buffer pointer for call (values)

AIPS Database Page 14

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
c
c
c
c
c
c
c
c
c
c-

maximum number which may be sent next time. On return BIND
is the pointer in BUFFER to begin filling new data.

FLSH writes integral numbers of blocks and moves any data left
over to the beginning of buffer 1. One exception to this is
when NIO => -NIO or 0, in which case the entire remaining data
in the buffer is written.
After the call BIND is the pointer in BUFFER for new data.
The principal difference between FLSH and WRIT is that
FLSH always forces an I/O transfer. This may cause trouble
if a transfer of less than 1 block is requested. A call
with a nonpositive value of NIO should be the last call and
corresponds to a call to MDISK with opcode 1FINI'.

NOTE: A call to UVINIT is REQUIRED prior to calling UVDISK.

Inputs:
OP
LUN
FIND
BUFFFERO
NIO

Output:
NIO

IERR

R*4
1*2
1*2
1*2
1*2

1*2

1*2

1 READ1
f'WRIT1,'FLSH' are legal Opcode

Logical unit number
FTAB pointer returned by ZOPEN
Buffer for I/O
No. additional visibilities to write.

No. visibilities read.
Max. no. vis. for next write.
Return error code.
0 => OK
1 => file not open in FTAB
2 => input error
3 => I/O error
4 => end of file
7 => attempt to write more vis than specified

to UVINIT or will fit in buffer.

AIPS Database Page 15

APPENDIX £

Antenna files ANdssvv

A. Overview

Functions This extension file for a uv data set contains information
about the antennas and the array geometry including conversion from
atomic time to sidereal time.

Details: AN files use the EXTINI-EXTIO file structure with various
global parameters kept in the header record. The logical record
length is 64 R*4 words.

Names: The file name is ANdsssvv where d is disk number, sss=catalog
number and vv = version number.

B. File structure.

The file header record contains the following:

Location
1*2 R*4 R*8 Size Description
57 29 15 R*8 Array center X coord, (meters, earth center)
61 31 16 R*8 Array center Y coord.
65 33 17 R*8 Array center Z coord.
69 35 18 R*8 GST at IAT=0 (degrees)
73 37 19 R*8 Earth rotation rate (deg/IAT day)
77 39 20 R*8 Frequency (Hz)
81 41 21 C*4(2) Reference date as 'DD/MM/YY1

85 43 R*4 Polar X (meters)
87 44 R*4 Polar Y (meters)
89 45 R*4 UT1-UTC (time sec.)
91 46 R*4 IAT-UTC (time sec.)
93 47 C*4 Sideband 'UP1,1 LOW, 1DOUB 1

Logical record structure.

Location
1*2 R*4 R*8 Size Name

1 1 1 C*4 STANAM(2)
5 3 2 R*8 STABX
9 5 3 R*8 STABY

13 7 4 R*8 STABZ
17 9 5 1*2 NOSTA
18 1*2 MNTSTA
19 10 R*4 STAXOF
21 11 6 R*4 ANTSP1(18)
57 29 15 R*8 CLKIFA
61 31 16 R*8 LOIFA
65 33 17 R*4 BPFRA
67 34 C*4 POLTYA
69 35 18 R*4 POLAA
71 36 R*4 AMPA

Description
8 char, station name
X offset from array center (meter)
Y offset from array center (meter)
Z offset from array center
Station number
Mount type, 0=altaz, l=equit.
Axis offset (meters)
Spare words
IF A clock offset
IF A lo-offset
IF A effective bandpass (fraction)
IF A feed poln. type 1R 1, 1L', 1X 1, 1Y»
IF A feed position angle.
IF A JY/K

AIPS Database Page 16

73 37 19
75 38

R*4 P0LA1
R*4 POLA2
R*4 POLA3

IF A poln. cal. parameter n
77 39 20
79 40

n

R*4 ANTSP2(7) Spare words
IF B clock (sec)
IF B lo offset (Hz)
IF B effective bandpass (fractional)
IF B poln. type, (see above)
IF B feed position (deg)
IF B JY/K
IF B poln. cal. parameter 109 55 28

111 56
113 57 29
115 58

93 47 24
97 49 25

101 51 26
103 52
105 53 27
107 54

R*8 CLKIFB
R*8 LOIFB
R*4 BPFRB
C*4 POLTYB
R*4 POLAB
R*4 AMPB
R*4 POLBl
R*4 POLB2
R*4 POLB3

r
w

R*4 ANTSP3(7) Spare words

C. User notes.

When calling EXTINI make sure the calling routine has the common
/DCHCOM/ (includes DDCH.INC and CDCH.INC) and use BP = 2 and

LREC = 2 + 7 * NWDPDP + 49 * NWDPFP.

For ease in accessing values in a logical record use the includes
DANT.INC and CANT.INC which declare a common /ANTCOM/ in which the
names given in section B are in the appropriate location.
When STANAM is given to EXTIO as the location to put the record, the
values will be correctly filled in.

D. Routines to write AN files:
EXTINI and EXTIO, AN files are currently written by DVLOD and

TOAIP.

E. Routines to access AN files: EXTINI and EXTIO.

