VLBA SCIENTIFIC MEMO No. _LQ_.]‘

Signal to Noise Ratio of an FX Correlator in Dependence on
Weighting Function in FFT

L. Kogan
February 27, 1995

1 Introduction

It is clear that signal to noise ratio of an FX correlator depends on a weighting function in FFT. General
equations have been deduced for estimation of the signal to noise ratio for any weighting function. The
special calculation has been done for UNIFORM and HANNING weighting functions implemented in
VLBA correlator. The signal to noise ratio has been estimated for three cases:

1.Individual spectral channel;

2.Averaging of spectral channels;

3.Averaging of overlapping FFTs.

2 Analysis of a signal to noise ratio in an individual spectral
channel.

In the following analysis we suppose that fringe rate for a given pair of antennas is equal zero and
correlated signals are not digitized. These suppositions simplify the mathematical analysys and at the
same time do not limit the area of application of obtained results. So the signals from each antenna can
be described by following equations:

&1(k) = V/Pa1 & (k) + /Pa1 na(k); £2(k) = V/Paz & (k) + /Paz na(k) (1)

where P, P, is the power of correlated signals in the antennas.
P,1, Py is the power of independent noises in the antennas.
&s(k), n1(k), n2(k) are normalized random process’ with the following properties:

§s(k) = n1(k) = ny(k) = 0; & (k) = ni(k) = nj(k) = 1; (2)
ni(k1) - ni(ka2) = na(ky) - na(ks) = 0, if ki#ks (3
ni(k) - na(k) = ni(k) - & (k) = na(k) -&(k)=0  for any k 4)

The property (3) is valid for a flat spectrum of the signals if a sampling frequency is equal double
bandwidth of the spectrum. Spectrum of the noise is determined by the filters partern of receivers and
usually close to the flat form. Signals at the FFT outputs are described by the next equations:

(1)——1-N§ka okl I—lNika L 5
m _Nkzzl 1(k)H (k) exp j2m nz()—ﬁé 2(k)H (k) exp j2r— (5)




where  H(k} is a weighting function.

The FFT output signals corresponded to antennas of a given interferometer are multiplyed (the second
output is taken in conjagate form). As a result taking into account equations ( 5), we obtain the next
expression for the output of an FX correlator from one FFT:

1 L (ky — ko)1
CO=mWns() =57 3 3 Hk)H(ka)éa (k1) (ke) exp j2m-—— (6)

k1=1kga=1

Now we’ll calculate mathematical expectation and rms of random magnitude ¢() to estimate a signal to
noise ratio.

Calculation of mathematical ezpectation ((1) - signal

Starting with the mathematical expectation we can note that the complex exponent and mathe-
matical expectation of &;(k;)€2(k2) depend on the difference k; — ko. Therefore it is comfortable to swith
the variables of the double sums from &y, ks to k1,i = k; — k,. Following this and taking into account
the pair independence of the random process’ n1,ns, &, (1, 4), we can deduce the following equation for
the mathematical expectation of {({):

N .
(0= 5VPiPa 3 hir()emp jny "
i==N

where r(é) = £(k) &, (k + i) is coefficient of auto correlation of the signal as a function of delay;
h(¢) is an auto convolution function of the weighting function:

N
hi) = = ST HEH(E+1) (8)
k=1

The auto correlation function of a random process and its power spectrum are a related Fourier pair.
That is why the equation (7) can be rewritten on the spectral language:

W = 5VPaPs /0 @) f (z - &) dz (9)

where F(z) is a spectrum of a given signal; z = 'AfT'

f(2) is an equivalent filter corresponded to the given function A(3):

N
£(z) = > h(i) cos(miz) (10)

i=—N

Let’s consider the width of the filter pattern f(z) is much less of the features width in the spectrum F(z).
Then we can take out of the integral F(I) and the equation (9) will be simplified:

—_ 1 1 {
()= ﬁ\/P,lP,z F(l)/ flz — E) dz (11)
0 2

But the integral in (11) is the area under the equivalent filter pattern f(z). This area is equal h(0)
because f(z) and h(3i) are a related Fourier pair (10). So finally we obtain the following expression for
the mathematical expectation of {({):

&0 = VPP F(O) h(0) (12)




Calculation of rms ((I) - noise

Calculating the noise we’ll consider the signal power to be negligible in comparison with a noise
power. This supposition simplifyes calculations because different antennas signals are become indepen-
dent. At the same time the case of strong signal is not actual for the signal to noise ratio analysis.
Taking into account the independence of 7:(!) and n(l) in (6) we can write the following expression for
a dispersion of {(I):

(ky— k)l

N N
_ 1 ————— .
D¢ =mi m2m; = 3z PaPa2 3 D H(k1)H (k2) ni(ky) ma(k2) exp j2m-——

k1=1 kq-‘:l

g ———r o (k1 = k2)1
)" H(k1)H(kz) na(ky) na(ks) exp jom (13)
ki=1kga=1

The random process’ ny (k) and ns(k) are ortonormalized (look equations 2, 3). So the equation (13) can
be simplifiyed:

N 2
D¢ = PuPaa |57 3 Hﬁ(k)] (14)

k=1

But # Zﬁ;l H?*(k) = h(0) (Look expression 8). Having substituted this expression into (14) we can
deduce the following equation for rms of ¢:

1
o¢ = ~V Pp1Pha h(0) (15)
Having devided equation (12) over (15) we obtain the signal to noise ratio.

S _ @ _ [P Py
N~ o¢ VP.P., FO (16)

We see that h(0) has been canceled in this division.

Signal to noise ratio in an individual spectral channel is identical for any weighting function
in FFT

This conclusion is rather comprehensible physically. Hanning weighting does not use the all informa-
tion on the time axis and for this reason hanning has to have worse signal to noise ratio in comparison
with uniform weighting. But from the other hand the equivalent filter on the frequency axis is wider for
hanning and for this reason hanning has to have better signal to noise ratio. These two effect compensate
each other. Such a full compensation is valid in comparison of any weighting function with the uniform
weighting function.

3 Analysis of a signal to noise ratio after averaging of spectral
channels.

The equivalent filter of hanning weigting function is wider than of uniform one. As a result neighbour
channels noises are more correlated in the hanning case. That means the uniform weighting function
provides better averaging of the noises averaging the frequency channels. So the signal to noise ratio has
to be better in the case of uniform weighting function. The answer on the question 'How much?’ is given
in the following analysis.

We are going to compare nathematical expectation (signal) and rms (noise) of the random magnitude v:

1 L
7= EZC(I) (17)
=1




where L is a number of averaging spectral channels.

Calculation of mathematical expectation ¥ - signal

Using equations (12) and (17) we can simply obtain the following expression for mathematical

expectation of ¥:
1 —
7= ﬁ\/P,,]P,z h(0) F (18)

where F =1 E,L=1 F(l) is a mean value of the spectrum in averaging channels.
Calculation of rms v - noise

Calculating the noise we’ll again consider the signal power to be negligible in comparison with a
noise power. Taking into account the independence of 7;(I) and n,(!) in (6) we can write the following
expression for a dispersion of v:

L L
Dy= 2 3 3 ) mi ) ) male) (19)

“:1 l;y:l

Having used an expression !5! and remembering that &; (k) is supposed to equal ny(k) we can obtain the
next expression for 7:(11) 7} (I2):

(k1ly — kaly)

~ (20)

- 1 N X - .
m(h)ni(l2) = i bn1 E E H(k1)H (k2) ni(k1)ny(ks) exp j2r
k1=1ko=1

But ni(ki)ny(k2) = 0if ky # ko and nl(kl)nl(lc2) = 1if k; = k2 (See equation 2, 3). This property gives
us opportunity to transform double sum expression (20) in single sum expression:

— 1 i 2 o k(l1 —12)

m{h) i) = ﬁz‘Pﬂle (k) eXPJQ"'—N— (21)
k=1

Analogously:

N

—_— 1 o k(1 =1

n5({I) n2(l2) = WPMZHZ(I(:) exp —]QF'(—IJV—Z) (22)
k=1

Having substituted (21, 22) into (19) we can obtain the following expression for dispersion of 7:

Dy=+3 ZZ N4 Pr1Pas ZHz(k)expﬂw ( =] (23)

Ii=113=1
Now let’s analyse equation (23) separately for uniform and hanning weighting function.
UNIFORM
For uniform weighting function H(k) = H?(k) = 1 and therefore:

N
S H2 () exp jzw’f(Lj\,"—Z) = N 6(ly — by) (24)
k=1
where 6(7) is delta function:
) 1 ifi=0
8(1) = { 0 otherwise (25)




Having substituted (24) into (23) we can obtain the following expression for dispersion of ¥ in the case
of uniform weighting function:

annZ
Dy= 1373 N2 "lpnzzzuzlé(h b) =~ (26)
1= 2=

An expression for rms can be simply obtained from (26)

oy = PnIPn2
NVL

Signal to noise ratio is obtained by division (18) over (27) and substituting A(0) = 1

S slPa2
= =,/=2FVL 28
(N)um. PPy, (28)

HANNING

(27)

For hanning type weighting function H(k) = 0.5(1 — cos 21%) the following expressions are valid:

N
ZHz(lc) expj27r-k(llT_l22 =N-
k=1

(2-6(h—l)—-36(h—12—1) - 06—+ 1)+ &6(h — 13 —2) + L6(1 — 12+ 2)) (29)
N
ZHZ(k) expj27r—]‘i(l—1——

2
~(34Y.

X v = (&)

(6li—lo)+ 36(h =l — 1)+ 26(h — b+ 1) + Z6(h — b — 2) + & 358(h — 12 + 2)) (30)

Having substituted (30) into (23) we can obtain the following expression for dispersion of ¥ in the case
of hanning type weighting function:

)

1 3\ 2 8 1
D‘)’ = WPnIPnZ '8' L+ -g-(L— 1)+I§(L_2)
1 3\? 35 18
= Iz PryPpa (§> 8 (1 - '35—L) (31)

An expression for rms can be simply obtained from (31)

m\/r 35L\/_

Signal to noise ratio is obtained by division (18) over (32) and substituting h(0) = 2

(%>han —V nillznzz FI[ (1 *3 L) (33)

Now we can compare signal to noise ratios for the uniform and hanning weighting functions, deviding

(28) over (33)
(%)% (7)., VR (- 55z) =14 .

Having averaged spectral channels, signal to noise ratio for uniform weighting function is
better than for hanning one in ~ 1.4 times

(32)




4 Analysis of a signal to noise ratio in the case of overlapping
FFT segments in time axis

We limit ourselfs by the case of one half segment overlapping. Signals at an outputs of FFT # m are
described by the next equations:

N N
mlm) = 5 36tk exp i2a L st m) = L3 e km)E(k)exp jon EL (35)
k=1 k=1

where km=k+(m-1)%

The outputs of coresponded FFTs from antennas of a given interferometer are multiplyed forming the
product {(m, ). Then the products are averaged through all M FFT’s outputs. Generally speaking this
averaging is provided in any case. But if there is no overlapping then all FFT’s output are independent
and effect of this averaging is easy comprehended. In the case of overlapping the FFT’s outputs are
correlated. The calculation of signal to noise ratio in the presence of this correlation is not so simple and
is a subject of the following analysis.

We are going to compare nathematical expectation (signal) and rms (noise) of the random magnitude ¥:

1 M
Y= M Z 771(11 m)n;(ls m) (36)

where M is a number of averaging FFTs.

Calculation of mathematical expectation 7 - signal

Mathematical expectation of (ny (I, m)n2(I,m)) does not depend on m in accordance with equation (12)
and we infer that mathematical expectation of v is determined by the same equation:

1
7= 5VPuiPys F(1) h(0) (37)
Calculation of rms v - noise

Calculating the noise we’ll again consider the signal power to be negligible in comparison with a noise
power. Taking into account the independence of 7; (1) and 72() in (6) we can write the following expression
for a dispersion of 7:

1 N N
Dy= 15 Y- Y m(mi)ni(mz) n3(ma) na(mz) (38)

mi=1mao=1

Having used an expression (35) and remembering that & (k) is supposed to equal ny(k) we can obtain
the next expression for n;(m1) nf(m,):

S — 1 LA N N
(mi)ni(me) = —P, H(k)H(k2) ny [ k14 (my— 1)= | ny [ ko + (m2 - 1)
AT = g 32 52 ARk (b m = 05 ) m (k2 (me - ) )
o (ks = ko) + (m1 —mp) )
exp j2m ¥ 2 (39)

But nl(kl + (m1 — I)-IZ!) nl(kz + (mz - 1)%) =01k + (m1 - 1)% 75 ko + (m2 - 1)—12! and
nl(kl + (m1 - 1)%) ’nl(kz + (mz - 1)%) =1if ky + (m1 - 1)%’— = ko + (mz — 1)-21! (See equation 2, 3)
The last one can happen only in three cases:




1) my = mg; ky = k2. From (39) we have:

N
MR ) = 5P Y H(EY: = - Path(0) (40)
k=1

L. From (39) we have:

2)m1=m2+l; ki =ky — 7 -
N/2
S — N 1 N
m(m1)ni(ma) = 7 P z_:l H(k)H (kl + 3) = 57 Pnih (-2—) (41)

3)ymi=mg—1;ky =k +&. From (39) we have:

N/2

_— 1 N 1 N 1 N

n1(ma) nj (m2) = w2 i1 E H(k)H (kl - ?> = 7 Pnih (—'2—) =y Fnih <?) (42)
k=1

Combining (40)(41)(42) we can obtain the following expression for 7;(my) 7} (m2)

ni(m1) ni(mz) = vt h(E) if }Tln1 =mptl =P D(my, my) (43)
0 otherwise

Using (43) and analogous expression for 72(m1) n;(mz) we can deduce from (38) the following expression

for dispersion of v:
11 L. 1 N
Dy = 55 373 Pn1 P Yo S D*my,ma) = Nf 777 Pt Paz [M h%(0) + 2 (M — 1) h? ( )] (44)
mi=1my=1
Now let’s analyse equation (44) separately for uniform and hanning type weighting function
B O X
For uniform weighting function h(0) = 1; A (Z) = 1 and therefore following (44):
1 1 Po1Pos [M +5(M ~ 1)] ;2 an,,z;ju (1 - 3LM) (45)

Dy=wmim

An expression for rms can be simply obtained from (45)
v ann2V ( ) (46)

Signal to noise ratio is obtained by division (37) over (46) and substituting h(0) = 1

(3). = VEreroy2L (14 o)

N

(47)

HANNING
h (¥) = L and therefore following (44):

For hanning type weighting function h(0) = &, 5

1 1 3\ 2 1?2 1 9 19 1
M (g) +2M - 1) (ﬁ) } = 3z PP s (1 - m) (48)

Dy=1z3m

PnIPnZ




An expression for rms can be simply obtained from (48)

1 /13 [19 1
a"y—ﬁ\/m s _1_8(1__38M) (49)

Signal to noise ratio is obtained by division (37) over (49) and substituting h(0) = 2

S P, Py, 18 1
— =4/——=F()V — — 50
(N),“m PPt OVM\[ 39 (1t 3537 (50)
Now we can compare signal to noise ratios for the uniform and hanning type weighting functions, deviding

(47) over (50)

2(1+ 1
(i) . (i) _ Vil+am) 0.84 (51)
NJuni \N/pan 18 (14 1)

s

Having averaged overlapped FFT’s , signal to noise ratio for uniform weighting function is
0.84 of for hanning one

To compare the signal to noise ratios of hanning and uniform weighting functions with ovelapping on
time axis and frequency channels averaging we have to multiply equations (34) and (51). In a result we

can came to the following conclusion:

Having averaged frequency channels of overlapped FFT’s , signal to noise ratio for uni-
form weighting function is better than for hanning one in ~ 1.17 times

The final result is formed in table 1.

Table 1: Signal to Noise Ratios

No overlapping overlapping

Uniform | One channel 1.0vVM /3 V2 ~082v2H
L channels 1.0 VML VEVZML~082v2ML

Hanning | One channel 1.0v/M SV2IM ~097V2 M
L channels | +/#VML~072v/ML ~07vV2ML

Uniform | One channel 1.0 0.84

Hanning | L channels 1.39 1.17

Comparing overlapping with no overlapping we consider a constant integration time. That is why
there is a double number of averaging FFTs - 2 M in the last column of the table.




