
(860821)

VLB ARRAY MEMO No. 5 ^

CSIRO Division of Radiophysics

To: VLBA Memo Series

From: Martin Ewing 15 August 1986

Subj: Relational Databases and VLBA Operations, Revisited

In an earlier memo (Memo I, of 7 August 1986), I outlined some data "relations" that
could be used in the operation of the VLBA. Here, I report on my initial contacts with the
VAX/VMS "Rdb" database product.

I am new to the field of databases on big machines, but my perspective is probably
similar to many other radio astronomy computer people. I hope my impressions will have
some value in assessing the practicality and desirability of using Rdb. I have not looked
at competing products, so my remarks probably apply to the class of relational database
products, rather than specifically to Rdb.

General Impressions

One does not approach DEC's db products lightly. There is a fearsome collection of
manuals and acronyms to deal with when you first wet your toes. Typical Fortran /
Pascal / C scientific users will have had no contact with any of this. However, the
documentation and help files are quite good, and there are even prepared demonstrations
(similar to EDTCAI) to bring along the novice.

I doubt that the typical VLBA scientist or engineer will want to use the interactive
interfaces (Datatrieve and RDO) in their full generality. The command structures are
enormously powerful while still English-like, but they do not have "Macintosh" clarity. A
user can not sit down with these systems productively without having quite a bit of previous
experience.

DEC seems to intend that general data entry and queries be handled through various
forms- and screen-management packages and/or user-written programs. The typical
manual data entry process, for example, would be handled by a package that puts up
predefined "fill-in-the-blanks" screens on VT100 terminals, tests user responses for
various validity constraints, and stores values in the database.

The Rdb system can be used interactively by experienced people through Datatrieve
and RDO. RDO, in particular, is probably the best way to set up database structures and to
try out various command sequences. However, for production use it will often be best to use
the program-callable entries of Rdb.

Rdb is supplied with language-sensitive precompilers for Fortran, Pascal, Cobol, etc.
These translate embedded Rdb commands into references to Rdb entry points. You have

Relational Databases, Revisited Page 2

the ability to interleave Fortran and Rdb commands quite flexibly. Thus it is
straightforward to access the database from VLBA monitor and control programs,
correlator programs, or from specialized engineering test programs. I suspect this would
be the most common way to utilize Rdb in the VLBA. My test programs described below use
this interface.

Applicability

In Memo I, I set out some relations that would describe the VLBA operations. Most
kinds of data, it turns out, are relatively static: tape and user indexes, antenna configu
rations, etc. It is clear that a general database system like Rdb is quite useable for these.

One concern is whether Rdb is really called for: is the problem large enough? DEC’s
literature says that their smaller (and friendlier) Datatrieve system (which can be used
with its own data, structures separately from Rdb) is more appropriate for files with less
than about 5,000 records. Most static VLBA files will be smaller than this size; only
telescope instructions, logs, and soruce catalogs could be much larger. I would say that the
total number of records in the VLBA database would likely be over the 5,000 mark and the
extra flexibility of embedding Rdb commands in Fortran make it relatively attractive for
this application. Presumably, Datatrieve would also be purchased to handle casual report
generation. (It may actually be bundled with Rdb; I don’t know.)

The biggest uncertainty from my viewpoint has been whether the performance level of
Rdb or Datatrieve would be high enough so that any large fraction of the monitor and
control data could be contained. To gain some quantitative feel, I have made a couple of
small experiments on CSIRO Radiophysics VAX 11/750.

Tests

Test 1; Signal Tape Inventory. As a typical chore for Rdb, I selected the "Signal Tape
Inventory" relation described in Memo I. The attached listings show the relation and
field definitions from Rdb. I wrote a small Fortran program with Rdb calls, also attached,
which would load the database with 1,000 records of "typical" data. The objective was to see
what sort of resources would be required.

First, a note on the test computer. This is a VAX-11/751 (an OEM variant of the 750
purchased with an Intergraph CAD/CAM system) with 8 MB of memoiy and 12-15 users
during the period of the tests. It is half of a VAX cluster sharing an Systems Industries
disk sytem with Fujitsu Eagle drives, which contained the Rdb files. The 750’s at
Radiophysics (like most VAXes I know) are generally considered to be terribly
overloaded.

The results:

a. Disk space. There is a disk space overhead of some 500 blocks per database. But,
since one only needs one "VLBA" database to hold all the relations of Memo I, this
overhead will not be serious. (Actually, for security one might place personnel or proposal

Relational Databases, Revisited Page 3

review data in a separate database, but no matter.) The VLBA database, loaded with 1,000
tape records takes some 1,300 disk blocks (0.65 Mbyte), mostly in one file. The disk space
consumption is broken down in an attached listing.

b. Memory. My experience is that Datatrieve, RDO, and their ilk always want as
much main memory as is available. They would always run at 1,100-1,200 pages on our
system. Small programs calling Rdb run at 900-1,000 pages.

c. Resources required to load 1.000 records;

Total Per Record
Elapsed Time: 737. s 0.74 s
CPU Time: 496. s 0.20 s
Buffered 10: 2,032. 2.0
Direct 10: 9,750. 9.8
Page Faults: 647. —

Test 2; Bulk Monitor Data. To test the extreme monitor data capacity of an Rdb
system, I used the segmented stream" facility. This is a method for storing relatively
large amounts of data (up to 64K bytes) in an Rdb field. Rdb carries the data as part of a
normal record, but the contents of the stream segments is arbitrary binary or ASCII data.
Rdb does not attempt to evaluate this data; it cannot be used directly for searching, etc. The
user’s program is completely responsible for the internal format.

I wrote a program to store 200 4K byte ASCII segments in a "monitor-test" relation.
Each segmented stream consisted of two 4K segments, making 100 Rdb records in all.

The results:

1, PisH Spare- The Rdb file expanded to nearly 3,300 blocks (1.7 Mbyte) after the data
were loaded.

2u— Qihgr Resources, With 17 users on the system, the following statistics were
recorded:

LOADING READING

Elapsed Time:
Total Per Record Total Per Record

372. s 1.9 s 30. s 0.15 s
CPU Time: 67. s 0.34 s 11. s 0.055 s
Buffered 10: 208 1.0 7 0.035
Direct 10: 2,464 12.3 357 1.79
Page Faults: 731 — 377 __

Note that preallocation of disk file space is required to achieve this timing for loading.
At first I had not preallocated enough storage, and the loading process took about twice the
times indicated above.

Relational Databases, Revisited Page 4

Conclusions

I was somewhat surprised that the record loading time was only 0.2-0.3 CPU seconds
on the VAX 11/751. For the VLBA monitor and logging data application, I would suspect
that the normal processing time would be dominated by loading (writing) time.
Engineering data would be retrieved in sporadic ways depending on the problem at hand.
(I assume that data for real-time display would be creamed off the incoming stream before
going into Rdb.) In terms of data rate, a VAX 750 could more-or-less keep up with a 96
Kbit/s (12 Kbyte/s) incoming rate, much greater than the expected rates, even including
real-time fringe checking.

Rdb obviously requires more CPU time, disk activity, and disk space for storing data
than a Fortran unformatted write statement and a corresponding "flat file." However, it
does provide the benefit of great versatility in accessing the data once stored. I have not
worked up any benchmarks for data inquiries, since these would be difficult to define and
because I do not regard inquiries as being the likely bottleneck for Rdb. Nor have I looked
carefully at disk space utilization.

In all, I feel that VMS Rdb (and possibly its competitors) should not be excluded from
further consideration for VLBA database operations. I believe that it could be used for the
whole VLBA database implementation-from antenna monitoring to payroll data.
Whether a general database system should be adopted is a question for another forum.

RDO Database Listing

The following is a listing of an interactive session using RDO to list the structure of
the VLBA test database. The underlined parts are typed by the user.

show version
Current version of RDO is: Rdb/VMS VI.1-0
Underlying versions are:
Database with db_handle V in file vlba

Rdb/VMS VI.1-0
RDB VI.0

show database
Database with db_handle V in file vlba

show relations
User Relations in Database with db_handle V

MONITORJTEST
SIGNAL_TAPE_INVENTORY
SIGNAL_TAPE_LOG
VENDORS

stLQW-flelds for monitor-test
Fields for relation MONITORJTEST

MON_ID signed longword scale 0
based on global field NUMERIC

MON_TIMZ Date

Relational Databases, Revisited Page 5

based on global field DATE
MON_DATA segmented string

segment_length 4096
based on global field BIG_DATA

Show fields, for sianal-tape-lnventorv
Fields for relation SIGNAL TAPE INVENTORY

STAPE_ID text size is 10
VENDOR_ID text size is 8
PRODUCT text size is 32

based on global field TEXT32
LENGTH signed longword scale

based on global field NUMERIC
ACQUIS171ONJD ATE Date

based on global field DATE
N_SHIP_CYCLES signed longword scale

based on global field NUMERIC
N_REC_P ASSES signed longword scale

based on global field NUMERIC
LAST_SHI?_DATE Date

based on global field DATE
LAST_SHI?_ORIG text size is 6

based on global field STATION _ID
LAST_SHI?_NO signed longword scale

based on global field NUMERIC
LAST_SHI?_RCVD Date

based on global field DATE
LAST_SEI?_DEST text size is 6

based on global field STATION,_ID
CUR_CONDITION text size is 8
CUR_LOCATION text size is 6

based on global field STATION,_ID

show fields for- sicrnal-■taoe-loo
Fields for relation SIGNAL_TAPE_LOG

STAPE_ID text size is 10
START_TIME Date

based on global field DATE
ST0P_TI!t2 Date

based on global field DATE
QUALITYJLEVEL text size is 8

show fields *or vendors
Fields for relation VENDORS

VENDOR_ID text size is 8
NAME text size is 32

based on global field TEXT32
TELEPHONE text size is 17

based on global field PH0NE_N0
TELEX text size is 16

based on global field TELEX_NO
ADDR_1 text size is 20

based on global field ADDR_LINE
ADDR 2 text size is 20

Relational Databases, Revisited Page 6

based on global field ADDR_LINE
ADDR_3 text size is 20

based on global field ADDR_LINE
ADDR_4 text size is 20

based on global field ADDR_LINE
ZIP text size is 10
CONTACT text size is 32

based on global field TEXT32

analyze, pagg

Space utilization analysis - completed at 14-AUG-1986 13:10:54.49
480 data pages, each page is 2 blocks long
Available daza storage area is 78 percent utilized

%used --- ♦data

90 -100% 224
80 - 90% 97 | s s c s s s s w a s s s a s s s s s z c z s x

70 - 80% 41
60 - 70% 0 1
50 - 60% 3 1
40 - 50% 6 | =
30 - 40% 54 |=============
20 - 30% 0 1
10 - 20% 1 1
0 - 10% 54 |=============

analyze relations

Avg % %
Rec in % Total Used

Record Name Occurrences Bytes Used Bytes Frag Space Space

MONITORJTEST 100 2800 28 0 32 43
RDB$CONSTRArSTTS 0 0 0 0 0 0
RDB$C0NSTRAI2JT_RELATI0NS 0 0 0 0 0 0
RDB$DATABASE 1 597 597 0 11 17
RDB$FIELDS 75 30225 403 0 74 90
RDB$FIELD_VER5I0NS 126 10332 82 0 59 73
RDB$INDEX_SEGMENTS 22 1584 72 0 27 34
RDB$INDICES 17 1615 95 0 28 35
RDB$RELATIONS 14 1232 88 0 21 29
RDB$RELATION_FIELDS 126 56826 451 0 88 94
RDB$VIEW_RELATIONS 0 0 0 0 0 0
SIGNAL_TAPE_INVENTORY 1000 125000 125 0 87 92
SIGNALJT AP E_LOG 0 0 0 0 0 0
VENDORS 2 408 204 0 7 13

1483 230619

Relational Databases, Revisited Page 7

analyze Indexes

Index. Index Length Duplicate Duplicate
Index Name levels nodes used nodes length used---- ---- ---- ------- ------------
RDB$C0N_C0NS7RAINT_NAME_NDX 1 1 0 0 0
RDB$CR_CONSTRAINT_NAME_NDX 1 1 0 0 0
RDB$CR_REL_NAME_NDX 1 1 0 0 0
RDB$FIELDS_NAME_NDX 2 9 2352 0 0
RDB$VER_REL_ID_VER_NDX 1 1 142 20 3868
RDB$NDX_SEG_NAM_FLD_POS_NDX 2 3 736 0 0
RDB$NDX_NDX_NAME_NDX 2 3 547 0 0
RDB$NDX_REL_NAME_NDX 1 1 345 6 552
RDB$REL_REL_ID_NDX 1 1 86 0 0
RDB$REL_REL_XAME_NDX 2 3 460 0 0
RDB$ RFR_RE L_?LD_NAMES_NDX 3 24 5606 0 0
RDB$RFR_SRC_FLD_NAME_NDX 2 10 2291 31 2852
RDB$VIEW_REL_NAME_NDX 1 1 0 0 0
RDB$VIEW_VIE/f_NAME_NDX 1 1 0 0 0
STAPE_ID_NDX 2 18 6433 0 0
STAPE_L0CATION_NDX 2 17 6343 0 0
VENDOR_INDEX 1 1 27 0 0

show indexes
User Indexes in Database with db handle V

Indexes for relation SIGNAL_TAPE_INVENTORY
STAPE_ID_NDX with field STAPE_ID

No duplicates allowed
STAPE_LOCATICN_NDX with field CUR_LOCATION

No duplicates allowed

Indexes for relation VENDORS
VENDOR_INDEX with field VENDOR_ID

No duplicates allowed

Rdb Programming Examples

LOADER. This is the benchmark program used to load the signal-tape-inventory
relation with ’’typical" data. It is used as input to RDBFOR, the Rdb Fortran
precompiler. Lines beginning ’̂ ROBfe" are commands to the precompiler; they are
nearly identical with RDO interactive commands.

program loader
implicit
character*10
character*8
character*32
integer
real*8
character*8
character*6

none
tapeno
vendno
product
length, nship, npass, waybillno
adate, ldate, rcvddate
origstn, deststn
location

Relational Databases, Revisited Page 8

&RDB&

&RDB&

&RDB6

10

1

2
&RDB&

&RDB&

&RDB&

&RDB&
&RDB&

&RDB&
&RDB&

&RDB&
&RDB&

&RDB&

character*8 condition
integer itrans, ntrans, iseed, ran3
parameter (ntrans - 1000)
character*8 vendors(3), stations (3), conditions(3)
character*32 products(3)
character*80 err_message

data iseed/1234567/
data vendors/'Vendor A', 'Vendor B', 'Vendor C'/
data products/'Long slimy blue tape',
1 'Lenghthy green sticky variety',
2 'Slippery brown elastic snapping'/
data stations/'VLA NM', 'OWNVLY', 'SCROIX'/
data conditions/'Good', 'New', 'Poor'/

INVCXE DATABASE V = PATHNAME 'VLBA'
open. (unit=6, name='SYS$OUTPUT', status-'NEW',carriagecontrol='LIST')
write(6,*) 'Hello.'
call lib$init_timer
do itrans - 1, ntrans
START-TRANSACTION READ-WRITE

RESERVING SIGNAL-TAPE-INVENTORY FOR SHARED WRITE
if (aod(itrans,100).eq.0) then

write(6,10) itrans
format (' Record **', i5)
call lib$show_timer
end if

write(tapeno,1) itrans
foraat ('STAPE', i5.5)
vencao = vendors(ran3(iseed))
product - products(ran3(iseed))
lengrh = 5000 * (ran(iseed) + 1.0)
call sys$gettim(adate)
nship = ran3(iseed)**2
npass = nship*45
oricstn = stations(ran3(iseed))
deststn - stations(ran3(iseed))
ldate = adate
rcvcdate = adate
waybillno = abs(1000*ran(iseed))
condition =* conditions (ran3 (iseed))
write(location,2) ntrans - itrans + 1
format('B N ',i4.4)
STORE X IN SIGNAL-TAPE-INVENTORY USING
ON ERROR

goto 999
END-ERROR

X.STAPE-ID = TAPENO;
X.VENDOR-ID= VENDNO;
X.PRODUCT = PRODUCT;
X.LEKGTH = LENGTH;
X .ACQUISITION-DATE = ADATE;
X.N-SHIP-CYCLES = NSHIP;
X.N-REC-PASSES - NPASS;

Relational Databases, Revisited Page 9

4RDB& X .LAS7-SHIP-DATE
6RDB& X.LAST-SHIP-ORIG
SRDB& X .LAST-SHIP-NO
6RDB& X.LAST-SHIP-RCVD
&RDB& X .LAST-SHIP-DEST
&RDB& X .CUR—CONDITION
&RDB& X.CUR-LOCATION
&RDB& END-STORE
4RDBS COMMIT

end do
call lib$show_timer
call exit

LDATE;
ORIGSTN;
WAYBILLNO;
RCVDDATE;
DESTSTN;
CONDITION;
LOCATION;

999 call lib$sys_getmsg(%ref(rdb$status) ,
1 ,%descr(err_message))
type *,err_message
type *, 'Error - rollback'

&RDB& ROLLBACK
end

integer function ran3(iseed)
implicit none
integer iseed, i
i = 10000*ran(iseed)
ran3 * mod(i, 3) + 1
return
end

LSEG. This program was used to load the large segmented stream fields in
monitor-test relation.

program lseg
implicit
real*8
integer
parameter
character*80
character*4096

none
adate
i, itrans, ntrans, irecord
(ntrans = 100)
err_message
text

5RDB& INVOKE DATABASE V = PATHNAME 'VLBA'
open(unit-6, name“ 'SYS$OUTPUT*, status='NEW',carriagecontrol*'LIST')
write {6, *) ' Hello.'
call lib$init_timer
do i = 1, 4096

text(i:i) * char(mod(i,128))
end do

irecord = 0
do itrans = 1, ntrans

SRDB& START-TRANSACTION READ-WRITE
SRDB& RESERVING MONITOR-TEST FOR EXCLUSIVE WRITE

if (Eod(itrans,100).eq.0) then
write(6,10) itrans

10 format(' Record =', 15)

Relational Databases, Revisited Page 10

call lib$show_timer
end if

call sys$gettim(adate)
&RDB& CREATE-SEGMENTED-STRING SSTR.

irecord * irecord + 1
write(text(1:5),5) irecord

5 format(i5.5)
SRDB& STORE SEG IN SSTR USING
&RDB& SEG. RDB$VALUE - text
&RDB& END-STORE

irecord =■ irecord + 1
write(text(1:5),5) irecord

6RDB& STORE SEG IN SSTR USING
4RDB& SEG.RDB$VALUE - text
&RDB& END-STORE
&RDB& STORE X IN MONITOR-TEST USING
&RDB& ON ERROR

goto 999
SRDB& END-ERROR
&RDB& X.MON-ID - ITRANS;
&RDB& X.MON-TIME = ADATE;
&RDB& X .MON-DATA = SSTR;
&RDB& END-STORE
&RDB& END-SEGMENTED-STRING SSTR
&RDB& COMMIT

end co
write(6,6) irecord

6 format(i5, ' records written.')
call lib$show_tinter
call exit

999 call lib$sys_getmsg(%ref(rdb$status),
1 ,%descr(err_message))
type *, err_message
type *, 'Error - rollback'

&RDB& ROLLBACK
end

RSE6. This program reads back the data loaded by LSEG.

program rseg
implicit
real*8
integer
integer
parameter
character*80
character*4096 sval

none
adate
i, itrans, ntrans, slen, id, is
iseg, irecord
(ntrans = 100)
err_message

&RDB& INVOKE DATABASE V - PATHNAME 'VLBA'
open(unit=6, name='SYS$OUTPUT', status*'NEW,carriagecontrol*

+ 'LIST')
write(6,*) 'Hello.'

Relational Databases, Revisited Page

&RDB&
&RDB&

&RDB&
6RDB&

&RDB&
4RDB&

&ROB&
&RDB&
&ROB&
&ROB&
&RDB&

11

&RDB&

4RDB&

888

call lib$init_timer
i =* 0
START-TRANSACTION READ-ONLY
START-STREAM SM USING X IN MONITOR-TEST
do ii.rans*=l, ntrans+1

FETCH SM
AT END

goto 888
END-FETCH

START-SEGMENTED-STRING SS USING T IN X.MON-DATA
do iseg=l,2
GET slen - T.RDB$LENGTH;

sval - T.RDB$VALUE;
id = X.MON-ID;
adate = X.MON-TIME;

END-GET
i - i + 1
read(sval(1:5),11) irecord
format(15)
if (irecord.ne.i) type *, 'Nrec, val read:', i, irecord

end do
END-SEGMENTED-STRING SS
end do
END-STREAM SM
type *, 'I fell out of the loop.'
type *, i, ' Records read.'
call lib$show_timer
end

