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I. Introduction 

The usual means of fringe processing in VLBI is a correlator-based tech-

nique. But sizeable components of delay and fringe rate are dependent upon 

effects that are ascribable to individual antennas, along with their associated 

i.f. and l.o. systems and the atmospheric conditions overhead. For this rea-

son one would expect that it should be worthwhile, in cases of low signal-to-

noise ratio (S/N), to attempt to. solve simultaneously, using observations 

from all baselines, for the antenna-based effects. Such a global method would 

obviate the requirement that there be relatively strong fringes on every base-

line to be processed. An additional advantage of a global method is that the 

phase closure relations satisfied by the data will not be corrupted. The 

closure properties are disturbed when the standard technique is applied. 

Following a description of the standard approach to fringe search, two 

global fringe search techniques are outlined below. The first global method 

that is described is a least-squares approach. The second, a Fourier trans-

form (FT) method, is a straightforward generalization of the standard technique. 

The least-squares method requires good starting guesses but is more flexible 

than the FT method. In initial tests, a hybrid algorithm has been used, com-

bining both of the global techniques. The FT method is used to generate 

starting guesses for the least-squares algorithm. 
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II. The Standard Approach 

Assuming that the correlator responses have been transformed to the time 

and frequency domain (t,v), the standard approach to fringe search can be de-

scribed as follows. Observations ^..(t^, v^) on the i-j baseline (0<i<j<n) at 

times t,, k=0,l,...,n , and at frequencies £=0,1,...,n , are related to 
iC t 

some "true" l/̂ .(t,v) according to 

V v V = 8 i ( t k ' V 8j ( tk'V "ij ( tk'V ( 1 + eijk£> + 6ijk£> w h e r e t h e 

antenna effects (clock errors, etc.) have been absorbed into complex-valued 

functions g of (t,v), and where the additive errors, 6, and the components e 

of the multiplicative errors are sufficiently small and well-behaved. Each g 
i*k(t,v) can be written as g^(t,v) = a^(t,v)e (i^ is called the antenna phase 

i\(t,v) 
of antenna k). Although the a, are functions of (t,v), it is assumed that 

they change slowly enough with time and frequency that gk(t,v) = a^ e 

with a^ constant over the (t,v)-interval of the fringe search. Also, I^j I is 

assumed to be constant over the relevant interval. Then, to first order, 
i[(«,-*,)(t ,v )] 

(1) V..(t ,v„) « a.a. V..(t ,v ) e 1 3 ° ° • v 7 ij 1 ' U x j xj o o 

1 1 1 J lili I (tk~to) + 1 3 -H- I (VZ"V0)I 
± L 3t J < v v l < v v J 

where <J>. . = arg V .. 
1J 3 3 + W I + 4>ii) 

The quantities r_. = ^ ^—I and t 4 4 = J 
i j 8t I" ,v ) « 9v (t ,v ) o o o o 

which are called, respectively, the fringe rate and the delay for baseline i-j 

at (^^q)* c a n be estimated by searching for the maximum modulus of the 

Fourier transform F..(r,x) of the distribution F..(t,v) defined by 

F..(t,v) =', o 6(t-(t -t ), v-(v«-v )) where <5 is Dirac's 6-function (i.e., xj ' k,£ k o JL o * 

* 
In practice one doesn't compute F.. directly, but rather a discrete approxima-
tion to it, via the FFT algorithm" 3̂and then interpolation yields the parameter 
estimates. 



,v ) ] 
6 ( r, t ) = 1 ) . Furthermore, F. . (r. . , t . . ) - a . a. I/. . (t ,v ) e J 

13 ij l 3 ij o* o' 
These quantities, rij» , and FCr^.T^), then, are the product of the stan-
dard fringe search technique. They allow one to produce corrected observations 
a, . 
V i j ( W -i[(t,-t )r. . + (v«"v )x..] e k o ij Z o ±3 

F..(x..,r..) ij 13 i 3 
d(f). . 

which, to the extent that the first-order model (1) is valid, and that 

and are negligible, can be averaged coherently over time and frequency. 

Note carefully, though, that the technique does not separate the and 
d t at 

components of the rates, nor the and components of the delays, as one 

might wish. 

Following the fringe search, the corrupting influence of the quantities 
—1 —ill; (t ,v ) —1 
a^ e k o o = g^ ^ o ^ o removec* post-processing by the self-cal-
ibration/hybrid mapping techniques. 

The major disadvantage of the standard approach is that relatively high 

S/N ratî > (i.e., small e and 6) is required on each baseline in order to obtain 

reliable' estimates of all the r ^ and ^. The obvious approach toward a 

fringe processing method for the low S/N regime is to try to separate the 
3 \ I 3 \ I antenna-based components ^ . and v ) t*ie rates and 

o' o o* o 
the delays by means of some simultaneous solution over all baselines. Obvious-
ly the source phase, , cannot be separated into antenna-based components -
so a source model V^, approximating , is required, a_ la_ self-calibration/ 
hybrid mapping, in the two global fringe search methods described below. 
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III. A Least-Squares Approach 

Here, given a source model, V, approximating I/, above, we consider the 

problem of least-squares estimation of the antenna-based components of fringe 

rate and delay. Simultaneously we wish to estimate the g^. The antenna-based 

parameters are the a., the antenna phases, \f>, = $, (t ,v ) , the antenna rates, 
« , i JC R.O K. O O _ , i 
dfk r. = -r—-1, v, and the antenna delays, t . = - — I , * k 8t |(t ,v ) J ' k 3v |(t ,v ). o o o o We shall fit the ensemble of observations in the (t,v)-sample space to the model 

i [ ( * . ) + (r - r ) ( t - t ) + ( t . - t . ) ( v - v ) ] 
& (t,v) = a<a V .(t,v) e 1 0 1 j ° 1 j ° + noise, ij iJ i] 
Since only pairwise differences of the the r^, and the t^ appear in the 

model, we shall settle, in the absence of other assumptions, upon estimating 

4n-3 parameters, omitting ^p0> rp» t^ for some choice p of "reference an-

tenna." Thus, if we set \l> = r = t = 0, then we estimate antenna phase, 
P° P P f 9 

i 
rate, and delay with respect to the phase, rate, and delay at antenna p. A 

least-squares formulation of the problem, then, is to minimize the functional 

s ( x ) - V j V W e 3 J J O 

Here, x is the (column) vector of unknown parameters, 

x = col^a^,... >an»^io' • • • '^no^l' *" * ,rn,Tl' *" *' Tn^ ' t*ie Pr*me denoting that 

antenna pfs parameters (except for a^) are omitted; and is a n estimate of 

the variance of V ^ (t^, v^) . 

i [0f>, . - r . ) (t, -t )+( t - t . ) ( v , - v ) ] ~ j-, r, - io JO i j k o l i - c o Define ĵk-fc = e • Then, we might 
choose to minimize S^x) = ̂  ± < j q 2 | V V / V i j ( W " a i a j Eijk£l 2 

instead of S(x) (S^ might be preferred if data storage were at a premium); or, 

if it were assumed that a^ = 1, Vk, 

S2 ( x ) = i<3 ^ l ^ i j ( W / V l j ( W " E±jk£ I w h e r e t h e *k h a v e b e e n 

deleted from the vector, x, of unknowns; or, if one wished to discard the 



V y i_ , ^ M ^ ' V ^ - M ^ ' V J 
amplitude information, S3(x) = ̂  q 2 | e k * 13 k * - E^^j 2, 

where = arg ^ . Thus far, in the attempt at a practical implementation 

of the least-squares method, only the form S^ has been employed. 

Additionally, one might choose to incorporate prior knowledge of the 

parameters: for example» one might tabulate the running mean, m , of an 
rk 

antenna's fringe rate, r^, along with an empirical measure of the rms scatter 

a about the running mean. If one were then to assume a Gaussian prior dis-
rk 
tribution N(m ,a2 ) for r, , one would add to S the "penalty" term 

rk rk k 

n <rk-Vk>2 

£ — — — . Or, if there were simply a desire to constrain the estimates 
k=l o2 

M P rk 
of some parameter to a given interval, one could add a differentiable penalty 

function to S which would be small over the given interval and rise sharply 

at its boundaries. These techniques would serve to reduce the variance in the 

parameter estimates, at the expense of increased bias, over and above the bias 

inherent in the basic nonlinear least-squares approach. Preliminary tests of 

the method indicate that constraints are not required in cases of moderate S/N 

ratio. 

S typically has many local minima, as well as other critical points. One 

can reasonably expect that a standard iterative minimization algorithm, start-

ing with a reasonable initial guess, reliably and efficiently should be able 

to locate some local minimum. But locating a starting point for which the 

global minimum will be the point of attraction of the algorithm is more diffi-

cult. However, secondary minima of S ought to be spaced in delay and rate 

roughly like the spacing of the maxima of the cosine transforms of f(t) = 
1 1 

E „ 2 6(t-tT+t ) and gfv) » Z $ 6(v-v,>+v ), whenever the variance estimates k o 0 JL o 
are separable functions of t and v; i.e., whenever ~ a±ja\ia£' t e s t s 

with model data, this observation has improved the success rate of the algorithm 
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quite significantly when it has been started with quite arbitrary initial 

guesses. But-a more fruitful approach seems to be to use a generalization of 

the standard method in order to generate starting points. This scheme is 

described in the following section. 

A detailed description of an algorithm which seems effective in solving 

the least-squares problem as formulated above is given in the Appendix. 
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IV. A Generalization of the Standard Approach 

As in the least-squares minimization of let us discard the amplitude 

information but retain the phases, <f> and Then, to estimate the ty^o' the 

r^, and the t^, a global Fourier transform approach analogous to the standard 

approach is easily derived. 

For simplicity of exposition, assume that antenna number 1 has been chosen 

as reference antenna; i.e., p=l. Define D. »(t,v) = 6(t-(t -t ), v-(v»-v )). 
let k o - C O 

Then the location of the maximum modulus of the Fourier transform of 

i t ( * i 2 - * 1 2 ) ( W ] 
F19(t,v) = , p 2 Dl.»(t,v) e provides an estimate of iz a 1 2 k l Jot 

r^ and and the argument there is an estimate of ^ By the phase closure 

relations, though, = ^13~*13~^23+<'>23 + n o i s e' 1x1 8ene^al, for j ^ 1,2, 

i — ^ V ' l r V ^ x w 1 

define ^ ( t . v ) = ^ ^ + lfc<t.v> e 

Since the differences J - $ occurring in F ^ a n d in the a r e indePen~ 

dent (apart from whatever scheme was used to derive the model) the Fourier 
£ 

transform of F = F.^ + 2 Flj2 yield better parameter estimates than 

any one of the F 's alone. 

Paths like 1-3-4-2, with functions defined analogously to those 

above, provide further estimates of r^* T̂ t and if̂  0- ^1342 n o t i n d eP e n d e n t 

of P^32 anc* ̂ 142' although it incorporates new data from the 3-4 baseline. So 

it is not clear how to sum all of the F fs together with properly chosen weights. 

Nevertheless, for an arbitrary choice, p, of reference antenna, the paths to 

antenna Z which incorporate at least partially independent phase differences 

can be enumerated as: 

{(p-0>, • 
{(p-j-£): j=l,...,n, 

and {(p-j-k-£): j=l,... ,n-l, j^pk=j+l,... ,n,Mp,£}. 
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As in the standard fringe search technique, in implementing this method 

one would compute a discrete approximation to F, via the FFT algorithm, rather 

than F itself. Given prior knowledge of the rates and delays, it would be 

straightforward to constrain the parameter estimates by doing a restricted 

search for the maximum modulus of F. It is not readily apparent how the 

method could be generalized to provide estimates of the a. . 
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V. Discussion 

Bill Cotton and I are implementing a hybrid global fringe search algorithm 

within the AIPS interactive data reduction system. The FT method is used to 

provide starting guesses for the least-squares algorithm, as shown in the 

block diagram of Figure 1. In the least-squares routine, the functional S^ 

is minimized. The weights a r e proportional to the product, wj:wj 

two "antenna weights", times the square of the modulus of the model visibility, 

Thus» baselines where the source is heavily resolved are given small 

weight. A data editing capability based on goodness-of-fit to the model (1) 

has also been incorporated. A priori knowledge of the delays and rates often 

is good enough that the dotted line path shown in Figure 1 can be followed. 

Typically the FT method provides good enough parameter estimates for the 

least-squares algorithm to converge in 4-6 iterations. A sample result of a 

run of the program is shown in Figure 2. Raw phase observations on one base-

line in one frequency channel, for a brief interval of time, are plotted in 

the upper portion of the figure. The corrected phases are shown in the lower 

portion. 

As an alternative to the least-squares algorithm, one could use instead 

an JL̂  minimization method, in order to reduce the sensitivity to wild data 

points. This approach, whose application to ordinary self-calibration/hybrid 

mapping is described in [4], readily could be adapted to the problem at hand. 
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/ 

shortcut 
(see 
Discussion) 

Figure 1. Hybrid method, combining both global methods. 
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PHASE VS T IME FOR 3 C 1 2 0 . T R N . f l R G T B . 2 

ANTENNAS 4 - 7 CORK RR FROM 8/23:88=80 TO 1/12:08:00 

PHASE US TIME FOR 3C120.TRH.FITTB.3 ANTENNAS 4 - 7 CORK RR FROH 0/23=90:88 TO 1/12:00:60 

150 

1800 1300 tllLl I AT DAYS 1400 

Figure 2. Phase observations on one baseline in one frequency channel 
before correction (top) and after (bottom). 
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Appendix 

Implementation of the Least-Squares Method 

In this section, S denotes whichever functional of Section 3, S, S^, 

S2> or is to be minimized, x is the corresponding column vector of un-

known parameters. With n antennas, there are N = 4n-3 parameters unless S^ 

has been selected, in which case N = 3n-3. Let VS(x) denote the gradient of 
/ 3S 3s \ S evaluated at x; i.e., VS(x) = collar—,...,——\; and let H(x) denote the 

1 N' 

Hessian matrix of S at x; i.e., H(x) = ̂  ^ J . In general, S has 
Xi X3 i»j =1 

many critical points - local minima, local maxima, and saddle points. At any * * * 
critical point x , VS(x ) = 0. At a local minimum, H(x ) is positive semi-

definite (i.e.,<all of its eigenvalues are nonnegative), and at a proper local 

minimum (i.e., when all parameters are well-determined) H(x ) is positive 

definite. At a local maximum, H is negative semidefinite (i.e., none of its 

eigenvalues are positive), and at a saddle point H is indefinite (i.e., it has 

some negative and some positive eigenvalues). Away from a local minimum, 

-VS(x) points in the direction of steepest descent in the sense of the stan-
dard Euclidean metric, J(x-y)^(x-y). For any positive definite matrix 

G, -GVS(x) is also a steepest descent direction - steepest in the sense of 

the metric J(x-y)^G (x-y) derived from the inner product Clearly, be-

cause of the multitude of local maxima and saddle points, a descent algorithm 

is required for the problem at hand. One would not generally choose, though, 

to step in the direction of steepest descent in the Euclidean metric because 

such a strategy can lead to arbitrarily slow convergence. But whenever H is 

positive definite, -H ̂ "(x)VS(x) is a steepest descent direction. And, by the 

Kantorovich theorem, steps in this search direction will converge eventually 

at a quadratic rate in the neighborhood of any proper local minimum of S. 
Because of the special structure of our problem, a simple variant of 
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* 

Newton1s method for root-finding, applied to the equation VS(x ) = 0, is 

practical* A variant is required because we want the algorithm to converge 

on only one type of critical point - a local minimum. The reason that the 

structure is special and that Newton's method is practical is that, when 

N = 3n-3, each observation, since it involves only 2 antennas, and, therefore, 

at most 6 unknown parameters, contributes to at most 6 elements of VS, to at 

most 6 of the diagonal elements of H, and to at most 15 subdiagonal elements 

of the (symmetric) matrix H. Furthermore, all of these contributions are 

easy to compute. When N = 4n-3, the contributions are to at most 8, 8, and 

28 elements, respectively. For many other problems Newton's method is im-

practical because each observation may involve all of the parameters and 

because analytic second order derivatives of the model may be very difficult 

to obtain. 

The raw form of Newton's algorithm is: 

Given an initial guess x ^ , at the k^- iteration form the new parameter 

estimate x ( k + 1 ) = x ( k ) - c^ H_1(x(k))VS(x(k)), where c^ > 0 is chosen so 

that S ( K + 1 ) - S(K). The difficulty is that H""1 must be positive definite in 
-1 (k) order for -H VS to be a descent direction. Hence, any time that H(x ) has 

nonpositive eigenvalues, we shall wish to replace it by Sf(x k̂̂ ), where Jf is 

positive definite, but in some sense close to H. One means of doing so, 

known as Greenstadt's modification[1], is to compute the eigenvector expansion 
N T 

of H, H = E A v.v., with v. orthonormal, and modify it slightly so that, 
i=l 1 1 1 1 

for some small e > 0, 
r. . _ . > N /x, y x H = Z A v v , where = ' 

i=l 1 1 

Then the search direction is given by 

A. if A. - e l I 
e if A. < e i 

N ^ -1 a. —1 r T -H VS = -Z A. [v. VS]v . 
i=l 1 1 1 
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X til 
Note that v^ VS is a scalar - the dot product of the i — normalized eigen-
vector of H with VS. 

A rough block diagram of my implementation of the least-squares algorithm 

is shown in Figure 3. The subroutine DSICO of the LINPACK package [2] is used 
T 

to factor H, H •* UDU , with U upper triangular and D a diagonal matrix. 

Using this factorization, DSIDI, also taken from LINPACK, tallies the number 

of positive,-negative, and zero eigenvalues of H. When H is positive definite, 

the subroutine DSISL of LINPACK then is used to compute the search direction 
dfc = -H'HsCx^). 

Whenever DSIDI reports that there are nonpositive eigenvalues, Green-

stadt's modification is applied. The subroutine TRED2 of the EISPACK package 

[3] is used to reduce H to tridiagonal form, via similarity transforms. Then 

IMTQL2, also of EISPACK, is used to compute the eigensystem by the implicit 

QL method. — The implicit QL algorithm is quite forgiving of bad parameter 

scaling - say, if the parameters are -defined in units in which the rates are 

orders of magnitude larger than the antenna phases this leads to eigenvalues 

of widely varying magnitude. (My program flunked one of its first tests on 

real data because the scaling was bad and I was using the ordinary QL method). 

Once the eigensystem has been computed, the search direction is given by 

^ = -a - 1 vs(x(k>). 

Finally, a coarse search is made in the direction d^, for an ot̂  satisfying 
(k) < (k) S-(x + ~ S(x ). Close enough to a proper local minimum,' the choice 

(k+1) (k) 
o^ = 1 will do. We set x = x + test for convergence, and per-

form another iteration, if necessary. The theoretically predicted quadratic 

rate of convergence near a proper local minimum frequently has been observed 

in the initial tests of the algorithm. 

Because the derivatives of the model function are entirely straightforward 

to compute, the expressions for VS and for H have been omitted from this 
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report. 

Preliminary results have shown this method to perform tolerably well, 

but other algorithms than this would likely do as well or better. In par-

ticular, an alternative means of modifying H when it is not positive definite 

could speed up the algorithm significantly, since the eigen-decomposition is 

relatively expensive. The algorithm could be effectively implemented in an 

array processor at a moderate expenditure of human effort. 
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