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Abstract
The B-factor of the FX correlator has been analyzed for different pairs of digitizers (two- and 

four- levels) and for different tapering functions at the FFT stage. Problems of reconstructing the 
spectrum of the original analog signals from measurements of an FX correlator in the case of strong 
correlation(auto correlation in particular) are formulated. It is shown that zero padding can not be 
just an option of FX correlator but must be applied in the high correlation coefficient case (auto 
correlation in particular).

1 The approach to the problem
Let’s follow the path of the signals through all stages of the FX correlator. The signal at the FFT output 
can be described by equation (1 ).

N
r)(f) =  X I  H(n)^(t) exP(-j27r/<) exp (-j2v ffrt)exp(-j2Tf6T(t)) (1)

n = 1

where £(t) is the digitized sampled input signal; t =  nA< +  K(L  — 1) is a time;
K <  N  is a shifting of the beginning of the FFT sequence relative to the previous one;
There is no overlapping if K  =  N; L is a sequence number of FFT;
At =  52J  is a sampling period; A /  is the bandwidth of the original analog signal;
N is the number of input points at FFT; / / r is an estimated fringe rate relative to 
a reference point (Earth center for example);
6t(L) is a fractional sample correction relatively to the reference point; H(n) is a tapering function.

The outputs o f the FFT’s from two stations are multiplied and accumulated separately for each frequency. 
The second output is taken in conjugate form. The expectation of this accumulated product can be 
represented by the triple sum:

i=N N

<(/) =  A 2  /C  H(n)H(n +  0 < 6 (n )6(n  + *)exp(-iS/r(L, n, *) >
L t = - N n - 1

• exp(—j2x/(tA< +  6ti2(L))) (2)

where A is. a coefficient which is applied to the data on this stage;
$ /r(L, n, i) is the difference phase of the fringe lobes;
6t12(L )  is the difference in fractional sample correction between two antennas;
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Having changed the sequence of calculation of the sums we can rewrite equation 2

i=N N

EE
i = - N n  = l

= *  E  E  * ( ” ) * ( " + i ) E <  6 (n)6 (n +  0 exP n, i) >
L

• exp(—j2nf(iA t +  8ti2{L))) (3)

The expectation < fi(n)£2(rc+*) > is connected with the correlation coefficient of the input analog signals 
p through the conversion function F(p) associated with the digitization level used (Kogan, 1993). The 
correlation coefficient of the analog input signals is represented by a sine wave with phase $ j r(L, n, i) +  
arg(6(z)) +  <f> and amplitude r | b(i) | , where r is the maximum value of correlation coefficient occuring 
when delay i =  0; b(i) is the Fourier transform of the spectrum of input analog signals:

b(iAt) ~  XJ Jq F ( f ) exPU2lr2A f i)df  =  F(x)exp(j*xi)dx ; * = (4)

The conversion function F(p) distorts the sine wave. This distortion is symmetrical because the function 
F(p) is odd. So the first harmonic (only this one is relevant for the accumulated expectation of (3)) has 
the same phase but less amplitude. This suppression of the amplitude is described by function F\(p) 
which has been analyzed for different combinations of digitizers in [1]. So equation (3) can be rewritten:

C( f\ _ 11 ' T  y '  H(n\H(n I i) V  F l r̂ * + *Tl2(L ^  D
( ) ~ *  i h h i   ̂  ̂ 1V  r \KiAt + SM L)) |

• rb(iAt +  6ti2(L)) exp(.;» exp(-j27r/(tAt +  5ti2(£))) (5)
The fractional bit correction exp(—j2irf6ri2(L)) to be applied to the Fourier transform of the function 
b(iAt +  6ri2(£)) shifts it and converts it to b(iAt).

2 A linear approach
The function F\{p) is almost linear for the whole range of p from 0 to 1 for 2 of the 3 digitizer combinations 
accepted by VLB A correlator (TWO-FOUR and FOUR-FOUR) (Kogan, 1993). Let us define the slope 
of the function F\{p) in the linear limit as a. Then taking into account our reasoning above about the 
fractional bit correction we can rewrite equation (5):

<(/) =  c r J 2  h(i)b(i) exp
i=-N '  '

where />(.) = - £  tf(„) f f(n +  i); / =  1 ,2 , . . . ,— ; /  =  (6)

C =  • rm • a • N • exp(j<f>)

The constant rm in (6) is the maximum value of correlation of digitized signals. The values of this 
constant are given for different pairs of digitizers in [1]. Having substituted the expression &(*) from (4) 
to (6) we receive the following expression for the output of the FX correlator:
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« l )  = c r

N

(7)
i = - N

The function f ( z ) describes the pattern of an equivalent filter corresponding to the weighting 
function h(i).

delay number

Figure 1: Equivalent weighting function at delay axis for a box and hanning tapering function at the 
original FFT

It is necessary to note that the pattern of an equivalent filter is not determined by the original 
tapering function H(n) but its auto convolution (see equation (6)). If the original tapering function is 
represented by a box then the weighting function h(i) has a triangular form:

(8)

For Hanning original tapering function H(n) =  0.5 — 0.5 cos (2tt2^ )  the weighting function h(i) 
is determined by the expression:

MO
- { t

K1 -  ir) 0 - +  \ cos (2w^ ))  +  ^rsin fa i r ) ]  if I * l< N
otherwise (9)

The original tapering functions H(n) and corresponding weighting function h(i) are shown in Fig.l for 
the box and Hanning case.
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Figure 2: Filter corresponding to a Box weighting function at FFT of a FX correlator

The equivalent filter patterns calculated using (7) are shown at Fig.2-3. Now calculate the sum of 
all measured harmonics at output of FX correlator to estimate the whole correlation coefficient.
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Figure 3: Filter corresponding to a Hanning weighting function at FFT of a FX correlator

The equivalent filters shown in Fig.2-3 have a very narrow bandwidth (<  1 channel) so we can 
be sure that the output of the FX correlator would be zero at negative frequencies as well as original 
spectrum. That means we can add C(0 for / from 1 till N. The first y  coefficients are measured. The 
second y  have to be equal to zero. Using (7) we receive the expression for this sum:

N/2 N i N / N  ,  ,  . \ \ M

-  2<(o = c rJ0 w-*(o)+2]£*(•)l^ 008 v*\ ” 7̂2)/) dx ( 10 )

The internal sum at (10) is 0. The F(x)dx =  1 because 6(0) =  1. So expression (10) can be simplified:

n /2 n

£ c(Q =  £ < ( / )  =  c t -AT.A(O)
J=1 J=1

(11)

Having substituted the expression for c from (6) we receive a final expression for the estimation of a 
whole correlation coefficient:

N/2

E C (0 
1 = 1r =

I • A • a • N2 • h(0) (12)
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= _____ icwi (13)
£ F ( I )  5 - j 4 r ™ ' “  ( '

1 = 1

3 The problem of extremely high correlation.
Now let us consider a case when the function relating the input correlation and correlation of digitized 
signals can not be considered linear. It occurs when the input correlation is close to unity especially for 
two level digitizers, and definitely for the auto correlation case. Then equation (6) can be rewritten:

i=N , . . .

c'(/) =  c • r X  exp ( )  (14)
i = - N  V '

where &'(*) is the normalized cross correlation function of the digitized signals. The measured spectrum 
£'(/) does not coincide with the cross correlation spectrum of original analog signals £(/) because &'(/) and 
6(/) are not identical. How can we restore the original spectrum £(/) from a measured one £'(/) using the 
knowledge of the conversion function relating b'(l) and &(/)? The standard way is to transform back to 
the delay domain by taking the inverse Fourier transform of the measured spectrum £'(/). So we calculate 
the function -R;(i):

=  j f  <'(') ex? (15)

The NRAO VLBA correlator measures the spectrum only for positive frequencies (N/2 points). The 
negative components (i.e. the components corresponding to N/2 < I < N) are supposed to be zero in 
accordance with the spectrum of original analog signals or they are symmetrical in the auto correlation 
case. But the spectrum of the digitized signals is not zero for the negative frequencies. So generally we 
don’t have any idea about the spectrum at negative frequencies since we only have information about 
the spectrum at positive frequencies.

That means we can not remove the nonlinear effect due to the digitizing of signals by transforming 
back to the delay domain because absence of information about negative components in the spectrum.

Now suppose we have this information, that is we know the spectrum for the whole range 1 < 
I < N. This case is realized in particular for an auto correlation spectrum because the auto correlation 
spectrum of a digitized signal is a real and symmetrical function, as well as the auto correlation spectrum 
of the relevant analog signal. Then we meet another problem. It is clear that R'(i) is related to the nuclei 
of the direct Fourier transform R(i) =  /i(i)6'(z) at (14) by the expression:

R’ (i) =  R(i) +  Y ,R ( '  +  kN) (16)
k

where k is any integer for which * -f kN belongs to the range of i at the sum of expression (14). In our 
case k can be equal to 1 or -1 . How can we provide the identity between Rf(i) and R(i)? We can select 
the special tapering function H(n) at the FFT which is zero for half of the points (N/2) (zero padding). 
It provides nonzero values of R(i) only for N points and so provides the identity between i?'(i) and R(i). 
With this supposition we can restore R(i) =  /*(*>'(*) without ambiguity for -N/2 < i < N/2. We have 
to divide calculated values of R(i) by h(i) to find the relevant values of normalized correlation function of 
digitized signals b'(i). Now we can apply a known conversion function to &'(t) to restore the correlation 
function of the original analog signal 6(i). But we can do it only for a reduced range of i - approximately 
—N/2 < i < N/2 instead of original one —N < i < N. So the restored spectrum would have worse 
resolution by factor > 2 (An additional problem can appear at the division R(i) by h(i) because h(i) a  0 
near the edges of its range). So zero padding can not be just an option of FX correlator but must be

The estimation of the correlation in the individual frequency channel is given by the next equation:
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applied in the high correlation coefficient case (auto correlation in particular). This is a repetition of 
John Granlund’s conclusion [2]. An auto correlation spectrum of original analog signal can be restored 
from the measurements of FX correlator by transforming back to the delay domain at the cost of loosing 
the resolution by more than a factor of two.
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