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ABSTRACT. The usual fringe search technique for VLBI is a correlator-
based method. Here, more sensitive, global techniques are presented, 
ones yielding simultaneous solutions for all of the delay and fringe rate 
parameters. The number of parameters required for delay and rate com-
pensation for an » element array is reduced from » 2 — n to 3n — 3. Two 
methods are given: one is based on the Fourier transform; the other is a 
least-squares technique. These techniques may be viewed as variants of the 
self-calibration/hybrid mapping techniques which already are in widespread 
use. 

I. I N T R O D U C T I O N 

Very Long Baseline Radio Interferometry (VLBI) usually involves the use of 
an independent time standard at each of the widely dispersed array elements, 
and, ordinarily, the consequent clock error is the major source of uncertainty in 
determining the time at •which a wavefront arrives at a given antenna. Among 
other sources "which contribute to this uncertainty are differences in the atmos-
pheric phase path lengths over the antennas, and errors in the assumed geometric 
model (i.e. errors in the baseline determination). Commonly, the cumulative er-
ror is greatet- than the reciprocal of the recorded bandwidth, and this error, if 
uncorrected, may well cause complete decorrelation of the signal. In addition, 
the cumulative "clock error" (which now we take to include the other sources of 
error mentioned above) is sufficiently variable with time that it severely limits 
the length of the time intervals over which coherent averaging of the data can 
be performed. Standard practice is to correlate the signals from each pair of 
antennas over a range of time lags, and then to determine the difference in the 
"clock errors" (delay) and the difference in the first time derivative (fringe rate) 
— using the data from one pair of antennas, only, for each solution for these 
parameters. The time intervals are chosen to be short enough that the "clock 
error" may be assumed approximately linear. 

Here we present, as an alternative to the standard correlator-based fringe 
search technique, a global technique which yields a simultaneous solution for 
all of the delay and fringe rate parameters. For each baseline, each delay or 
rate parameter splits into two components, ascribable to two individual anten-
nas. Since, in an n element interferometer array, each antenna may be a part of 
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n— 1 interferometer pairs, a common component of error is present in the obser-
vations on the various baselines involving an}' given antenna. It is -worthwhile, 
therefore, in cases of low signal-to-noise ratio (S/N), to solve simultaneously, 
using observations from all baselines, for these antenna-based effects. With a 
global technique of this sort, the total number of parameters necessary for delay 
and rate compensation can be reduced below the number required by the stan-
dard technique (the reduction is from n2 — n parameters to 3n — 3). A global 
technique obviates the requirement that there be relatively strong fringes on 
every baseline to be processed. Also, the technique preserves the phase closure 
relations satisfied by the data. Conversely, the closure properties are disturbed 
any time that the standard technique is applied. 

The global technique may be viewed as a variant of the self-calibration/hybrid 
mapping techniques (Readhead et. al. 1980, Cotton 1979, and Schwab 1980) 
which are in widespread use in aperture synthesis data reduction, inasmuch as 
the basic assumption on which this new method is based (see eq. [1], below) 
is the same. Other common features are t'hat the global fringe search method 
requires an initial source model; and that, in combination with a Fourier syn-
thesis program and a deconvolution algorithm (e.g. CLEAN), it may be applied 
iteratively to generate successive approximations to the radio source brightness 
distribution. 

Following a description of the standard approach to fringe search, two global 
fringe search techniques are outlined below. The first global method that is 
described is a least-squares (LS) approach. The second, a Fourier transform (FT) 
method, is a straightforward generalization of the standard technique. The LS 
method requires good starting guesses but is more flexible than the FT method. 
In initial tests, a hybrid algorithm has been used, combining both of the global 
techniques. The FT method is used to generate starting guesses for the LS 
algorithm. 

II. T H E S T A N D A R D A P P R O A C H 

Assuming that the correlator responses have been transformed to the time and 
frequency domain (t, u), and that n antennas comprise the interferometer array, 
the standard approach to fringe search can be described as follows. Visibility 
observations Vij{tk,vi) on the i-j baseline (1 < i < j < n) at times tk, k — 
0 , . . . , n t , and at frequencies i/j, / = 0, ,n„, are related to the true source 
visibility VXJ{t, v) according to 

Vijitk, vi) = 9*{tk, vi)g3{tk,vi)Vij{tk> vi) + e%jki (1) 

where the antenna effects (clock errors, atmospheric effects, etc.) have been ab-
sorbed into complex-valued functions gq(t, u), and where the observational errors 
€ are sufficiently small and well-behaved. Each g can be written as gq(t,u) = 
ag{t, v)exp[itpq(t, v)} (tpq is called the antenna phase of antenna q). Equation 
(1) is the model relation which is exploited by the usual self-calibration/hybrid 
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mapping techniques. (Properly speaking, the Vijiht^i) are not really samples 
of the first term in the right-hand side of eq. [1]; rather, they are averages of 
this term, over some neighborhood of (f*,//|)- This fact may be ignored for pur-
poses of the present discussion.) Thompson (1980) and Thompson and D'Addario 
(1982) present rigorous analyses of the effect of hardware electronic design con-
siderations upon the validity of this model; further analysis is given in (Clark 
1981). The so-called "phase closure" and "amplitude closure" relations follow by 
taking logarithms of ratios of equation (1), substituting into the relation antenna 
indices chosen to define a closed path among the antennas. 

Although the aq are functions of time and frequency, it is assumed that they 
change slowly enough that gq(t, v) — agex^[itpg(t, i/)], with aq constant over the 
(t, j>)-interval of the fringe search. Also, |Vy| is assumed to be constant over the 
relevant interval. Then, to first-order, 

Vijitk, w) ^ aidjVijito, i/0)exp{*'[(^ — tpj)(t0, i/0)]} 

(t* — to) 
(to," o) 

{vi — fo) 
(tOrfo) 

expjt 
dt 

d{vi — ipj + 
dv \ 

(2) 

where = arg Vy. 
The quantities 

f i j = — 
dt (to,vo) 

— i>j + 4>ij) 
and Uj = — dv (to.fo) 

, (3a, b) 

which are called, respectively, the fringe rate and the delay for baseline x-j at 
(to, v0), can be estimated by searching for the location of the maximum modulus 
of the Fourier transform Fy(r, r) of the distribution Fy(f, v) defined by 

(4) 
0 < * < n t 
0 < i < n „ 

where 6 is the two-dimensional Dirac delta function (i.e., the distribution with 
the property that 6(r, r) = 1).* Furthermore, 

h j iX i j^ i j ) ~ aiGjVijito, f0)exp{»[(Vt - i/0)]}. (5) 

The quantities rty and 7y (actually, estimates thereof), then, are the product of 
the standard fringe search technique. They allow one to produce phase-corrected 

•In practice, one doesn't compute F%j directly, but rather a discrete approximation to it—via 
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observations 
Vijitk,f|)exp{-»I(t* ~ toK + - vofrj]} (6) 

which, to the extent that the first-order model (eq. [2]) is valid — and that <pij 
is nearly constant —, can be averaged coherently over time and frequency. Note 
carefully, though, that the technique does not separate the difj/dt and d<f>/dt 
components of the rates, nor the dip/dv and d<p/du components of the delays, 
as one might wish. 

Following the fringe search, the corrupting influence of the quantities 
a~1exp[— = ff^H^o, ^o) is removed in postprocessing by the self-
calibration/hybrid mapping techniques. 

The major disadvantage of the standard approach is that relatively high S/N 
(i.e., small c) is required on each baseline in order to obtain reliable estimates of 
all the Tij and r,y. The obvious approach toward a fringe processing method for 
the low S/N regime is to try to separate the antenna-based components 
and ^F|(to,i/0) of the fringe rates and the delays by means of some simultaneous 
solution over all baselines. Obviously, the source phase <pij cannot be separated 
into antenna-based components — so a source model VJy, approximating T\j, is 
required, a la self-calibration/hybrid mapping, in the two global fringe search 
methods described below. 

III. A L E A S T - S Q U A R E S A P P R O A C H 

Here, given a source model V approximating V, above, we consider the problem 
of. least-squares estimation of the antenna-based components of fringe rate and 
delay. Simultaneously we wish to estimate the gq(to, vo). The antenna-based 
parameters are the aq, the antenna phases ipqo = J)9(to, uo), the antenna rates 
fq = ^H(t0,i/0)> and the antenna delays r, = ^ | ( t 0 , i / 0 ) . Define 

Eijki = exp{x[(V»o - t jo) + (r, - r,X** - *o) + (r< - t ^ i - ^o)J>- (7) 

We shall fit the ensemble of observations in the (t, j/)-sample space to the model 

Vij{t, u) = cuajVijit, u)Eijki + noise. (8) 

Since only pairwise differences of the Vfo> the rv and the r? appear in the model, 
we shall settle, in thfe absence of other assumptions, upon estimating 4n — 3 
parameters, omitting rppo, rp, and TP for some choice p of "reference antenna." 
Thus, if we set Vpo = rp = rp = 0, then we estimate antenna phase, fringe rate, 
and delay with respect to the phase, rate, and delay at antenna p. A least-squares 
formulation of the problem, then, is to minimize the functional 

$(*) = £ £ Vij(tk,i'l)-aiajVij(tk,vl)EiM2. (9) 
0<,k<m 1 
0 </<«„ 
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Here, x is the (column) vector of unknown parameters, z = colf(ai, . . . ,an , 
1 / l 0 , j } n o , r i , . . . , r n , 7 i , . . . , r n ) , the prime denoting that antenna p's 
parameters (except for ap) are omitted; and afjkt is an estimate of the variance 
o f V ^ f i ) . 

One might choose to minimize, instead of S, the functional 

SiW = J L | Vi3{tu, vd/Vijih, „,) - aidjEijkif2 (10) 
k,l i<j 

— with an appropriate redefinition of the weights (this form may be preferred 
when data storage is at a premium); or, if it were assumed that a f = 1 for every 

t -

M *<3 *>kt 

where the a f have been deleted from the vector x of unknowns; or, if there were 
a desire to neglect the amplitude information 

S*(x) = £ £ - i - l e x p O l ^ t * , ut) - <t>i3{tk, i/i)]} - Eijkl\2, (12) 
k,l i<j atjH 

where 4>ij = argV#, and where, again, the ay have been deleted from x. Thus 
far, in the attempt at a practical implementation of the LS method, only the 
form S3 has been employed. 

Additionally, one might choose to incorporate prior knowledge of the 
parameters: for example, one might tabulate a running mean m r , of solutions 
for each antenna's fringe rate r9, along with an empirical measure of the r.m.s. 
scatter about this running mean. If one were then to assume a Gaussian 
prior distribution for r? , one would add to S the "penalty" term 

t d a , 
f - i 

Similar terms would be added for the other parameters. (Cornwell and Wilkinson 
(1981) advocate just such a Bayesian approach in ordinary self-calibration/hybrid 
mapping). Or, if there were simply a desire to constrain the estimates of some 
parameter to a given interval, one could add to S a differentiate penalty function 
which is small over the given interval and which rises sharply at its boundaries. 
Either of these techniques would serve to reduce the variance in the parameter 
estimates — at the expense of increased bias, over and above the bias inherent in 
the basic nonlinear LS approach. Preliminary tests of the method indicate that 
constraints are not required in cases of moderate S/N in order for the method 
to behave sensibly; but, since often there is good prior knowledge, the present 
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implementation of the method does allow the use of prior distributions for the 
r f and the r9. 

S typically has many local minima, as well as other critical points. One can 
reasonably expect that a standard iterative midfftiization algorithm, starting 
with a reasonable initial guess, reliably and efficiently should be able to locate 
some local minimum. Locating a starting point for which a global minimum 
will be the point of attraction of the algorithm is more difficult. However, 
secondary mfnima of S ought to be spaced in fringe rate and delay roughly like 
the maxima of the cosine transforms of /(f) = J2k wHk)6(t— tk-\-to) and g{u) = 
Y^i w*(l)6(i/— vi-\-vo) whenever the variance estimate:: are separable functions of 
k and /; i.e., whenever (Jijki = Oij!y/tul(k)u>*{l). In tests with model data, this 
observation has improved the success rate of the algorithm substantially when 
started with arbitrary initial guesses. But a more fruitful approach is to use a 
generalization of the standard method of § II in order to generate the starting 
guesses. This scheme is described in the next section. 

A detailed description of an algorithm which has proven effective in solving 
the LS problem, as formulated above, is given in the Appendix. 

IV. A G E N E R A L I Z A T I O N OF THE S T A N D A R D A P P R O A C H 

As in the least-squares minimization of S3, let us discard the amplitude infor-
mation but retain the phases, 0 and 0. Then, to estimate the ip^o, the r? , and 
the rq (but not the a9), a global Fourier transform approach analogous to the 
standard approach is easily derived. 

For simplicity of exposition, assume that antenna number 1 has been chosen 
as reference antenna; i.e., p = 1. Define the distributions 

Dki{t, v) = 6[t- (tk - t0), i*)J. (14) 

Then the location of the maximum modulus of the Fourier transform of the 
distribution 

Fi2(t, f ) = £ ")«P{»Kii2 - fi)]} (15) 
ktl 12*/ 

provides an estimate of and T2, and the argument there is an estimate of 
i>20- By the phase closure relations (cf. Readhead et al. 1980), 0 1 2 — 0 12 = 
0is — 013 — 023 + 023 + noise. In general, for j ^ 1,2, define 

Fi&it, = 3 2 — 1 2 3 ~ ~ 023 + 
k>t jkl "I" °2jkl 

(16) 
Since the differences 0 — 0 occurring in F\z and in the F\j2 are all independent 
(apart from whatever scheme was used to derive the model) the Fourier transform 
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of F = F12 -f- 1,2 yields, in general, better parameter estimates than 
any one of the £Li s alone. 

Paths like 1-3-4-2, -with functions Fijk2 defined analogously to those above, 
provide further estimates of r2, T2, and tp^o- ^1342 is not independent of F132 and 
F142, although it incorporates new data from the 3-4 baseline. So it is not clear 
how to sum all of the F_ ' s together with properly chosen weights. Nevertheless, 
one can adopt an ad hoc weighting scheme. For an arbitrary choice p of reference 
antenna, the paths to antenna I which incorporate at least partially independent 
phase differences can be enumerated as: 

(p-0; (P-J-O, ; = 1, • • •, n, p, /; 

and ( p - j - k - l ) , j = 1 , . . . , n - 1, k = j-j-l,...,n, j,k^p,l. 
As in the standard fringe search technique, one would, in implementing this 

method, compute a discrete approximation to P — via the FFT algorithm —, 
rather than F itself. Given prior knowledge of the fringe rates and the delays, 
it would be straightforward to constrain the parameter estimates by doing a 
restricted search for the maximum modulus of F. It is not readily apparent how 
the method could be generalized to provide estimates of the aq. 

The global FT algorithm is well-suited to implementation in a high-speed array 
processor. 

V . DISCUSSION 

A hybrid global fringe search algorithm has been implemented within the AIPS 
interactive data reduction system. The FT method is used to provide starting 
guesses for the LS algorithm. In the LS routine, the functional S3 is minimized. 
The weights 1 f o ^ k l are chosen to be proportional to the product WiWj of two 
"antenna weights," times the square of the modulus of the model visibility, 
\Vijki\2. Thus, baselines on which the source is heavily resolved are given small 
weight. A data editing capability based on goodness-of-fit to the model (eq. [8]) 
also has been incorporated. Typically, the FT method provides good enough 
parameter estimates for the LS algorithm to converge in 4-6 iterations. A priori 
knowledge of the fringe rates and the delays often is good enough that there is 
no difficulty in locating a global minimum of S. 

As an alternative to the LS algorithm, one could use instead an i\ minimization 
method, in order to reduce the sensitivity to wild data points. This approach, 
whose application to ordinary self-calibration/hybrid mapping is described in 
(Schwab 1981), readily could be adapted to the problem at hand. 

The global fringe fitting technique offers a number of substantial advantages 
over the standard baseline oriented fringe fitting method. Among them are: 
1) By its very nature, the new method forces closure of the derived instrumental 
delays and rates, whereas the standard technique, in general, does not preserve 
delay and rate closure. 
2) When, as is common, there are great differences in the sensitivity of the 
antennas comprising the VLBI array, the global technique allows the use of data 
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on baselines which by themselves are much too insensitive for baseline fringe 
fitting to succeed. 
3) For any given array, the global technique lowers the threshold for minimum 
detectable point source flux density. 
4) Global fringe fitting offers a simple way to process polarization observations, 
as the delays and rates for each I.F. in use can be determined from the parallel-
polarized correlations, and then they can be applied to the cross-hand polarized 
correlations. This removes the requirement that the source be detectable in the 
cross-hand polarized channels. 
5) The global fringe fitting technique allows the mapping of sources whose size 
is not small compared to the delay resolution on every baseline. This follows 
because the source structure information can be used in an iterative procedure to 
remove the effects of source structure before fitting for antenna delays and rates.-
The source then can be mapped in each frequency channel separately, and the 
resulting maps averaged. The larger delay beam of the narrow band frequency 
channels becomes the limitation, rather than the delay beam corresponding to the 
full bandpass. Since the frequency resolution can be set arbitrarily by changing 
the numbers of delays correlated, the effective delay beam can be made as large 
as desired. 
6) The increased sensitivity of the global fringe fitting technique allows the use of 
shorter solution intervals than can be used for baseline fringe fitting. Hence, the 
actual variations of delay and rate are better approximated by the linear model 
(eq. [2]), than they are in the standard technique. In most cases this results in 
more accurate phase correction of the measured correlations. 

A P P E N D I X 

In this section, S denotes whichever functional of § HI, S, Si, S2, or S3, is to be 
minimized, x is the corresponding column vector of unknown parameters. With 
n antennas, there are N = 4n — 3 parameters unless S2 or S3 has been selected, 
in which case N = 3n — 3. Let VS(x) denote the gradient of S evaluated at 
x; i.e., VS(x) = col($£-,. . . , and let H{x) denote the Hessian matrix of S 

at x; i.e., H{x) = ( J • In general, S has many critical points — local 

minima, local maxima, and saddle points. At any critical point x*, VS(x*) = 0. 
At a local minimum, H(x*) is positive semidefinite (i.e., all of its eigenvalues 
are nonnegative), and at a proper local minimum (i.e., when all parameters are 
well-determined), H(x*) is positive definite. At a local maximum, H is negative 
semidefinite (i.e., none of its eigenvalues is positive), and at a saddle point H is 
indefinite (i.e., it has some negative and some positive eigenvalues). Away from 
a critical point, — VS(x) points in the direction of steepest descent in the sense 
of the standard Euclidean metric v^(x — y)T(x — y). For any positive definite 
NxN matrix G, —GVS(x) is also a steepest descent direction — steepest in the 
sense of the metric y/(x — y)TG(x — y) derived from the inner product xTGy. 
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Clearly, because of the multitude of local maxima and saddle points, we require 
a descent algorithm. One would not generally choose, though, to step in the 
direction of steepest descent in the sense of the Euclidean metric because such a 
strategy can lead to arbitrarily slow convergence. But whenever H(x) is positive 
definite, —H~l{i)r7S(x) is a steepest descent direction. And steps taken in this 
search direction will converge eventually at a quadratic rate in the neighborhood 
of any proper local minimum of 5 (cf. Ortega and Rheinboldt (1970) or Murray 
(1972)). 

Because of the special structure of our problem, a simple variant of Newton's 
method for root-finding, applied to the equation V5(x) = 0, is practical. A 
variant is required because we want the algorithm to converge upon only one 
type of critical point — a local minimum. The reason that the structure is 
special and that Newton's method is practical is that, when jV = 3n — 3, each 
observation, since it involves only two antennas, and, therefore, at most six 
unknown parameters, contributes to at most six elements of VS, to at most 
six of the diagonal elements of H , and to at most 15 subdiagonal elements of 
the (symmetric) matrix H. Furthermore, all of these contributions are easy 
to compute. When N = An — 3, the contributions are to at most 8, 8, 
and 28 elements, respectively. For many other problems, Newton's method 
is impractical because each observation may involve all of the parameters and 
because analytic second order derivatives of the model may be very difficult to 
obtain. 

The raw form of Newton's algorithm is: Given an initial guess x(°), 
at the k ^ iteration form the new parameter estimate x<*+1) = xW — 
ctkH-^xWyvSixW), where a* > 0 is chosen so that 5(x(fc+1)) < S(x(*>). 
The difficulty is that H~l (and equivalently H) must be positive definite in 
order for — H ~ l V S to be a descent direction. Hence, any time that U(xW) 
has nonpositive eigenvalues, we shall wish to replace it by H(xW), where H is 
positive definite, and in some sense close to H . One means of doing so, known 
as Greenstadt's modification (Murray 1975, p.59), is to compute the eigenvector 
expansion of H, H *= H i L i with v, orthonormal, and modify it slightly 
so that, for some small c > 0, 

(On 
a t digit base (3 machine, € w (3 * is an appropriate choice, since positive 

eigenvalues smaller than this cannot easily be distinguished from other eigen-
values that are close to zero). Then the search direction is given by 

-H V 5 = - X ) ^ [ v T v S J v , . (18) 
Xj 
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Note that yJvS is a scalar — the dot product of the normalized eigenvector 
of H with VS. 

A rough block diagram of an implementation of the LS algorithm is shown 
in Figure 1. The subroutine DSICO of the LINPACK package (Dongarra et. al. 
1979) is used to factor H, H — UDUT, with U unit upper triangular and D 
a diagonal matrix. Using this factorization, DSIDI, also taken from LINPACK, 
tallies the number of positive, negative and zero eigenvalues of H. When H 
is positive definite, the subroutine DSISL of LINPACK is used to compute the 
search direction d* = — # - 1 (xW)VS(xW) . 

Whenever DSIDI reports that there are nonpositive eigenvalues, Greenstadt's 
modification is applied. The subroutine TRED2 of the EISPACK package (Smith 
et. al. 1976) is used to reduce H to tridiagonal form, via similarity transforms. 
Then IMTQL2, also of EISPACK, is used to compute the eigensystem by the im-
plicit QL method. The implicit QL algorithm is quite forgiving of bad parameter 
scaling — say, if the parameters are defined in units in which the fringe rates are 
orders of magnitude different from the antenna phases — this can lead to eigen-
values of widely varying magnitude. Once the eigensystem has been computed, 
the search direction is given by dfc = -H V*))VS(xW). 

Finally, a coarse search is made in the direction d*, for an a* satisfying 
S(xW -}- a*dfc) < S(xM). Close enough to a proper local minimum, the choice 
or* = 1 will do. We set = xW -f- a*d*, test for convergence, and perform 
another iteration, if necessary. The theoretically predicted quadratic rate of 
convergence near a proper local minimum frequently has been observed in the 
initial tests of the algorithm. 

Because the first and second derivatives of the model function are entirely 
straightforward to compute, the expressions for VS and for H have been omitted 
here. 

Preliminary results have shown this method to perform well, but other im-
plementations of the LS algorithm would do as well or better. In particular, 
an alternative method of modifying indefinite H could speed up the algorithm 
significantly, since the eigen-decomposition is relatively expensive. The al-
gorithm given here could be implemented in a high-speed array processor, at 
a moderate expenditure of human effort. 
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Figure 1. Rough block diagram of the LS algorithm. 
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