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1 Introduction
The use of a global fringe fitting technique for a homogenous array can reduce 
the detection threshold for a point source relative to that for a baseline based 
method[2]. The purpose of this memo is to analyse the relationship between the 
number of (identical) antennas in the array and the threshold for point-source 
detection. In this analysis it will be assumed that the search windows, and 
therefore the minimum signal-to-noise ratio (SNR), are the same in all cases. 
An attempt is made to determine the scaling of the threshold level with the 
number of antennas.

2 Analysis of “baseline stacking”
In this analysis it will be assumed that the detection threshold is set by a 
minimum SNR and that the SNR is inversely proportional to the error in the 
determination of the phase. It is also assumed that the error distribution of 
the measured phases is zero mean and of finite extent. The problem can then 
be redescribed as determining the scaling of the error in the estimates of the 
antenna phases with the number of antennas in the array. It is assumed that 
all baselines have identical sensitivities.

Interferometers are sensitive only to differences in antenna phase, delay and 
rate, and so these values are usually determined relative to a “reference” antenna 
whose value is customarily set to zero. In a “global” or coherent fringe fitting 
scheme the antenna phase, delay and rate are determined for each antenna from 
all the data; as the number of baselines increases rapidly with increasing number 
of antennas, the minimum detectable point source flux density decreases. The 
uncertainty of the determination of each antenna phase with respect to the 
reference antenna can be used as a measure of the SNR.

As shown in [2] it is possible to use the antennarbased nature of the errors 
to “stack” linear combinations of the phases on various baselines to simulate 
the phase of another baseline. This memo will use this conceptual framework to 
estimate the scaling of the phase uncertainty with number of antennas. Consider 
antenna a, reference antenna r and any other antenna j. The phase on baseline 
ar can be estimated as:
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or using two baselines,
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<f>a — <f>r = (<f>a ~  <f>j) + (<f>j — <j>r)

In the two-baseline case the <f>j term cancels, leaving only the phases of a 
and r. One possible global fringe fitting scheme is to determine $ ar from an 
average of all the one- and two-baseline combinations involving antennas a and 
r. Using this technique we can estimate the variance of the estimated phase 
using the following linearized error propagation analysis relationship [1]:

We can use this relationship to examine the error propagation using the 
one- and two-baseline estimates of $ 0r* Not all of these measures are equally 
sensitive; if a single baseline is assumed to have unit variance then the two- 
baseline estimates will have twice unit variance. Therefore, in the averaging we 
want to weight inversely as the variance of the measure. The average includes 
a single baseline of unit weight and n -  2 baselines of half weight for an n 
antenna array. The partial derivatives of the weighted average w.r.t. each 
of the components is the ratio of the component weight to the total weight 
= 1 +  (n — 2)/2 =  n/2. The variance of the estimate of $ or in units of the 
baseline variance is:

Therefore, using one- and two-baseline combinations the decrease in threshold 
sensitivity is a factor of y/n/2.

line does not use all the information available. In the formulation above, base­
lines jr  contribute unit variance to the analysis. If instead of using the single jr  
baseline in the analysis, the “composite” jr  baseline is used, the variance of the 
new composite ar baseline will be reduced. This is the equivalent of including 
the three baseline combination of [2], As was shown above, the variance of a 
composite jr  baseline is 2/n. (This isn’t quite right as this includes the aj 
baseline which is included elsewhere in the analysis).

y = / ( *

Assuming that the errors are uncorrelated this reduces to:

Using the one- and two-baseline combinations to make a “composite” base-
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Figure 1: This figure shows the factor by which the point-source detection 
threshold is reduced by global fringe fitting as a function of the number of 
antennas in a homogenous array.

Using the “composite” jr  baselines in the expression for the variance of the 
composite $ ar gives:

In the limit of large n this reduces to 1/n or a reduction in the detection thresh­
old by a factor of y/n. Figure 1 shows the detection threshold reduction factor 
as a function of the number of antennas.
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3 Discussion
The above analysis shows that a substantial reduction in the threshold point 
source detection level for a homogenous array can be obtained using a coherent 
fringe fitting method. For the 10 element VLBA this can reduce the detection 
threshold by a factor of «  2.7 relative to a single baseline.

This analysis depends on the source being unresolved or at least having 
insignificant baseline-dependent structure phase. Baseline-dependent structure 
phase will be noiselike in that its effect will be to corrupt the composite baseline 
sums. If the structure of the source is known, its effects can be removed by di­
viding the observed visibilities by the Fourier transform of the source brightness 
distribution. This procedure will not restore the SNR lost to resolution, and so 
the analysis above cannot be directly applied in this case as it assumed that the 
variance of the phase on each baseline was the same.
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