TECHNICAL REPORT NO. 23

ROUND-TRIP PHASE MEASUREMENT MODULE L103

R. WEIMER

REVISED FEBRUARY 1994

Table of Contents

<u>Item</u>

Page No

General Description	•	•	•	•	•	1
Circuit Description	•	•	•	•	•	1
Related Documents	•	•	•	•	•	5
Test Procedure	•	•	•	•	•	7
Specifications	•	•	•	•	•	9
Module Drawing List	•	•	•	•	•	10
42-pin Rear Connector and Semi-Rigid Pinout	•	•	•	•	•	11
Module M/C Commands	•	•	•	•	•	12
Module M/C Monitors	•	•	•	•	•	12
Description of I/O Lines	•	•	•	•	•	14
Module Wire List	•	•	•	•	•	15
Schematic Diagram						
Data Sheets						

I. <u>General Description</u>.

The primary function of the Round-Trip Phase (L103) Module is to measure the relative changes in the length of the 500 MHz LO cable going from the station building up to the antenna. It is important to keep track of this length because of its effect on the phase of the LO signals and hence of the received signals from the antenna. Changes in the cable length are measured by reflecting some of the 500 MHz LO signal back from the antenna with sidebands 1.953 kHz away (i.e. 500 MHz \pm 1.953 kHz). This is then mixed with a reference signal of 500 MHz \pm 2.083 kHz in the LO transmitter in the station building. The result of this mixing process is a signal of 130.2 Hz^{*}. The round-trip phase module (L103) then compares the phase of this signal with that of another internally generated reference at the same frequency. Any change in the phase of the returning 500.001953 MHz signal will show the same phase change in the 130.2 Hz signal.

II. Circuit Description.

The Round-Trip Monitor internally generates two reference signals whose frequency is 130.2 Hz, but which have a 90 degree phase difference between them. The phase of the two reference signals is compared with that of the incoming 130.2 Hz signal from the LO Transmitter. This is done using two counter chains which are gated by the output of two exclusive-or (XOR) gates. Each of these two gates compares the incoming signal with each of the two reference signals and produces a logical low when the reference and input signals are in the same logical state.

* precisely 5 x 10^6 / 38400 Hz. This will be referred to as the 130.2 Hz

Thus, if the signals are in phase, the XOR output is low and if they are 180 degrees out of phase, the output is high. If the phase difference is increased from 0 to 180 degrees, the output duty cycle increases in proportion. Conversely, if the difference is increased from 180 to 360 degrees, the duty cycle decreases. This means that there is an ambiguity in the phase measurement: a difference of 170 degrees would read the same as one of 190 degrees, and differences of 10 and 350 would also read the same.

This ambiguity is not a problem by itself, since only the relative phase change over time is important, and the total phase drift will not be greater than 180 degrees. However, if the phase difference using one reference is near 0 or 180 degrees, this ambiguity would make the measurement unusable if the phase difference drifted through the 180 or 0 degree points. Hence, if the measurement using one reference is near 0 or 180 degrees, the phase measurement software will choose the other measurement which will be 90 degrees away from the ambiguous points.

Referring to the schematic diagram, IC's 5A through 5F form the 24-bit counter for the 90 degree reference, and 4A through 4F comprise the 0 degree reference counter. Gate 1B, pin 3 (1B3) is the XOR for the 90° reference, and 1B6 is for the 0° XOR. These outputs are connected to AND gates and then on to the ENABLE inputs of the counters in the chains. The AND gates allow the counters to be turned off once every three seconds for latching and resetting, as discussed below. IC's 2A through 2C and 3A through 3C are the latches for the counter chains.

The circuitry on the left of the diagram is used to derive the 1.953 and 2.083 kHz references mentioned in the General Description above. It is also used

to latch the counter outputs and reset all of the counters and references once every three seconds, in case something gets hung up on a supply glitch. Starting at the upper left corner, the first four IC's going down are synchronous counters (as are all the others) which count down the 5 MHz clock 'CK' signal. This signal, which derives from the MASER reference comes into the module as a sine wave. It is squared, and a complementary version, CK* is produced by the comparator, 1D. IC 1C is a buffer. The first counter in the chain, 7A divides the 5 MHz by 5. The next divides by 16 to produce a 62,500 Hz signal at 7B15. IC 7C further divides by 16 to give a 3906.25 Hz signal at 7C15 which is then divided by 2 to produce 1953.125 Hz at 6E3 which is buffered by 1G11 to go out of the module.

The 62,500 Hz signal is divided by 15 in IC 7D, resulting in 4166.667 Hz at 7D15 which is further divided by the flip/flop at 6E to give the 2083.333 Hz reference at 6E5 which is also buffered for output from the module. 6F3 gives a ripple carry out (CO) type of signal suitable for the next counters. This signal then goes to the two counters 6A and 6B which divide it by sixteen to give the 130.208333 Hz signals. IC 6A is the 90° counter. It is initially loaded with a 12, rather than cleared to 0 when the CLR2 signal is delivered once per three seconds. Hence, its output - 6All is 90 degrees behind the 0° output 6B11. The outputs then go to the XOR gates as described above. Additionally, 6B11 goes to a buffer, 1G3 to be brought to the LO Transmitter module for the test purpose mentioned above. This buffer is turned off (into the high-impedance state) whenever the 'signal', rather than the 'test' mode is selected. This is so that the reference will not interfere with the signal in the Transmitter. Further, the 130 Hz output from 6B11 is brought to the front panel for testing purposes.

All of this circuitry is synchronized once in three seconds to the 1 PPS (pulse-per-second) signal from the Station Timing Module (L108). Flip/flop circuits 10AA and 10AB divides the 1PPS signal by a factor of three. The negative-going, 1 microsecond long pulse is inverted by 8D1 and fed to the flip/flops 7F6 and 7E3. All of these flip/flops are negative-edge triggered. The 1PPS signal transitions on the negative edge of the clock. Since 7E3 is clocked by the inverted clock, CK*, it flips one half cycle, or 100 ns, later (see the timing diagram, Figure 1). The negative output of the flip/flop 7E2, the GATE signal, goes to AND gates 6F6 and 6F11 to gate off the counting signal from the XOR's. Simultaneously, the positive flip/flop output 7E3 causes the latches 2A - 2C and 3A - 3C to capture the current counts. These outputs also set up flip/flop 7E6 to transition one half cycle later, ie. one full cycle after receiving the 1PPS. This serves to reset flip/flop 7F5 on the next positive clock transition, one cycle later. Flip/flop 7F5 is set up by the 1PPS and transitions on the first positive-going clock, one cycle later. Since 7E6 has set 7F5 up at the same time to transition back (reset), it does so after one more cycle. Thus 7F6 gives a one-cycle-long clear signal starting a half cycle after the current count has been latched. This clear signal, CLR1, CLR2, and CLR*, clears both the reference chain (6A - 6C, 6E, 7A - 7D) and the main counting chains.

Meanwhile, the gate/latch signal which halts the counting must be reset to restart counting. This is done by IC 6C which counts 8 counts of the 130 Hz output from 6B. This waiting period is required to let the transients due to the change in phase of the 2.083 KHz and 1.953 KHz signals die out. They die out slowly, because the signal is fed through a 200 Hz filter in the LO Transmitter module. Thus, long after 8D1 and 7E1 have gone low, 6C15 and 7E4 go high for one cycle, which sets up 7E to reset to 7E2 high and 7E3 low. Once 7E2 is high again, counting restarts and continues until the next integration cycle.

The IC's depicted on the right side of the schematic comprise the interface to the M/C standard interface board. IC's 8A, 8B, and 10B along with 9A, 9B, and 8C decode the address lines and the handshaking DEV REQ and R/W*. IC 8C activates DEV ACK for most of the addresses which are digital. Addresses 06 and 10 to 17 activates ANENB for the analog monitor. IC 8A decodes 'read' requests, and 8B decodes the lone 'write' request. 2D latches the write, and 3D latches and buffers its corresponding read. Only one bit is currently used, but up to 8 are available in the hardware. 9C allows 8 single bit reads from 8 contiguous addresses. Again, only one is used at this time. 3E allows the module serial number to be read, and 2E reads the module ID for initialization, as described in the Standard interface specification.

Power supplies in the C Rack are monitored via this module. +15V is divided by 2 on header 10C and read via address 11. -15 V is divided by 2 on header 10C and read via address 12. +5V is read via address 13. Address 10 reads a ground voltage. In addition, three analog voltages may be input to the module via Pll. They are read via addresses 14, 15, and 17.

Related Documents

- Specification of Monitor and Control Standard Interface, A55001N002-A, L. R. D'Addario, November, 1985.
- 2. Specification of Monitor and Control Bus at VLBA Stations, A55001N001, B. G. Clark, December 1984.

III. <u>Round Trip Monitor Test Procedure</u>

The module is tested for its performance initially on the bench. The two clock signals 5 MHz and 1 PPS are derived from a test unit specially designed for testing this module. Powering up the module on the bench and applying the above clock signals, the logical functioning of the various blocks in the module are tested. The output signals 2.083 KHz and 1.953 KHz are monitored at the wirewrap board connector for proper functioning of the divider chain formed by the ICs 7A to 7D and 6EB. Similarly the 130 Hz REF signal is monitored for checking the divider IC 6B. 0 and 90 degree gating circuits and counter chains are tested by giving 130 Hz signal externally to the 130 Hz signal port of the module. There is a facility in the test unit to apply the internally generated 130 Hz REF signal directly for this purpose. This signal will check 0 degree EXOR circuitry and the corresponding counter chain. A switch is provided in the test unit to invert the 130 HZ REF signal, which will test the 90 degree EXOR circuit and the counter chain associated with it.

Standard interface circuitry can be tested after connecting the module to the computer and using the Round Trip test software routine in the MONCON program. Various monitor and command functions are tested. The module ID circuit is also tested.

After the module is tested satisfactorily on the bench, the round trip phase of the LO cable can be measured by placing the module in Rack C. The LO transmitter module L102 in Rack B and the LO Receiver module L105 in Rack C are connected by a cable through a 50-ohm line stretcher (General Radio Constant Impedence Trombone Line Type 874- LTL). The Round trip phase test software in MONCON gives the phase in degrees and also gives the cable length in cms. The line stretcher has the facility to change the tube length by a small amount and the Round Trip module can be checked for proper functioning.

Specifications

Maximum Voltage to Analog Inputs	± 20 VOLT
Analog Voltage Measurement Range	± 10 VOLT
Number of analog inputs	4
Number of internal analog measurements	4
Number of digital inputs	1
Number of digital readbacks	1
Number of digital command outputs	1
Module Serial Number relative address	04 hexadecimal
Address ID code	15 hexadecimal
Analog monitor relative address	06, 10 thru 17
Digital monitor relative address range	00-05, 08
Command relative address range	05 hexadecimal
Power supply voltages required	+ 5, ±15 VOLT

<u>Drawing List</u>

Description

<u>Number</u>

Assembly Drawing	D53304A010
Wire-wrap Board Layout Drawing	A53304A011
Bill of Materials	A53304B010
Front Panel Silkscreen Artwork	B533041003
Schematic Diagram	D53304S003
Wiring Harness Diagram	A53304W002
Wire List	A53304W001

ROUND-TRIP PHASE MONITOR (L103) [ID No. 15₁₆]

CONTROL

Relative address (hex): 05 Function: 130.2 Hz Signal/Reference Test Switch

<u>COMMAND</u> :	0			1
POSITION:	SIG	(NORMAL)	REF	(TEST)

MONITOR

Relative	Normal			
<u>Address</u>	<u>BITS</u>	<u> </u>	<u>Function</u>	<u>Value</u>
00	0-15	DIGITAL	0° Phase Bits 0-15	
01	0-7	DIGITAL	0° Phase Bits 16-23	
02	0-15	DIGITAL	-90° Phase Bits 0-15	
03	0-7	DIGITAL	-90° Phase Bits 16-23	
04	0-7	DIGITAL	Module SERIAL NUMBER	1 - 255
05	0	DIGITAL	SIG/REF Switch Readback	0 (SIG)
06		ANALOG	LO Transmitter Detector Voltage	1.0 Volt
08	1	DIGITAL	LO Transmitter Lock Detect	0 (LOCKED)
10			Ground Voltage	0.0 Volt
11			+15V/2	7.5 Volt
12			-15V/2	-7.5 Volt
13			+5 V	+5.0 Volt
14			External Analog 4	±10 Volt
15			External Analog 5	±10 Volt
16		ANALOG	LO Transmitter Detector Voltage	1.0 Volt
17			External Analog 7	±10 Volt

Address Map		
<u>RA (Hex)</u>	<u>Contents/Function</u>	<u>Note</u>
00	0° Least Sig Word	16 Bits
01	O° Most Sig Word	8 Bits CM7 - CMO
02	90° Least Sig Word	16 Bits
03	90° Most Sig Word	8 Bits CM7-CMO
04	Serial Number	8 Bit Binary CM7-CMO
05	Test Switch Control	Control & Monitor CMO 0-Signal 1-Test
06	100 MHz det Level	Analog Voltage
07	Not Used	••••
08	Lock Detector	Monitor CMO 0-Locked 1-Unlocked
10	OV	Analog Monitor
11	+15/2V	Analog Monitor
12	-15/2V	Analog Monitor
13	+5V	Analog Monitor
14	Analog 4	Spare Analog Monitor via P11

15	Analog 5
16	100 MHz det Level
17	Analog 7

Spare Analog Monitor via Pll Same Voltage as 06 above Spare Analog Monitor via Pll

Interpretation of Digital Monitor Values:

<u>Sig/Ref Switch Readback</u>: Address = 5 -- bit 0 = 1 Results: Same as Command above.

LO Transmitter Lock Detect: Address = 8 -- bit 0 = 1 Results: 0 = LOCKED 1 = UNLOCKED

Notes:

1. The Signal/Reference Switch is used to select between the 130 Hz LO signal and the 130 Hz reference generated by this module. The 130 Hz signal is derived from the 500 MHz LO signal that goes up the LO cable to the antenna vertex room and comes back, and thus varies with length of the cable. The Round-Trip Phase module compares this with an internally generated 130 Hz reference in order to keep track of cable length changes. The Sig/Ref switch allows the reference to be coupled through the LO Transmitter and into the signal input for testing purposes.

2. The 0° and 90° counts are twenty four bit words which are assembled from the lower 16 bits (0-15) plus the upper 8 bits (16-23). Each count represents a change of 0.000064 millimeter in the length of the LO cable. Because of the noise in the system, the counts must be averaged in order to be able to determine length changes to a resolution of 0.005 millimeter as desired.

42-PIN REAR PANEL CONNECTOR:

2.083 kHz_OUT:	Goes to LO TRANSMITTER to lock PLL at 2.083 kHz offset from 500 MHz LO signal.
<u>5 MHz IN</u> :	From 5 MHz MASER to timing counter chain.
XMIT+, XMIT-:	Monitor/Control transmit bus input from station computer.
+5 VOLT SUPPLY:	+5 V input from power supply.
RCV+, RCV-:	Monitor/Control receive bus output tostation computer.
+15 VOLT SUPPLY:	+15 V input from power supply.
-15 VOLT SUPPLY:	-15 V input from power supply.
130 Hz SIG/TEST:	Output from M/C system to switch in the LO TRANSMITTER which
	selects normal 130 Hz signal and the 130 Hz reference for
	test purposes (130 Hz OUT below).
DETECTOR IN:	From LO TRANSMITTER, measures 100 MHz MASER signal power level.
GROUND: 1	fodule ground for signals and return for power supplies.
<u>130 Hz OUT</u> : 1	Reference switched in place of the 130 Hz signal to test the LO RRANSMITTER circuitry.
<u>1 PPS IN</u> :	l pulse per second from TIMING Module to reset ROUND TRIP MONITOR once per second.
<u>130 Hz IN</u> :	Signal from LO TRANSMITTER whose phase is compared in the ROUND IRIP MONITOR with the 130 Hz reference.
TXMITTER LOCK DE	<u>T</u> : Allows M/C system to determine if PLL in LO TRANSMITTER is locked.

REAR PANEL RF CONNECTORS (OSP)

<u>1,953 kHz OUT</u>: Goes to vertex room LO RECEIVER to LO return modulator. <u>2,083 kHz OUT</u>: Goes to vertex room LO RECEIVER to LO Phase Lock Loop. DRAWING:A53304W002 WILLIAM WIREMAN FILE:B:L103HARN NOTE: (L) INDICATES THE SIGNAL IS LOW TRUE, EX. HI-LO(L) LO-LOW SIGNAL

PART I-WIREWRAP CONNECTOR WIRING

PIN	FUNCTION	SOURCE	COLOR	GA.	PIN	FUNCTION	SOURCE	COLOR	GA.
1.	GND	REF GND	BLK	22	2.	5 V	TB1-4	ORG	22
3.	GND				4.	5V			
5.	COAX RET	P11-39	SHIELD		6.	1PPS	P11-39	COAX	RG-188
7.	COAX RET	P11-5	SHIELD		8.	2.083KHZ	P11-5	COAX	RG-188
9.	COAX RET	P11-40	SHIELD		10.	130HZ SIG	P11-40	COAX	RG-188
11.	COAX RET	P11-38	SHIELD		12.	130HZ REF	P11-38	COAX	RG-188
13.	R/W(L)	J1-49	WHT/BLU	26	14.	HI-LO(L)SEL	J1-17	WHT/BLK	26
15.	DEV ACK	J1-36	WHT/GRY	26	16.	DEV REQ	J1-35	WHT/BRN	26
17.	ID READ	J2-9	WHT/ORG	26	18.	ANENB	J1-37	WHT/VIO	26
19.			·		20.	SW OUT	P11-25	WHT/BLU	26
21.					22.	LOCK DET	P11-41	WHT/GRN	26
23.	ADDR 6	J1-42		26	24.	ADDR 7	J1-41	•	26
25.					26.				
27.	COAX RET	P11-7	SHIELD		28.	5MHZ	P11-7		RG-188
29.	ADDR 0	J1-48	WHT/VIO	26	30.	ADDR 1	J1-47	WHT/YEL	26
31.	ADDR 2	J1-46	WHT/BLK	26	32.	ADDR 3	J1-45	WHT/RED	26
33.	ADDR 4	J1-44	,	26	34.	ADDR 5	J1-43		
35.	C/M 0	J1-33	WHT/ORG	26	36.	C/M 1	J1-16	WHT/ORG	26
37.	C/M 2	J1-32	WHT/BLU	26	38.	C/M 3	J1-15	WHT/BLU	26
39.	C/M 4	J1-31	WHT/RED	26	40.	C/M 5	J1-14	WHT/RED	26
41.	C/M 6	J1-30	WHT/BLK	26	42.	C/M 7	J1-13	WHT/BLK	26
43.	С/М 8	J1-29	WHT/YEL	26	44.	C/M 9	J1-12	WHT/YEL	26
45.	C/M 10	J1-28	WHT/VIO	26	46.	C/M 11	J1-11	WHT/VIO	26
47.	C/M 12	J1-27	WHT/GRY	26	48.	C/M 13	J1-10	WHT/GRY	26
49.	GND		,		50.	-,		,	
51.	C/M 14	J1-26	WHT/BRN	26	52.	C/M 15	J1-9	WHT/BRN	26
53.	COAX RET	FRT.PNL.	SHIELD		54.	2.083KHZ F	RT.PNL.	COAX	RG-188
55.	COAX RET	FRT.PNL.	SHIELD		56.	1.953KHZ F	RT.PNL.	COAX	RG-188
57.	COAX RET	FRT.PNL.	SHIELD		58.	130HZ F	RT.PNL.	COAX	RG-188
59.	COAX RET	FRT.PNL.	SHIELD		60.	130HZ SIG F	RT.PNL.	COAX	RG-188
61.					62.				
63.					64.				
65.					66.				
67.					68.				
69.					70.				
71.					72.	2.083 KHz*	P10	COAX	RG-188
73.	COAX RET	P9/P10	SHIELD		74.	1.953KHZ	P 9	COAX	RG-188
75					76.		_		
77.					78.				
79.					80.				
					•				

			INTERNAL	WIRIN	NG HAI	RNESS (cont	:.)		
81.					82.		•		
83.					84.				
85.					86.				
87.					88.	+5V	J1-4		26
89.					90.	-15/2V	J1-3		26
91.					92.	+15/2V	J1-2		26
93.					94.	+15/V	TB1-6	RED	22
95.					96.	-15 v	TB1-5	YEL	22
97.	GND				98.	5V			
99.	GND	REF GND	BLK	22	100.	5V	TB1-4	ORG	22
PAR	F II-STANDA	RD INTERI	ACE BOARD	WIRIN	1G				
JAC	K J1				JACI	K J2			
PIN	FUNCTION	SOURCE	COLOR	GA	PIN	FUNCTION	SOURCE	COLOR	GA
1.	GROUND	TB-1-	1	26	1	. 5V			
2.	+15/2V	W-92		26	2.				

2.	+15/2V	W-92		26	2.				
3.	-15/2V	W-90		26	3.				
4.	+15V	W-88		26	4.				
5.	ANALOG 4+	P11-18		26	5.	RST+	P11-35	GRN - PR	26
6.	ANALOG 5+	P11-20		26	6.	RST-	P11-36	BLK-PR	26
7.	DET IN	P11-26	WHT/ORG	26	7.				
8.	ANALOG 7+	P11-22		25	8.				
9.	C/M 15	W-52	WHT/BRN	26	9.	ID READ	W-17	WHT/ORG	26
10.	C/M 13	W-48	WHT/GRY	26	10.				
11.	C/M 11	W-46	WHT/VIO	26	11.				
12.	C/M 9	W-44	WHT/YEL	26	12.				
13.	C/M 7	W-42	WHT/BLK	26	13.	GND	REF GND	BLK	22
14.	C/M 5	W-40	WHT/RED	26	14.	5V	TB1-4	ORG	22
15.	C/M 3	W-38	WHT/BLU	26	15.	15V	TB1-6	RED	22
16.	C/M 1	W-36	WHT/ORG	26	16.	-15V	TB1-5	YEL	22
17.	HI-LO(L)SEL	W-14	WHT/BLK	26	17.				
18.	GND	TB1-1		26	18.				
19.	GND	TB1-1		26	19.	RCV+	P11-14	WHT - PR	26
20.	GND	TB1-1		26	20.	RCV-	P11-15	BLK-PR	26
21.	GND	TB1-1		26	21.	XMIT+	P11-8	RED-PR	26
22.	ANALOG 4-	P11-19		26	22.	XMIT-	P11-9	BLK-PR	26
23.	ANALOG 5-	P11-21		26	23.				
24.	DET IN RET	P11-38	BUSS	26	24.				
25.	ANALOG 7-	P11-23		26	25.	GND			
26.	C/M 14	W-51	WHT/BRN	26					
27.	C/M 12	W-47	WHT/GRY	26					
28.	C/M 10	W-45	WHT/VIO	26					
29.	C/M 8	W-43	WHT/YEL	26					
30.	C/M 6	W-41	WHT/BLK	26					
31.	С/М 4	W-39	WHT/RED	26					
32.	C/M 2	W-37	WHT/BLU	26					
33.	С/М О	W-35	WHT/ORG	26					
34.	GND	REF GND	BLK	22					
35.	DEV REQ	W-16	WHT/BRN	26					
36.	DEV ACK	W-15	WHT/GRY	26					
37.	ANENB	W-18	WHT/VIO	26					

INTERNAL WIRING HARNESS (cont.)

38.	GND			• *			•	•		
39.	-15V	TB1-5	YEL	22						
40.	15V	TB1-6	RED	22						
41.	ADDR 7	W-24		26						
42.	ADDR 6	W-23		26						
43.	ADDR 5	W-34		26						
44.	ADDR 4	W-33		26						
45.	ADDR 3	W-32	WHT/REI	D 26						
46.	ADDR 2	W-31	WHT/BL	K 26						
47.	ADDR 1	W-30	WHT/YEI	L 26						
48.	ADDR 0	W-29	WHT/VIO	D 26						
49.	R/W(L)	W-13	WHT/BL	J 26						
50.	5V	TB1-4	ORG	22						
PART	III-REAR	PANEL CO	ONNECTOR	WIRING						
JACH	K P11 (AMP	42 PIN)								
PIN	FUNCTION	SOURCE	COLOR	GA	PIN	FUNCT	ION	SOURCE	COLOR	GA
1.					2.					
3.					4.					
5.	2.083KHZ	W-8	CO-AX	RG-188	6.					
7.	5MHZ	W-28	CO-AX	RG-188	8.	XMIT+		J2-21	RED-PR	26
9.	XMIT-	J2-22	BLK-PR	26	10.	5V		TB1-4	ORG	20
11.					12.					
13.					14.	RCV+		J2-19	WHT - PR	26
15.	RCV-	J2-20	BLK-PR	26	16.	15V		TB1-6	RED	20
17.	-15V	TB1-5	YEL	20	18.	ANALOO	G 4+	J1-5		26
19.	ANALOG 4-	J1-22		26	20.	ANALOO	G 5+	J1-6		26
21.	ANALOG 5-	J1-23		26	22.	ANALOO	3 7+	J1-8		26
23.	ANALOG 7-	J1-25		26	24.					
25.	SW OUT	W-20	WHT/BLU	26	26.	DET IN	1	J1-7	WHT/ORG	26
27.			•		28.				•	
29.					30.					
31.					32.					
33.					34.	GND		TB1-1	BLK	20
35.	RST+	J2-5	GRN - PR	26	36.	RST-		J2-6	BLK-PR	26
37.					38.	130HZ	0	W-12	CO-AX	RG-188
39.	1PPS	W-6	CO-AX	RG-188	40.	130HZ	IN	W-10	CO-AX	RG-188
41.	LOCK DET	W-22	WHT/GRN	26	42.					
OSP	CONNECTORS		····· · , ·····							
PIN	FUNCTION	SOUR	CE TYP	E	SHIE	LD	SOURC	E NO	TES	
P1				-						
 Р2										
P3										
P4										
P5										
P6										
p7										
τ, Δδ										
pq	1 953KH7	W-74	RG-	188	SHTE	LD	W-73	US	E SMA AT	Р9
P10	2.083KHZ	W-72	RG-	188	SHIE	LD	W-73	US	E SMA AT	P10
		· · · •		-				_		

INTERNAL WIRING HARNESS (cont.)

PART IV-POWER DISTRIBUTION TERMINAL BLOCK

POWER	SUPPLY INI	PUT			POWER DISTRIBUTION		
PIN	FUNCTION	SOURCE	COLOR	GA	SOURCE	COLOR	GA
TB1-1	GND	P11-34	BLK	20	GND REF	BLK	22
TB1-2							
TB1-3							
TB1-4	5V	P11-10	ORG	20	J1-50, J2-14, W-2, W-100	ORG	22
TB1-5	-15V	P11-17	YEL	20	J1-39, J2-16, W-96	YEL	22
TB1-6	15V	P11-16	RED	20	J1-40, J2-15, W-94	RED	22
TB1-7							

PART V-FRONT PANEL BNC TEST POINTS

PIN	FUNCTION	SOURCE	COLOR	GA	RET SOURCE	COLOR GA
BNC-1	2.08 KHz	W-54		RG-188	W-53	SHIELD
BNC-2	1.95 KHz	W-56		RG-188	W-55	SHIELD
BNC-3	130 Hz REF	W-58		RG-188	W-57	SHIELD
BNC-4	130 Hz SIG	W-60		RG-188	W-59	SHIELD

`)

С

В

Α

INTERFACE CIRCUITS

TYPES DS7831, DS7832, DS8831, DS8832 Line drivers with 3-state outputs

BULLETIN NO. OL-5 7712496, JANUARY 1977

- TTL Compatible
- Propagation Delay Time . . . 15 ns Typ
- Very Low Output Impedance with High Drive Capability
- 40-mA Sink and Source Capability
- Gating Control to Allow Either Single-Ended or Differential Operation
- Three-State Outputs for Party-Line (Data-Bus) Operation

description

The DS7831, DS7832, DS8831, and DS8832 can be used as either guadruple single-ended line drivers or as dual differential line drivers. This multi-mode operation and simple logic control make these devices especially useful for party-line or bus-organized systems. The DS7831 and DS8831 have output clamp diodes to V_{CC}: the DS7832 and DS8832 do not.

For one of these circuits to operate as four independent single-ended line drivers, both mode-control pins must be low. In this mode, no signal inversion takes place between inputs and outputs. To operate as a dual differential line driver, at least one of the mode control inputs must be high. Inputs 1A and 2A should be connected together as should 3A and 4A. Then signals applied to the inputs will appear noninverted at 1Y and 4Y and inverted at 2Y and 3Y, provided the output control pins are low.

While enabled, these outputs provide good drive capability for capacitive loads, and fast transitions from both low-to-high levels and high-to-low levels.

DS7831, DS7832.....J PACKAGE DS8831, DS8832.....J OR N PACKAGE (TOP VIEW)

Taking either of the associated output controls high disables the outputs. When disabled, these three-state outputs neither load nor drive a line and hundreds of these devices may be connected to a common bus line. Only one output should be enabled at a time.

The DS7831 and DS7832 are characterized for operation over the full military temperature range of -55° C to 125° C. The DS8831 and DS8832 are characterized for operation from 0°C to 70°C.

	FUNCTION TABLE									
OUTPUT		DUTPUT MOD DNTROLS CONTR		DATA INPUT	OUTPUT	DATA INPUT	OUTPUT			
G1	G2	MC1	MC2	1A/4A	1Y/4Y	2A/3A	24/34			
L	L	L	L	н	н	н	н			
L	L	L	L	L	L	L	L			
L	L	×	н	н	н	н	L			
L	L	н	x	L	L	L	н			
н	x	×	x	×	z	x	z			
x	н	x	x	x	z	×	z			

H + high level, L = low level, X + irrelevant, Z + = g -- pedance (off)

TEXAS INSTRUMENTS

139

TYPES DS7831, DS7832, DS8831, DS8832 LINE DRIVERS WITH 3-STATE OUTPUTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)		•	•	•		. 7 V
Input voltage		•	•	•		5.5 V
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 2):	J package	•	•	•	10	25 mW
	N package			•	11	50 mW
Operating free-air temperature range: DS78'			•		-55°C to	125°C
DS88′		•	•		. 0°C1	₽ 70°C
Storage temperature range			•	•	65°C to	150°C
Lead temperature 1/16 inch from case for 60 seconds: J package						300°C
Lead temperature 1/16 inch from case for 10 seconds: N package						260°C

NOTES: 1. Voltage values are with respect to network ground terminal.

2. For operation above 25°C free-sir temperature, refer to Discipation Derating Curves in the Thermal Information section, which starts on page 21. In the J package, DS7831 and DS7832 chips are alloy-mounted; DS8831 and DS8832 chips are glass-mounted.

recommended operating conditions

5

	DS78'			DS88'			
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	V
Output voltage, VO			5.5			5.5	V
High-level output current, IOH			-40			-40	mA
Low-level output current, IOL			40			40	mA
Operating free-sir temperature range, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CONDITIO	NST	MIN TYP [‡] MAX			UNIT
VIH	High-level input voltage	•			2			V
VIL	Low-level input voltage						0.8	V
VIK	Input clamp voltage	VCC = MIN,	11 = -12 mA			-1	-1.5	v
		VCC = MIN,	10H = -2 mA	D\$7831,D\$7832	2.4	3.1		
∨он	High-level output voltage	V _{IH} = 2 V.	10H = -5.2 mA	DS8831,DS8832	2.4	3.0		v
		V _{1L} = 0.8 V	10H = -40.mA		1.8	2.5		
VOL		VCC = MIN.	V _{IH} = 2 V.	10L = 32 mA		0.26	0.4	v
	Low-level output voltage	VIL = 0.8 V		10L = 40 mA		0.3	0.5	
Maria		V _{CC} = 5 V.	$1_0 = -12 mA$				-1.5	v
VOK	Output damp voltage	T _A = 25°C	10 = 12 mA	D\$7831,D\$8831			V _{CC} + 1.5	<u> </u>
	Off-state (high-impedance-state)	Ver - MAX	T 25'C	V _O = 2.4 V			40	
νoz	output current	VCC - MAA.	1A - 25 C	Vo = 0.4 V			-40	
11	Input current at maximum input voltage	VCC = MAX.	V1 = 5.5 V				1	mA
Чн	High-level input current	VCC = MAX.	V1 = 2.4 V				40	μA
111	Low-level input current	VCC = MAX.	V1 - 0.4 V			-1	-1.6	mA
los	Short-circuit output current 5	VCC = MAX.	VO = 0.	T _A = MAX	-40	-70	-120	mA
1CC	Supply current	VCC = MAX				50	90	mA

¹For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. [‡]All typical values are at T_A \geq 25°C and V_{CC} \approx 5 V. $\frac{8}{5}$ Only one output should be shorted at a time.

Voltage Comparators

LM160/LM260/LM360 High Speed Differential Comparator

General Description

The LM160/LM260/LM360 is a very high speed differential input, complementary TTL output voltage comparator with improved characteristics over the μ A760/ μ A760C, for which it is a pin-forpin replacement. The device has been optimized for greater speed, input impedance and fan-out, and lower input offset voltage. Typically delay varies only 3 ns for overdrive variations of 5 mV to 500 mV.

National Semiconductor

Complementary outputs having minimum skew are provided. Applications involve high speed analog to digital convertors and zero-crossing detectors in disc file systems.

Features

- Guaranteed high speed 20 ns max
- Tight delay matching on both outputs
- Complementary TTL outputs
- High input impedance
- Low speed variation with overdrive variation
- Fan-out of 4
- Low input offset voltage
- Series 74 TTL compatible

LM160/LM260/LM360

LM160/LM260/LM360

Absolute Maximum Ratings

Positive Supply Voltage	+ 8 V	Operating Temperature Range
Negative Supply Voltage	-6V	LM160
Peak Output Current	20 mA	- LM260
Differential Input Voltage	±5V	LM360
Input Voltage	v*> v <u>m</u> >v⁻	Storage Temperature Range
		Load Temperature (Soldering, 10 sec)

-55°C to +125°C -25°C to +85°C 0°C to +70°C -65°C to +150°C 300°C

Electrical Characteristics $(T_{MIN} \leq T_A \leq T_{MAX})$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Operating Conditions					
Supply Voltage V _{CC} +		4.5	5	6.5	۷
Supply Voltage Vcc		-4.5	-5	-6.5	v
Input Offset Voltage	$R_s \leq 200\Omega$		2	5	mV
Input Offset Current			.5	3	μA
Imput Bias Current			5	20	μA
Output Resistance (Either Output)	V _{OUT} = V _{OH}		100		Ω
Response Time	T _A = 25°C, V _S = ±5V (Note 1)		13	25	ns
	T _A = 25°C, V _S = ±5V (Note 2)		12	20	ns
	T _A = 25°C, V _S = ±5V (Note 3)		14		ns
Response Time Difference Between Outputs					
$\{t_{pd} \text{ of } + V_{1N1}\} = \{t_{pd} \text{ of } - V_{1N2}\}$	T _A = 25°C, (Note 1)		2		ns
$(\iota_{pd} \text{ of } + V_{W2}) - (\iota_{pd} \text{ of } - V_{W1})$	T _A = 25°C, (Note 1)		2		ns
$(\iota_{pd} \text{ of } + V_{IN1}) = (\iota_{pd} \text{ of } + V_{IN2})$	T _A = 25°C, (Note 1)		2		ns
$(\iota_{pd} o' - V_{m1}) - (\iota_{pd} o' - V_{m2})$	T _A = 25°C, (Note 1)		2		ns
Input Resistance	f = 1 MHz		17		kΩ
Input Capacitance	f = 1 MHz]	3		ρF
Average Temperature Coefficient of Input Offset Voltage	$R_s = 50\Omega$		8		¢/vµ
Average Temperature Coefficient of Input Offset Current			7		nA/*C
Common Mode Input Voltage Range	Vs * ±6.5V	24	:4.5		v
Differential Input Voltage Range		25			v
Output High Voltage (Either Output)	1 _{0UT} = -320μA, V _S = :4.5V	2.4	3		v
Output Low Voltage (Either Output)	I _{SINK} = 6.4 mA		.25	.4	v
Positive Supply Current	V ₅ = ±6.5V		18	32	mA
Negative Supply Current	V ₅ = ±6.5V		-9	-16	mA

Note 1: Response time measured from the 50% point of a 30 mVp p 10 MHz sinusoidal input to the 50% point of the output. Note 2: Response time measured from the 50% point of a 2 Vp p 10 MHz sinusoidal input to the 50% point of the output. Note 3: Response time measured from the start of a 100 mV input step with 5 mV overdrive to the time when the output crosses the logic threshold.