VLBA Technical Report No. 25

VLBA Frequency Converters Modules T101 - T110

> Paul Lilie David Weber January 1994

Table of Contents

1.0 INTRODUCTION	1
Manual Description	1 2
2.0 GENERAL FREQUENCY CONVERTER THEORY OF OPERATION	7
2.1 GENERAL VLBA CONVERTER FUNCTIONAL DESCRIPTION	7
Transfer Switch RF Circuitry LO Drive Circuitry Mixers IF Circuitry	· · · .7. · · .8
2.2 IMPORTANT PROPERTIES OF A VLBA FREQUENCY CONVERTER	11
Inter-Channel Isolation Mixer Characteristics Input and Output VSWR LCP-RCP Path Phase Matching Compression Dynamic Range and Compression Conversion Loss Noise Temperature and Noise Figure IF Path Gain, Flatness and Adjustability IF Passband and Out-of-Band Signal Rejection Transfer and Selector Switch Drive	
2.3 FREQUENCY CONVERTER SPECIFICATIONS	21
2.4 VLBA FREQUENCY CONVERTER DESIGN REQUIREMENTS	23
Design Specifications and Goals	23
2.5 DESCRIPTIONS OF COMPONENTS COMMON TO T101 - T110 Amp/Attenuator Amp/Divider K&L 6B120-750/X550 Bandpass Filter Transfer Switch Transco SPDT Selector Switch IF Gain Relay Assembly	25 25 26 26
2.6 CONVERTER REPLACEMENT PROCEDURE	

2.7 CONVERTER TEST PROCEDURES	31
I. LO Power, Gain and Flatness II. Power Output at the 1 dB Gain Compression Point III. Inter-Channel Isolation Test IV. Noise Temperature and Noise Figure Test V. Spurious Signals Test	.34 36 .38
3.0 FREQUENCY CONVERTER DESCRIPTIONS	.41
3.1 T101, 330 MHz CONVERTER MODULE	.43
3.2 T102, 610 MHz FILTER MODULE	49
3.3 T103, 1.5 GHz CONVERTER MODULE	59
3.4 T104, 2.3 GHz CONVERTER MODULE	63
3.5 T105, 4.8 GHz CONVERTER MODULE	67
3.6 T106, 8.4/23 GHz CONVERTER MODULE	71
3.7 T107, 10.7 GHz CONVERTER MODULE	79
3.8 T108, 14 GHz CONVERTER MODULE	83
3.9 T110, 43 GHz/ALT CONVERTER MODULE) 1
4.0 DRAWINGS LIST	} 7
5.0 DATA SHEETS FOR COMMERCIAL COMPONENTS	}9
6.0 APPENDIX)1
May 1992 list of VLBA Frequency Converter Bands and LO Frequencies 10 List of NRAO Technical Reports, memoranda, etc. relevant to the frequency converter modules 10 List of Converter Commercial Components 10 Effect of VSWR on Transmitted Power 10 Noise Temperature-Noise Figure Graph and Table 10	04 05 08

List of Illustrations

Figure 1	Typical Converter Front and Rear Panels
Figure 2	VLBA Frequency Converter Block Diagram
Figure 3	Double-Balanced Mixer Schematic
Figure 4	Third Order Intercept
Figure 5	K&L 6B120-750/X550 IF Bandpass Filter
Figure 6	6B120-750/X550 IF Bandpass Filter Ripple
Figure 7	Test Setup for LO Power, Gain and Flatness
Figure 8	Power Output at the 1 dB Compression Point
Figure 9	Setup for the Inter-Channel Isolation Test
Figure 10	Setup for Noise Tests
Figure 11	Setup for Spurious Signals Test
Figure 12	Converter Spectrum
Figure 13	K&L 6B120-327/X30 Bandpass Filter
Figure 14	K&L 3B120-827/50 Bandpass Filter
Figure 15	K&L 4B120-611/30 Bandpass Filter
Figure 16	T102 Downconversion Filters vs. TV Channels
Figure 17	K&L 5B120-111/5.5 Bandpass Filter
Figure 18	K&L 8B51-11/4 Bandpass Filter
Figure 19	K&L 3B120-111/5.5 Bandpass Filter 54
Figure 20	K&L 6B250-3000/600 Bandpass Filter
Figure 21	K&L 3B250-4100/1300 Bandpass Filter
Figure 22	K&L 6FV-8400/X960 Bandpass Filter
Figure 23	K&L 2FV-8400/2500 Bandpass Filter
Figure 24	K&L 6FV-10700/X1200 Bandpass Filter
Figure 25	T108 Filters and Band Coverage

Figure 26	K&L 9FV10-12405/R1156 Bandpass Filter	16
Figure 27	K&l 9FV10-13405/R1160 Bandpass Filter	16
Figure 28	K&L 9FV 10-14405/R1162 Bandpass Filter	\$7
Figure 29	K&L 6FV 10-15205/R863 Bandpass Filter	; 7
Figure 30	K&L Composite Response of Four RF Circuitry Bandpass Filters	8
Figure 31	K&L 6ED10-13500/U5000 Bandpass Filter	8
Figure 32	K&L 2FV 10-8400/2500 Bandpass Filter	4

1.0 INTRODUCTION

Manual Description

This manual describes nine VLBA Frequency Converter modules T101 through T110. T109 has not yet been implemented. This is a "How does it work?" manual; the emphasis is on the Frequency Converter's theory of operation, alignment and bench tests. Construction details are not included but all drawings used in converter fabrication are listed in the Bill of Materials drawings. Section 5 contains Data Sheets for the special-purpose components used in the Frequency Converters. The Appendix, Section 6 lists VLBA Technical Reports and other references that are relevant to the frequency converters. Section 6 also contains a list of all converter module's functional drawings and a list of the LO frequencies that are used with the converters.

This manual is an upgrade of the earlier undated draft entitled Frequency Converter Technical Manual for CONVERTER MODULES by Erich Schlect, for six converters T101 through T108, and describes the modules in more detail. Since the publication of this earlier manual, modules T102 and T110 have been developed and other changes have been made, such as the addition of transfer switches to all frequency converter modules. The details of these changes will not be described; this manual deals with the current design state. The tables, drawings, figures, design descriptions, etc. contained in this earlier manual have been retained. The test procedures of this earlier manual are included in Section 2.7. VLBA Technical Report No. 15 (Rev. A), AN INTRODUCTION TO THE VLBA RECEIVING AND RECORDING SYSTEM was also an important reference for this manual.

A brief scrutiny of the frequency converter block diagrams (Section 3) shows that the converters have similar features but they differ in some details. This commonality suggests that important Frequency Converter properties can be generically described in a single section and the features and specifications unique to each type of converter can be described in dedicated sections. This dual treatment is used in this manual because it eliminates redundant descriptions of common features.

Accordingly, Section 2 contains the first part of the Theory of Operation and is a general description of the operation of a frequency converter. It cites important parameters and their influence on the RF conversion process. Section 2.5 contains descriptions of NRAO subassemblies and data sheets for components used in two or more converter modules. Section 2.7 describes converter alignment and performance test procedures.

The second part of the Theory of Operation in Sections 3.1 through 3.9 for converters T101 through T110 describes the operation and features unique to each type of frequency converter. Each Frequency Converter description includes the converter Block Diagram, Assembly Drawing, Bill of Materials (BOM) and data sheets for components peculiar to the converter.

Converter Components and Physical Description

Converter implementation dissimilarities result in part from the fact that the components used in each converter type are frequency dependent over a fairly small range, and the T101 - T110 set of converters span a wide range of frequencies. Secondly, some converters have modes and circuitry unique to the type.

For a given circuit function, the component's frequency dependencies generally require the use of different components in these nine frequency converter modules. For convenience, these components are listed in Section 6.

Most of the frequency converter components are standard commercial, connectorized modules that are selected to meet the converter's frequency and performance specifications. The converters also contain some NRAO subassemblies that use commercial components such as mixers, amplifiers, etc. Two NRAO subassemblies (Amp/Attenuator C53500A006 and Amp/Power Divider A53500A007) provide IF signal amplification, gain control

and output power drive to the IF system - functions common to all conveners. The Amp/Attenuator is a voltagecontrolled amplifier/attenuator and the Amp/Power Divider provides the required power drive to the IF system. Because these functions are common across all converters, they provide circuit uniformity and the commonality enhances maintainability. These two subassemblies are described in Section 2.5.

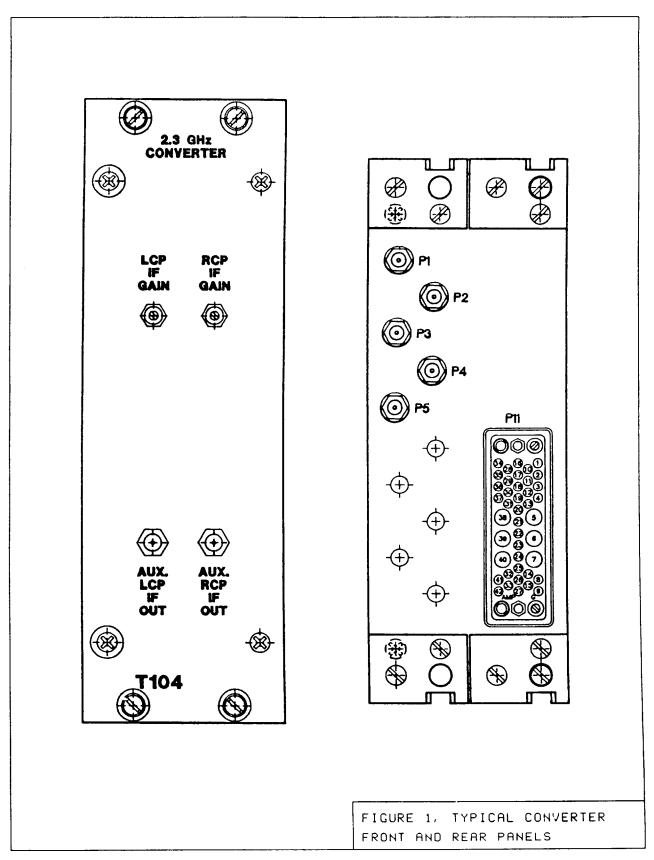

NRAO-designed subassemblies are also used in some applications where suitable commercial connectorized components were not available or better performance is realized in a custom-designed assembly. T101 uses an Input Amplifier A53500A017 and a Converter Unit C53500A011 consisting of mixers, amplifiers and a power divider. T102 uses a Converter Input Amplifier A53500A018 and a Filter Unit Assembly A53500A013. The Filter Unit Assembly contains four mixers, eight amplifiers and two power dividers packaged on a PC board, which makes T102 more compact than it otherwise would have been. T103 uses an NRAO LO Amp/Detector C53500A012 because it is necessary to detect the LO signal level. T106 and T110 (dual band converters) have an IF Gain Relay Assembly A53500A009 to switch the Amp/Attenuator control voltages between two sets of front panel gain control potentiometers. T108 has a switch and LED driver PC board because there are four selector switches that must be driven. These subassemblies are described in Sections 3.1, 3.2, 3.3, 3.6, 3.8 and 3.9, respectively.

Figure 1 on the next page shows a typical frequency converter's front and rear panel views. Two front-panel potentiometers permit manual adjustment of the converter's IF gain and two SMA jacks enable the converter's IF outputs to be monitored while performing these adjustments. Two 50 Ohm terminators are normally connected to the jacks and should only be removed to perform gain adjustments or to monitor the signals on the jacks. Five rearpanel OSP plugs are used for the RF and LO inputs and IF outputs. P1 carries the LO drive, P2 and P3 carry the RF inputs from the Front-End and P4 and P5 carry the IF outputs. The rear-panel AMP P11 power connector provides power and switch control signals to the module. P11-42 is analog signal ground and P11-34 is power ground; both are connected to the module frame. P11-16 is +15 volt power and P11-27 is the transfer switch drive. These are the standard connector assignments. The more complex converters use other plug locations and additional control and monitor signals are carried by P11. These additional plug and P11 pin-signal assignments are described in the particular converter sections.

VLBA Receiving Bands

The VLBA is currently equipped to receive nine bands consisting of: P (90 cm/330 MHz and 50 cm/610 MHz); L (20 cm/1.4 GHz); S (13 cm/2.3 GHz); C (6 cm/4.8 GHz); X (4 cm/8.4 GHz); U (2 cm/14 GHz); K (1.3 cm/23 GHz); and Q (0.7 cm/43 GHz). The Front-End and associated frequency converter for the W (0.35 cm/86 GHz) band are not presently implemented. Two separate converters (for 330 MHz and 610 MHz) are used for the P band and T106 functions in both X (4 cm/8.4 GHz) and K (1.3 cm/23 GHz) bands.

The Pie Town VLBA antenna has a prototype X-band converter (T107) installed for the 2.8 cm/10.7 GHz band. There are no current plans to implement this band on the other VLBA antennas.

Frequency Conversion

The VLBA receiving system uses the superheterodyne principle. In a superheterodyne receiver, a local oscillator signal (LO) is mixed with the Received Signal (RF) from a tuned amplifier to create two signals that are the sum and difference of the RF and LO frequencies; these signals are sometimes called side-bands. The lower or difference frequency side-band is usually amplified as an Intermediate Frequency (IF) signal and is converted to produce a base-band output signal for further processing. The upper or sum frequency side-band is usually rejected by a filter. The VLBA receiver implementation details vary between bands but most of them conform to this superheterodyne scheme. The one exception is T102; see the T102 paragraph below.

The function of converting an RF signal to another frequency by the superheterodyne process is called frequency conversion. A frequency conversion is a downconversion if the IF frequency is lower than the RF frequency; if the IF frequency is greater than the RF frequency, it is an upconversion. For example, if the RF frequency is 100 MHz and the LO frequency is 1000 MHz, the lower sideband IF frequency is 900 MHz. T101 (90 cm/330 MHz) uses up-conversion because the RF frequency is so low; T102 (50 cm/610 MHz) uses both down-conversion and up-conversion but the IF output frequency is the same as the RF input frequency. These two converters have narrower IF bandwidths than the higher frequency converters.

In a frequency conversion, the LO frequency can be either higher or lower than the RF frequency to produce a sum or difference IF signal but other considerations may influence the choice of an LO frequency. These are the portion of the RF bandwidth to be selected and the rejection of image and interfering signals discussed below.

Refer to the table of VLBA LO frequencies in the Appendix, Section 6. This table lists possible LO frequencies for modules T103 through T110. Note that the LO frequences may be above or below the observing frequencies; the selection is an observer's option since either set or a suitable combination from either set may be used.

The VLBA Front-End bandwidths are generally much wider than the IF bandwidths; the LO frequency determines the 500 MHz portion of the RF bandwidth selected for IF amplification. For example, the bandwidth of the L-band Front-End is 560 MHz, about 1.1 times the 500 MHz IF bandwidth, so two LO frequencies are required to fully cover the band. The bandwidth of the U-band Front-End is 3.4 GHz, about 6.8 times the IF bandwidth; thirteen LO frequencies are used to cover the band.

To reduce the LO tuning range, the LO frequencies for converters T103 and T104 (1.5 GHz and 2.3 GHz, respectively) are higher than the RF frequencies but the higher frequency converters T104 through T110 use LO frequencies below and above the RF frequencies. If the IF = LO - RF, the spectrum of the IF signal is reversed relative to the RF spectrum; the high end of the RF signal is converted to the low end of the IF signal, and vice versa. When testing a converter, it is important to keep this effect in mind to avoid confusion about the character of the IF spectrum.

In the VLBA, the input stages are the uncooled (P-Band) and cooled Front-Ends. The Front-End is typically an assembly containing a polarization transducer, broadband amplifiers and noise calibration circuitry.

The incoming astronomical signal is split into two components: LCP for Left Circular and RCP for Right Circular Polarization by the polarization transducer. The LCP and RCP signal components follow identical but separate paths through the front-ends, frequency converters, IF system, base-band conversion and recording systems. Implementation details of the IF, base-band conversion and recording systems are beyond the scope of this manual and are not described. Readers interested in these other aspects of the VLBA electronics are referred to VLBA Technical Report No. 15 (Rev. A).

Each Front-End has an associated frequency converter, one of the T101 - T110 modules, that produces the IF signals. These signals are selected by coaxial selector switches in Rack B for transmission to the IF system in

Rack C in the Station Building. The IF signal ranges from 500 to 1000 MHz.

Front-End frequencies for the L through Q bands range from 1.4 GHz (L-band) to 43.0 GHz (Q-band). A single-conversion implementation for this range of frequencies would require a Local Oscillator tuning range of 2.0 GHz to about 40 GHz - a difficult design. To reduce this LO tuning range requirement, frequency conversions have been implemented in the K (1.3 cm/23 GHz) and Q (0.7 cm/43 GHz) Front-Ends. The K-band Front-End outputs a first IF of 9.4 - 9.9 GHz and the Q-band Front-End outputs a first IF of 7.9 - 8.9 GHz. These lower frequency first IF signals drive T106 (K-band) and T110 (Q-band) respectively. The upper limit of LO tuning range is thus determined by the U (2 cm/15 GHz) Front-End so that the required Local Oscillator (L104) tuning range is 2 -16 GHz. L104 frequency settings are determined by the formula: $F_{L104} = 500 \times N \pm 100$ MHz where N is an integer ranging between 4 and 32. Typical L104 frequency settings are: 2.1, 2.4, 2.6, 2.9, 3.1, 3.4, 3.6 .. 12.9, 13.1, ... 15.6 and 15.9 GHz. Note that the differences between frequency settings are alternately 300 MHz and 200 MHz. For consecutive N values, the frequency differences between 500 x N +100 settings and the frequency difference for 500 x N -100 settings are both 500 MHz.

The P-band (90 cm/330 MHz and 50 cm/610 MHz) converters use a fixed LO frequency of 500 MHz and T102 also uses 100 MHz as an LO.

One converter module, T102 is not a superheterodyne converter because the input RF is not converted to an IF; the output frequency is also the RF input frequency because it is within the 500 to 1000 MHz IF band. However, T102 does use downconversion and upconversion for convenience in the implemention of a narrow band filter; for this reason the T102 is called the 610 MHz Filter Module.

2.0 GENERAL FREQUENCY CONVERTER THEORY OF OPERATION

This section is a general description of the function performed by the VLBA Frequency Converter modules. It describes the circuitry, important characteristics, and specifications of these modules. Figure 2 below is a general block diagram of these modules.

2.1 GENERAL VLBA CONVERTER FUNCTIONAL DESCRIPTION

As shown in Figure 2, the frequency converter has two parallel signal paths left to right for the RCP and LCP signals; the Front-End RF inputs are on the left and the corresponding IF outputs are on the right. The LO input drives two mixers through an LO signal amplifier, power divider and LO isolation filters.

The frequency converter consists of the following circuit groups: Transfer Switch, RF Circuitry, Mixer, LO Drive Circuitry and IF circuitry.

Transfer Switch

A transfer switch at the input enables the two RF inputs to be interchanged for diagnostic purposes and to verify that the two signal paths have identical gains. Transfer switch configurations vary between converters but this is a common feature.

The transfer switch must provide very good isolation between the LCP and RCP signal paths (typically about 60 dB), low insertion loss (typically about 0.2 to 0.4 dB) and a low VSWR (typically about 1.2 to 1.5)

RF Circuitry

The two RF signals from the transfer switch outputs are fed to two sets of RF Circuitry that consist of isolators and, in some converters, RF amplifiers and bandpass filters. Bandpass filters may be used in the RF signal path to define the receiver signal bandwidth and to reject out-of-band signals. In some bands, the bandpass filters

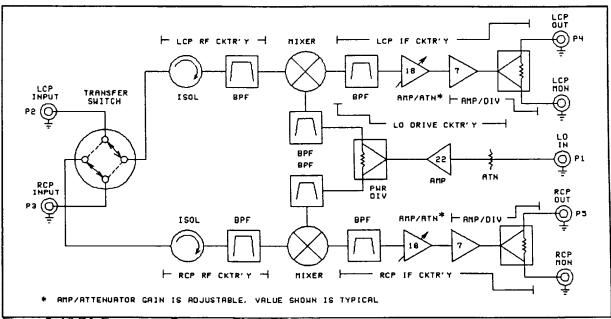


Figure 2 VLBA Frequency Converter Block Diagram

are located in the Front-Ends; if not in the Front-Ends, they are installed in the frequency converter input circuitry.

Some of the lower frequency bands have strong interfering signals adjacent to the Radio Astronomy bands. To limit these interfering signals early in the signal path, the L (20 cm/1.5 GHz), S (13 cm/2.3 GHz) and C (6 cm/4.8 GHz) Front-Ends contain band-limiting filters. Bandpass filters are also installed in the higher band (K 1.3 cm/23 GHz and Q 0.7 cm/43 GHz) Front-Ends on the mixer's first IF output. Therefore, the T106 (K) and T110 (Q) do not contain bandpass filters in the input circuitry. The two P-band, the X-band path in T106 and the U-band T108 converters contain bandpass filters.

The isolators in the input circuitry reduce the effect of line reflections and because of their directivity, they prevent mixer-generated energy from leaking back into the Front-Ends. See the mixer discussion below. Isolators are non-reciprocal transmission path devices; microwave energy may travel the transmission path in one direction with little loss but will be greatly absorbed when applied in the other direction.

Losses in the RF Circuits are the insertion losses of the RF Bandpass filter and the Isolator. Losses for the filters range from 0.2 dB (T106) to 2.3 dB (T102) and 0.2 dB for the Isolator.

LO Drive Circuitry

The LO Drive Circuitry consists of an amplifier, attenuator, bandpass filter and power divider.

The amplifier boosts the LO signal power. The attenuator is selected to provide the appropriate power level to the mixers.

The power splitter provides the LO drive to each mixer through LO frequency bandpass filters. The power divider and filters minimize cross-coupling between the LCP and RCP signal paths to preserve signal polarization effects. The power divider provides about 30 dB of isolation between its two LO ports and has an insertion loss of 0.3 dB.

Mixers

Mixers are the circuit elements that combine the RF and LO signals to produce the sum and difference signals: $F_{RF} \pm F_{LO}$. The difference frequency ($F_{RF} - F_{LO}$) or ($F_{LO} - F_{RF}$) is selected by the IF Circuitry for output to the IF system. T102 selects $F_{RF} + F_{LO}$.

The converter modules use double-balanced mixers. Section 2.2 describes important mixer properties.

Mixers are not lossless devices. Some of the RF input power is dissipated in I^2R losses and the balance is lost in the form of RF power of frequency terms produced by the mixers but not used by the converters. Examples are the undesired sideband and intermodulation products. This loss is termed conversion loss and is described in Section 2.2. Mixer conversion loss is typically 6 to 9 dB.

IF Circuitry

The IF Circuitry consists of IF Bandpass filters and two NRAO subassemblies, the Amp/Attenuator and Amp/Divider.

IF Bandpass filters (bandpass of 500 to 1000 MHz) select the desired sideband frequency, and eliminate the undesired sideband and unwanted harmonic and intermodulation products that are described in Section 2.2.

The filter outputs are amplified by adjustable-gain NRAO Amp/Attenuator module C53500A006 and the

NRAO Amp/Power Divider module A53500A007. The Amp/Attenuator module uses a front-panel potentiometer to adjust the converter's IF output to a -40 dBm level. The Amp/Attenuator gain shown on the block diagram is a typical value; the gains are adjusted to equalize the two outputs at this level. The Amplifier/Power Divider module typically provides 4.2 dB of gain for transmission of the IF signals to the baseband converters in the Station Building. The power divider on the output of this amplifier evenly divides the IF output to drive a front panel monitor jack for monitoring and gain adjustment purposes and a rear panel output to the IF system via the B-Rack IF selector switches. Since it is a two-way splitter, each output is 3 dB below the splitter input power level. The power divider also provides about 30 dB of isolation between these front and rear panel outputs. The converter IF output signal levels have a power spectral density of -67 dBm/MHz (-40 dBm in the 500 MHz bandwidth). The front panel jack is normally terminated in a 50 ohm terminator load.

The Amp/Attenuator, Amp/Power Divider, K&L 6B120-750/X550 IF Bandpass Filter and transfer switches are described in Section 2.5.

The losses in the IF output circuitry are the IF bandpass filter insertion loss of 0.38 dB and the 3 dB loss of the power divider in the Amp/Divider module. The Amp/Attenuator and Amp/Divider offset these losses and provide a settable net gain ranging from 19.5 to 38.7 dB.

2.2 IMPORTANT PROPERTIES OF A VLBA FREQUENCY CONVERTER

Inter-Channel Isolation

The LCP and RCP signal paths should be electrically isolated to prevent cross-coupling of RF and IF signals between the two polarization paths; this is important because the signals in each path may contain astronomical features distinct to the path. Since the signal paths between components are solid-sheath coax with negligible leakage, the only coupling between the LCP and the RCP signal paths are the transfer switch leakage and the LO signal drive circuitry. Note that these two coupling paths are paralelled between the LCP-RCP signal paths; therefore, the isolation of each of these shunt paths must be very good to realize a good module inter-channel isolation. The interchannel isolation specification for all frequency converters is 65 dB.

The converters do not require extensive isolation measures because the RCP-LCP signal separation provided by the Front-End polarization splitters are seldom better than 30 dB.

The isolation of transfer switches decreases with increasing frequency; the highest frequency to be converted is 14 GHz in T108. The 23 GHz (K) and 43 GHz (Q) Front-Ends have mixers that produce a first IF of about 9 GHz.

The data sheet for the Transco 710C70100 transfer switch that is used in all T-modules except T102 and T108 shows a RF typical path-to-path leakage of 90 dB at 100 MHz, flat to 7 GHz; linearly decreasing to 60 dB at 18 GHz. The RLC SR-TC-R-D transfer switch used in T108 has a typical RF isolation 90 dB at 1 GHz and 70 dB at 14 GHz, the highest conversion frequency.

The LO drive circuitry has a two-way power divider and two bandpass filters at the LO frequency. To preserve isolation, the LO drive to each mixer must not contain RF or IF signal components coupled out of the other path's mixer LO port. The mixers provide relatively good isolation; the isolation between the mixer's RF-LO and IF-LO ports is typically about 30 dB. Additional isolation is provided by the two series elements in each mixer's LO drive path - the bandpass filters and power divider. The power divider typically provides about 30 dB of isolation between the power divider's LO ports and the LO filters provide additional attenuation of the RF and IF signals.

Converters T104, T105, T106, T108 and T110 have bandpass filters installed in the LO drive to the mixers. Consider a typical example, the T104. Examination of the attenuation curves for the K&L 3250-3000/600 filter used in T104 shows that the two filters add about 60 dB of attenuation at the RF frequency (2.3 GHz) and about 100 dB at the IF frequency (500-1000 MHz). In conjunction with the isolation provided by the mixers and power dividers described above, the LO filter's attenuation makes this shunt path isolation greater than 100 dB at the RF frequency and greater than 160 dB at the LO frequency.

LO-drive bandpass filters are not installed in T101, T102, T103 and T107. As mentioned above, each double-balanced mixer provides about 30 dB of RF and IF isolation to the LO port and the LO power splitter typically provides an additional 30 dB of LCP mixer LO-port to RCP mixer LO port isolation. Thus the isolation of this shunt path is on the order of 90 dB (30 dB for each mixer plus 30 dB for the power divider).

Mixer Characteristics

Frequency mixing is a complicated process with many subtle considerations. A frequency mixer accomplishes frequency conversion as a result of a circuit element's non-linear voltage-current response. Forwardbiased diodes, the emitter-base junction of a transistor and single and double-balanced mixers are commonly used mixer devices.

All mixers generate signals (sidebands) that are not only the sums and differences of the RF and LO inputs but also harmonics of the RF and LO; thus, the output frequencies are of the form $NF_{RF} \pm MF_{LO}$, where N and M are integers. These harmonic components are result of the the diode's nonlinearity. The current through a diode can be described by a power series in the applied voltage V¹:

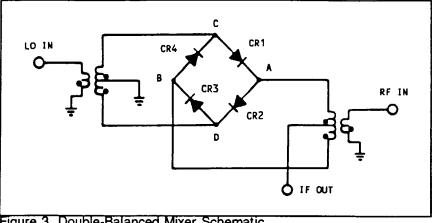


Figure 3 Double-Balanced Mixer Schematic

$$i = a_0 + a_1 V + a_2 V^2 + a_3 V^3$$

The sideband signals produced when N and M are 1 are the sum and difference signals commonly associated with mixing. If no other sidebands were produced in a mixer (i.e. M and N are 1, only) and there were no loss in the mixer, the sum and difference signals (first sidebands) would each be 3 dB down relative to the RF input power level. This is the simplest case of mixer

Conversion Loss. See the discussion below.

If M and N become greater than 1 as is the actual case for a diode mixer, the amplitudes of the first sidebands are lower than -3 dB relative to the RF level because most of the RF input power is dissipated as I²R loss in the diode resistance; the balance is distributed over the higher order sidebands. The amplitude of the higher order (i.e. N and M greater than 1) sidebands diminish as a function of the magnitude of the power series coefficients a. In general, a diode characterized by a sharply curved iV plot will have larger a, than a diode with a less sharply curved iV plot. Schottky diodes are often used in mixers because of their fast recovery and low forward drop, typically about 0.25 volts. Consider the following example of harmonic mixer outputs. If a harmonic mixer had an RF input of 25 MHz and an LO input of 20 MHz, the sum and difference frequencies would be 45 MHz and 5 MHz respectively (for M and N = 1), and the low order harmonic (M and N greater than 1) frequencies would be 15 MHz, 65 MHz, 35 MHz, 85 MHz, etc.

The VLBA Frequency converters use double-balanced mixers, a more complicated diode mixer circuit. A double-balanced mixer consists of a diode ring driven by two well-balanced, center-tapped transformers. Since diodes are used, the power series terms mentioned above are a factor in the mixer's conversion process shown below. Figure 3 shows the schematic of a double-balanced mixer. Note that the LO drive transformer secondary winding center-tap is connected to ground and the IF port is connected to the secondary winding center-tap of the RF drive transformer. If CR₁ and CR₂ are identical and the LO drive transformer is balanced, then the voltage at point A is the same as the center-tap of the LO transformer, or ground. Similarly if CR_3 is equal to CR_4 , the voltage at B is the same as ground. Therefore, there is no LO voltage across A and B and no LO voltage across the IF or RF ports; the LO port is thus isolated from the IF and RF ports.

Now consider the RF input. If CR_4 is equal to CR_1 and CR_2 is equal to CR_3 , the RF voltage at C will be equal to the RF voltage at D. There will be no RF voltage difference between C and D and thus no RF voltage will appear at the LO port; the RF port is isolated from the LO port. From symmetry, it can be seen that the RF voltage

¹ Interferometry and Synthesis in Radio Astronomy by Richard A. Thompson, James Moran and George W. Swenson, Jr.

at the IF port is the same as the RF voltage at C and D, or zero. Thus there is no RF output on the IF port; the RF port is isolated from the IF port.

The isolation between the RF, LO and IF ports is typically better than 30 dB. Imperfections in the component's characteristics reduce the isolation.

Since the LO input is "driving" the mixer, double-balanced mixers require a fairly high LO drive level. Standard LO drive levels are +7, +10, +13 and +20 dBm.

In contrast to the single diode mixer, the double-balanced mixer produces reduced levels of harmonic sum frequencies of the form $NF_{RF} \pm MF_{LO}$ for N and M greater than 1. The double-balanced mixer produces the desired sum and difference frequencies ($F_{RF} \pm F_{LO}$), and also produces intermodulation product frequencies of the form $XF_{RF} \times YF_{LO}$ where X and Y are integers and either or both is/are greater than 1. The generation of these intermodulation product frequencies is a disadvantage of the double-balanced mixer but these intermodulation products have low levels relative to the $F_{RF} \pm F_{LO}$ levels.

An important property of the double-balanced mixer's isolation/symmetry is the suppression by commonmode cancellation of all internally-generated harmonic (i.e. $NF_{RF} \pm MF_{LO}$) frequencies which result from even-order harmonic components of the LO and/or RF input signals. Examples of the suppressed harmonics are: $2F_{RF}$, $4F_{RF}$, $(2F_{RF} \pm F_{LO})$, $(F_{RF} \pm 2F_{LO})$ and $(2F_{RF} \pm 2F_{LO})$. The suppression is not perfect; stray unbalances and differences in component characteristics degrade the cancellation effect.

Odd order terms such as $3F_{LO} \pm F_{RF}$ and $5F_{LO} \pm F_{RF}$ are not suppressed and are solely a function of the a_n coefficients associated with the diode's transfer characteristic mentioned above. These higher frequency terms are typically about 60 or more dB down relative to the $F_{RF} \pm F_{LO}$ level and are rejected by the IF bandpass filter.

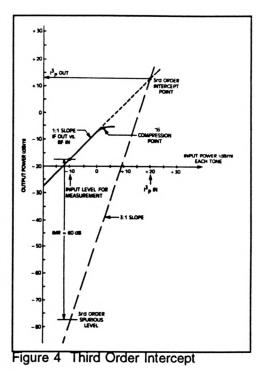
The formulas above illustrate various "spur" (spurious) frequencies generated by discrete frequencies. Although the LO is always a discrete frequency, in radio astronomy the received signal is usually a continuous band of noise or noise-like radiation.

These $NF_{RP} \pm MF_{LO}$ spurs are usually of little concern since they fall far from the frequencies of interest and can be easily filtered out.

Intermodulation products can be more troublesome, especially if there are strong interference signals present. Intermodulation products usually refer to spurious signals generated by two or more strong RF signals entering the mixer (or other non-linear components).

The most troublesome "Intermods" are the third-order, $2F_1 - F_2$ and $2F_2 - F_1$. Since these spurious appear close to F_1 and F_2 , they cannot be filtered out if F_1 and F_2 are not filtered. Since these spurs are generated by the a_3V^3 term in the power series expansion mentioned above, they are called third-order. Similarly, there are fifth-order frequencies generated by the a_5V^5 term and so on.

By expanding these power series it can be shown that for equal power in F_1 and F_2 , the power in the thirdorder terms will increase 30 dB for every 10 dB increase in F_1 and F_2 . Therefore, if the fundamental power in F_1 and F_2 is increased indefinitely, the power in the intermods must eventually catch up and cross over the power in F_1 and F_2 . This is illustrated in Figure 4 on the next page. The point at which the fundamental power and the intermod power cross is called the third-order intercept point.


In real life, this relationship holds very closely for low powers. At higher powers, compression will occur before the intercept point is reached, so it must be calculated by extrapolating the low-power lines on the graph. A useful rule-of-thumb is that the 1 dB compression power is usually about 12 dB below the third-order intercept point. Some manufacturers specify one, some the other, some both.

The third-order intercept points of mixers and amplifiers are specified differently. Amplifiers are specified with respect to the output power levels, mixers with respect to the input power levels. This is not unreasonable since the highest power levels are found at the output stages of amplifiers and at the inputs of mixers (which are lossy).

When one or both of the " F_1 , F_2 " signals are broadband noise instead of discrete signals, the calculation of intermodulation levels becomes more difficult and requires Fourier analysis.

With either discrete or broadband signals, however, the effects of intermodulation products can be troublesome if interference that would normally be harmless is translated to a desired observing frequency.

Each mixer type's third-order intercept point is a function of the mixer's design but the 1:1 and 1:3 slopes are universal. Mixer specifications usually state the third order intercept point and third order IM products power level at some two-tone RF input power level, typically 0 dBm.

Isolation is a measure of the circuit balance within a mixer. When the isolation is high, the amount of "leakage" or "feed through" between the mixer ports will be small. The isolation chart on the Watkins-Johnson M80C (used in T108) data sheets show that at an LO level of +7 dBm, an RF of 7 to 18 GHz and an IF of DC to 3 GHz, the LO to IF isolation is about 32 dB and the LO to RF isolation is about 33 dB.

The sum and difference frequencies output by a double-balanced mixer have equal power levels; a bandpass filter is required to select the desired frequency as the IF output. Most converter IF signal bandwidths are 500 MHz, using a 550 MHz bandpass filter with a center frequency of 750 MHz. The exceptions are the P-Band T101 and T102 converters, which have narrower IF bandwidths.

Input and Output VSWR

VSWR is a measure of impedance match and determines a circuit's power transfer. If there is an impedance mismatch in a power transmission system, a portion of the incident power is reflected back toward the source (hence lost) and the amount of reflected power is determined by the reflection coefficient, p. The reflection coefficient is given by $p = E_F/E_R$, where E_F is the forward wave voltage and E_R is the reflected wave voltage. VSWR is related to p by:

	where [p] is the absolute value of p. VSWR may also be expressed by:
$VSWR = \frac{1+[p]}{p}$	VSWR = $[E_{MAX}/E_{MIN}]$, the absolute value of the ratio of the maximum and
1 - [p]	minimum standing wave voltages.
· 0=]	initiation standing wave voltages.

VSWR is an important specification of a device's mismatch to a stated impedance (typically 50 Ohms) and is usually specified over a frequency range. VSWR is also a commonlyused composite measure of an RF circuit's component impedance mismatches. The composite VSWR is dominated by the largest VSWR in the component set. In this manual, the converter's input and output VSWR's are the composite VSWR's seen at the input and output ports.

A perfect impedance match implies a VSWR of 1:1 and consequently there are no reflections; all incident power is delivered to the load. Return loss is a commonly used measure of reflected power. Forward power is the power that is delivered to the load and return loss is the power reflected back toward the signal source.

Return loss may be calculated from VSWR by the following:

0.33

2.0:1

9.5

RL _{dB} =	$10 \ LOG_{10} \left[\frac{VSW}{VSW} \right]$	$\frac{\sqrt{R}-1}{\sqrt{R}+1}\right]^2$	Some VSWR, return loss, reflection coefficient, forward power and reflected power values are tabulated below.				
VSWR	RETURN LOSS (dB)	REF COEFF (p)	FORWARD POWER (%)	REFLECTED POWER (%)			
1.00:1	a 0	0	100.0	0			
1.10:1	26.4	0.05	99.8	0.2			
1.2:1	20.8	0.09	99.2	0.8			
1.3:1	17.7	0.13	98.3	1.7			
1.4:1	15.6	0.17	97.2	2.8			
1.5:1	14.0	0.20	96.0	4.0			
.							

Most of the converter component VSWR's are in the neighborhood of 1.2:1 or 1.3:1; thus about 98% of the incident power is passed to the load. Even with a VSWR as large as 2.0:1, 90% of the incident power is passed to the load.

11.1

88.9

Tables of VSWR, forward and return loss are sometimes found in RF device data books. A VSWR-Forward and Return Loss table is included in the Appendix, Section 6.

VSWR in a double-balanced mixer is a time average value with diodes shorting and opening at an LO rate. In addition, diode impedance and stray reactances vary over a frequency band; this tends to make impedance matching difficult. Examination of the Watkins-Johnson M77C (used in T106) data sheets show that the RF port VSWR is about 1.5 over the RF frequency range of 7 to 13 GHz. The isolators in the converter's input circuitry improve the module input VSWR by preventing mixer intermodulation and switching noise products from being reflected back toward the Front-Ends.

The input VSWR of T101 and T102 is determined by the RF input circuitry components VSWR's. The K&L bandpass filters both have a VSWR of 1.5:1 and the amplifiers both have an input VSWR of 1.5:1. T101's transfer switch VSWR is described below. (T102 does not have a transfer switch.) Thus T101 and T102's input VSWR's are probably about 1.5:1.

For converters T103 through T110, the input VSWR is a composite of the transfer switch VSWR and the isolator VSWR. With the exception of T107, Ditom Isolators are used as RF input isolators in T104 through T110. These Ditom isolators have typical VSWR's ranging from 1.18:1 (T105, T106, T110) to 1.3:1 (T104 and T108). T103 and T107 use Virtech isolators. Virtech data sheets were not obtainable at the time that this manual was written; the VSWR's of these two isolators are probably about the same as the Ditom isolators with the same part number.

Two transfer switches are used - the Transco 710C70100 and the RLC SR-TC-R-D. The Transco switch has a typical VSWR less than 1.01:1 at 100 MHz that increases linearly to 1.15:1 at 1 GHz, flat to 2 GHz, then increases to a peak of 1.3:1 at 12 GHz, and continues at this peak level through 14 GHz. The RLC SR-TC-R-D transfer switch has a typical VSWR of 1.05:1 at 1 GHz and linearly increases to 1.3:1 at 14 GHz. (Refer to the VSWR plots on the 701C70100 and RLC SR-TC-R-D data sheets in Section 2.5.) These VSWR's are about the same as the VSWR's of the input isolators so the input VSWR for converters T103 through T110 is probably about 1.3:1.

The converter's output VSWR presented to the 1F system is the Amp/Divider's output VSWR. This is a composite of the VSWR's of the WJ A19 amplifier output and the Anzac DS-313 power divider. The A19 amplifier output VSWR linearly increases from 1.5:1 at 500 MHz to 1.75:1 at 1000 MHz). The DS-313 VSWR is about 1.2:1 over this frequency band; thus the converter's output VSWR is probably about 1.5:1.

LCP-RCP Path Phase Matching

Although it was not essential, during construction corresponding runs (in the LCP and RCP paths) of semi-rigid coax were connected with known, identical length pieces. This provides both path phase-matching of the paths and uniformity between converter units.

Compression

Compression is a effect which limits an electronic device's dynamic range. In the case of a mixer, as the RF level is increased, the IF output should correspondingly increase in a linear manner. At some point IF outputs begin to depart from this linear behavior, further increases in RF input produce smaller increases and eventually, the IF output becomes fairly constant. Additional increases in RF input do not produce additional IF output. The 1 dB compression point is frequently used as a reference point for compression. This is the point at which the IF output deviates from linearly following the RF input by 1 dB.

Amplifiers also exhibit compression. All converters use the Amp/Divider subassemblies to drive the IF lines to the IF system in the Station Building. This amplifier uses the Watkins-Johnson A19 amplifier. The data sheet for this amplifier shows a minumum power output of 21 dBm at the 1 dB compression point. The converter outputs have a power spectral density of -67 dBm/MHz or -40 dBm in the 500 MHz bandwidth. This is a margin of about 57 dB to prevent compression during solar observations. See the desription of the Amp/Divider unit in Section 2.5.

Although the mixer compression levels are lower than the other components, they are not necessarily the determining factor in the compression limit of the converter module as a whole. The G1 gain control hybrid in the Amp/Attenuator subassembly has a third-order intercept of about +21 dBm over most of its range, implying a 1 dB compression point of +8 dBm. This power level at the input of the G1 is produced by -7 dBm at the input to the mixer, which is less than the 1 dB compression level of the mixers used in the converters.

A major VLBA specification is the requirement that in any band, no more than 1% gain compression shall occur in the Front-Ends and Converters when the antenna temperature reaches 200,000 K in a bandwidth of 1 GHz.² This compression level occurs at a power level 12 dB below the 1 dB compression point and represents the worst-case upper limit of converter linear operation. The 1% compression power level is one of the converter specification parameters shown on the converter specifications table in Section 2.3.

The following compression analysis was abstracted from the earlier manual. Assuming that the converter alone shall not exhibit more than 1% gain compression with a 200,000 K input to the Front-End, compression considerations are: Assuming an input signal of 200,000 K, a Front-End with 38 dB of gain, 3 dB of loss between the Front-End and mixer, and a 1 GHz filter noise bandwidth, the power to the mixer is -20.6 dBm. The mixer with the lowest LO power drive is the 15 GHz mixer with a specified 1 dB input compression power of +3 dBm. Assuming the 1% compression point is 12 dB less than this, the RF signal power to the mixer does not exceed -9 dBm. Thus the design requirement is met by the mixer and the margin is about 10 dB. Front-Ends at other frequencies generally have about 10 dB more gain, but the mixers have 3 to 10 dB higher LO powers and correspondingly higher gain compression points. The IF amplifiers were chosen to meet these gain compression point requirements. Converter compression is discussed in more detail in VLBA Electronics Memos No. 39 and 62.

² VLBA Electronics Memos Nos. 30 and 39.

Dynamic Range and Compression

Dynamic range and compression are important considerations. The receiving system is designed to avoid compression in solar observing which can produce antenna temperatures in excess of 100,000 K. The compression discussion above cited the 1% maximum compression specification for a 200,000 K Front-End input. This input level is the upper limit of linear operation and the converter's output levels are about +5 dBm.

Over the 1.5 to 15 GHz bands, the typical system temperature (i.e. Receiver Temperature + Antenna Temperature) is roughly 30 K for non-solar observing; this is about 38 dB below the 200,000 K input.³

The converter output power levels are typically about -40 dBm for normal 30 K observing and about +5 dBm for the 200,000 K level inputs. The converter's dynamic range is thus -40 to +5 dBm, a 45 dB span. These two power levels are listed in the converter specification table in Section 2.3.

Conversion Loss

The frequency conversion mechanism is not a lossless one. As described above, many frequencies can be produced by the mixing action. Because of losses inherent within both the diodes and the tranformers, the desired output signal will always be significantly lower than the input signal power. This difference in powe, is called the conversion loss of the mixer and is defined as the ratio of the mixer's IF power (in an upper or lower sideband) to RF input power and is normally expressed in dB.

A simple conversion model loss that does not include losses in the diodes and transformers or power diverted to harmonic frequency (i.e. $NF_{RF} \pm MF_{LO}$) terms is the trigonometric cosine product identity, $\cos A^* \cos B = \frac{1}{2} [\cos(A + B) + \cos(A - B)]$. If $V_{RF} \cos(2\pi F_{RF}t)$ is the RF signal and $V_{LO} \cos(2\pi F_{LO}t)$ is the LO signal, the product of $V_{RF} \cos(2\pi F_{RF}t)^* V_{LO} \cos(2\pi F_{LO})$ is: $V_{RF}^* V_{LO} \{\frac{1}{2} \cos[2\pi (F_{RF} + F_{LO})t] + \frac{1}{2} \cos[2\pi (F_{RF} - F_{LO})t]\}$. These two signals are the sum and difference sidebands introduced above. This model shows that the amplitudes (voltage) of the two sidebands are proportional to $\frac{1}{2} V_{RF}$, which is 6 dB (voltage) below V_{RF} . In terms of power, this a 3 dB (power) conversion loss which is what we would expect from this simple lossless model. Typical conversion losses of real mixers are about 6 to 8 dB (power).

The WJ M77C double-balanced mixer is used in T106; refer to the Watkins-Johnson M77C data sheets in Section 3.6. The data sheets show that the typical conversion loss (for an F_{RF} of 8 to 12.5 GHz) is 5.5 dB and the max is 7.5 dB. Note the data sheet plot of conversion loss versus LO drive power. Conversion loss is essentially constant for LO levels above 7 dbm but rapidly increases when the LO drive drops below 7 dBm. It is important to keep this LO drive level within specifications.

Secondly, note the frequency-dependency of conversion loss from the plots of conversion loss versus frequency; the M77C conversion loss is minimum over a frequency range of 8 to 12 GHz. Note also the plot of RF port VSWR with frequency; outside this frequency range, the mixer reflects a significant fraction of the input RF signal. This example illustrates the reason for the diversity of components in the converter modules.

Noise Temperature and Noise Figure

Noise temperature is a measure of the noise added by a device. A resistor at any absolute temperature produces a noise power which is proportional to that temperature. The power is given by P(T) = kTB, where B is the bandwidth of the power measurement, T is the temperature, and k is Boltzmann's constant.

At 1 degree Kelvin, in 1 Hz bandwidth, a resistor will produce -198.6 dBm (into a matched impedance).

³ VLBA Electronics Memo No. 62.

It is convenient to refer to levels of noise power in terms of the temperature (in Kelvins) which would produce it. For example, 200,000 Kelvins antenna "temperature" means the antenna is delivering as much power as a theoretical resistor would if it were at 200,000 K. (Of course a real resistor would have vaporized long before reaching such an astronomical temperature!)

Since the ratio of 200,000 to 1 is 53 dB, we can calculate that the antenna's output power would be -198.6 + 53 dBm = -145.6 dBm in 1 Hz bandwidth. In a 1 GHz bandwidth, the power would be 10⁹ times as much, or 90 dB more: -145.6 + 90 = -55.6 dBm. 35 Db amplification following the antenna would then raise this to -20.6 dBm.

Noise temperature is used as a method of specifying the noise added by an amplifier: The input of the amplifier is terminated in a matched resistance. If the amplifier were perfect and contributed no noise of its own, the output power would be the product of the amplifier gain and the temperature of the input termination. Since real amplifiers do contribute some extra noise of their own, we say that the extra noise output is the product of the amplifier's gain and its noise temperature.

Another way of expressing noise contribution is the Noise Figure. Although older and more widely used, Noise Figure is less convenient for low-noise systems, and especially for systems which are at temperatures other than 290 K. For a noise figure F (convert to ratio if in dB), the noise temperature is $T_{noise} = 290^{\circ}(F - 1)$.

The converter's noise temperature is a composite value that is a function of the components. For example, the noise temperature of a cascade of 4 amplifiers with noise temperatures T_1 , T_2 , T_3 and T_4 , and gains (expressed as ratios, not dB) g_1 , g_2 , g_3 and g_4 is::

$$T_N = T_1 + \frac{T_2}{g_1} + \frac{T_3}{g_1 g_2} + \frac{T_4}{g_1 g_2 g_3}$$
 Note that the contribution of each amplifier is just its noise temperature divided by the gain of all of the preceding stages.

If the cascade contains an element with loss (i.e. its gain is a ratio less than 1), it will increase the noise contribution from the following stages. It will also contribute an amount $T_p^*(1/g-1)$, divided by the gain of the previous stages. Here T_p is the physical temperature of the lossy device, in Kelvins.

Since it is used in all the converter modules, let us consider the 500 - 1000 MHz output cascade consisting of the K&L 750/X550 filter and the Amp/Attenuator and Amp/Divider subassemblies. The cascade is as follows:

Device	G	g	g'	Т	Τ'
Filter	-0.38	0.92	1	27	27
A18-1	14.7	29.5	0.92	527	573
A19	7.5	5.6	27.1	2014	74
G1	-12	0.063	152	4454	29
A18-1	14.7	29.5	9.6	527	55
A19	7.5	5.6	282	2014	7
DS-313	-3.6	0.44	15 79	387	≈0
				Total =	= 765 K

Where:

G is the device gain in dB.

g is the device gain as a ratio.

g' is the cumulative gain preceding the device.

T is the noise temperature of the device.

For amplifiers, T is from the typical Noise Figure data.

For losses, $T = 300^{*}(1/g - 1)$.

T' is the contribution of the device to the cascade.

This calculation is done with G1 set to the middle of its range. If the G1 is set to -2 dB, the cascade noise temperature is about 685 K. If G1 is set to -22 dB, the cascade noise temperature becomes about 1600 K.

For purposes of noise temperature calculation, a double-balanced mixer can be considered a lossy device at ambient temperature, usually taken to be about 300 K. Thus a mixer with conversion loss of 7.5 dB (g = .18, 1/g = 5.6) would contribute $300^{*}(5.6-1) = 1400$ K, divided by the preceding gain.

In most of the converter modules there is no amplifier (the exceptions are T101, T102 and T108) preceding the mixer, and we can take the combined loss of the transfer switch, isolator and mixer to be about 7.5 dB. The mixer's direct contribution of 1400 K must be added to the noise temperature of the following cascade. From the analysis above, this is between 685 K and 1600 K (depending upon the loss in G1), which must be divided by the gain of the preceding mixer, transfer switch and isolator which is 0.18. Thus we should expect the converter noise temperature to be between 1400 + 685/.18 = 5200 K and 1400 + 1600/.18 = 10,300 K.

An important specification of the converter modules is that they should add no more than 1 K to the overall system temperature. The preceding gain must be at least 10,000 or 40 dB since the converter's contribution to the overall system temperature is its noise temperature (which may be as high as 10,000 K) divided by the preceding gain. Most of the VLBA Front-Ends have a gain of more than 40 dB.

IF Path Gain, Flatness and Adjustability

Converter gain is the ratio of the converter's IF output power to the RF input power over the specified converter bandwidth. This gain is the composite gain of the module including the insertion losses of the transfer switch, the isolator, RF and IF bandpass filters, the mixer conversion loss, and the two amplifier gains. The table in Section 2.3 shows converter gains that range from 12 to 15 dB.

The converter's gain flatness specification from the table in Section 2.3 is $\pm 2 \, dB$ over the operating bands. This includes bandpass filter ripple and amplifier responses.

Two NRAO IF amplifier subassemblies are used in the converters - the Amp/Attenuator and the Amp/Divider. The Amp/Attenuator serves as a gain-controllable amplifier that drives the Amp/Divider unit, which drives the IF system in the Station Building and the front panel monitor jack.

The IF power gain in dB is the sum of the insertion loss of the K&L 6B120-750/X550 bandpass filter (0.38 dB) and the Amp/Attenuator and Amp/Divider gains. This ranges between 19.5 dB to 38.7 dB as a function of the Amp/Attenuator gain adjustment.

Section 2.5 describes the Amp/Attenuator, Amp/Divider and K&L 6B120-750/550 bandpass filter in more detail.

IF Passband and Out-of-Band Signal Rejection

The IF passband for modules T103 to T110 is 500 to 1000 MHz and is determined by the IF bandpass filter, a K&L 6B120-750/X550 that has a 750 MHz center frequency and a 550 MHz bandpass. Figures 5 and 6 in Section 2.5 shows the filter passband and ripple. The filter bandwidth is much less than the Front-End bandwidths shown on the table in Section 2.3. For example, the attenuation of nearby out-of-band 200 MHz and 1100 MHz signals (plus one and minus one 3 dB bandwidth) are -22 dB and -20 dB respectively, relative to the 750 MHz center frequency. The attenuation at 100 and 1200 MHz is -40 dB. Figure 12 in Section 2.7 shows a typical converter output spectrum.

The converter descriptions in Section 3 contain plots of the attenuation vs. frequency characteristics of the RF and LO bandpass filters used in the converters. The RF filters determine the bandwidth of the signal input to the mixers and the LO filters attenuate mixer noise signals outside the LO filter bandwidth.

The two P-band IF output filters have different center frequencies and a narrower bandpass. T101 has a K&L 6B120-327/X30 RF input bandpass filter (30 MHz bandpass) and a K&L 3B120-827/50 IF bandpass filter (50 MHz bandwidth). In this module the 30-wide MHz RF input filter determines the overall passband of 30 MHz. T102 has two switch-selectable bandwidths, 30 MHz and 4 MHz. See Section 3.2 for a description of the implementation of these two IF frequency modes.

Out-of-band signal rejection is a measure of the converter's frequency selectivity and is determined by the response of the output IF filter. The filter rejects the undesired sideband and LO feedthrough, LO harmonics, etc. from the mixer, and signals adjacent to the frequency band of interest. By sharply defining the bandwidth of the system, the filter makes it possible to control the power levels at this and further stages in the receiving system.

As the RF and LO frequencies increase from T103 to T108, harmonic product frequencies of the form $NF_{RF} \pm MF_{LO}$ also increase and are far outside the filter passband and strongly suppressed, except for the desired case, N = M = 1.

An important spurious response which cannot be suppressed after the mixer is that at the **image frequency**. To convert a signal at 14 GHz to an IF of 0.6 GHz we would use an LO of 13.4 GHz (14 - 13.4 = .6). However, with the same LO and IF, the converter would also respond to a signal at 12.8 GHz (13.4 - 12.8 = .6). The 12.8 GHz signal is called the **image frequency**. Any signal at the image frequency must be made negligible (for example, by a filter) before the RF signal reaches the mixer.

At some frequency bands, this filtering is done in the Front-End and at others, it is done in the converter module.

Since the image frequency is only twice the IF away from the desired frequency, a problem arises when it is necessary to tune the converter over a range wider than this. At 23 GHz and higher, the problem is avoided by a first frequency conversion to a rather high (≈ 9 GHz) first IF in the Front-End. At 14 GHz, one of four filters is switched in ahead of the mixer. The filter bandwidth is narrow enough to suppress the image. The filter's center frequencies are offset to allow the entire band to be covered by changing filters.

Transfer and Selector Switch Drive

Two types of electrically-driven transfer switches are used in the converter modules. The Transco 710C70100 is a failsafe, non-latching switch with a 120 mA, 28 volt coil. The RLC SR-TC-R-D transfer switch is also a failsafe switch with a 200 mA, 28 volt coil. Switch actuation times are 20 and 15 milliseconds, respectively. These switches are interchangeable.

The transfer switches are driven by the B-Rack Interface Module, M102 which supplies a sustained +28 volt drive that sources current through the switch coils to 28 volt module common. The transfer switch coils are connected to P11-27.

In addition to transfer switches, electrically-driven selector switches are used to select modes and filters. The selector switches are driven by the LO/RF/IF Switch Controller module L107, which supplies a sustained +28 volt drive that sources current through the switch coils to 28 volt module common.

SPDT Transco 909C70100 SPDT selector switches are used in T102, T106 and T110. This switch is a latching switch with two coils that are are alternately driven to effect switching action. Coil voltage is 28 volts and the current is 95 mA (max). Switching time is 20 milliseconds. Although this is a latching switch, it operates satisfactorily from the sustained switch drive provided by L107.

T108 uses a Transco 4PST (146C70600) selector switch. This switch uses four solenoids to effect the contact closures. Coil current is 170 mA with a 28 volt drive and switching time is 20 mS. The L107 switch drive logic provides a sustained +28 volt drive to one of these solenoids.

2.3 FREQUENCY CONVERTER SPECIFICATIONS

The table below shows important properties of the T101 - T110 converter modules and inputs from the Front-Ends. This data was taken from the Technical Manual for CONVERTER MODULES by Erich Schlect, VLBA Technical Report No. 15 (Rev. A) and recent measurements.

Module Type Band Wavelength, cm Frequency, MHz or GHz Rcv'r BW, MHz or GHz	T101 P 90 330 M 30 M	т102 ⁶ Р 50 610 м 30 м	T103 L 20 1.5 G 560 M	T104 S 13 2.3 G 800 M	T105 C 6 4.8 G 700 M	T106 ² X 4 8.4 G 960 M	T107 X 2.8 10.7 G 1.2 G	T108 U 2 15 G 3.8 G	т 106 ² К 1.3 23 G 900 M	T110 Q 0.7 43 G 1.4 G
Conv Band Edge, NHz or Lower Upper	GHz ¹ 312 M 342 M	596 M 626 M	1.27 G 1.83 G	2.0 G 2.8 G	4.5 G 5.2 G	7.92 G 8.88 G	10.1 G 11.3 G	11.8 G 15.6 G	9.3 G 10.2 G	7.7 G 9.1 G
Min LO Freq, GHz ^{1,5} Max " " , GHz	0.5 N/A	0.5 N/A	2.1 2.4	3.1 N/A	4.1 5.6	7.4 9.4	9.6 11.9	11.4 15.9	8.9 10.4	7.4 9.4
Nominal Gain, dB	30	30	15	14	14	14	14	13	14	14
Gain Flatness, dB +/-	2	2	2	2	2	2	2	2	2	2
Nominal Total Output Power a Std Syst Temp, dBm	-50 ⁷	-61 ⁷	-40	-40	-40	-40	-40	-40	-40	-40
Minimum output power at 1% compression, dBm	0.0	0.0	4.9	4.0	3.9	6.0	6.3	5.3	4.0	4.0
Nominal Output Power Density, dBm/NHz	-67	-67	-67	-67	-67	-67	-67	-67	-67	-67
Nominal LO Input Power, dBm	5	5 ⁸	2	2	1	2	1	0	2	2
Avg Noise Temp, K	1000	1000	10,000	10,000	9,000	17,000	14,000	7,000	15,000	6,500
Noise Temp for 1 ⁰ Added Syst Noise, K	6000	300 ¹⁰	25,000	20,000	25,000	25,000	20,000	20,000	32,000	32,000
Avg Noise Figure, dB ^{4,9}	6	6.5	15.5	15.2	15.2	17.7	17.0	14.1	17.2	13.7
Noise Figure for 1 ⁰ Added Syst Noise, dB ³	16.5	2 ¹⁰	19.4	18.4	19.4	19.4	18.4	18.4	20.4	20.4
RCP-LCP Isolation, dB	65	65	65	65	65	65	65	65	>60	65
+15 V Supp Current, mA	2000	760	600 ⁹	650	680	750	850	660	750	650

Notes:

1 Front-End and LO frequencies from VLBA Technical Report No. 15 (Rev. A), see table in Section 6

2 T106 is used for both the 8.4 and 23 GHz bands

3 This value is the noise figure that would increase the system temperature by 1 K.

4 Average noise figure for the two channels measured on typical modules

5 These are T-module IF frequencies; the 23 GHz and 43 GHz Front-Ends have converters to reduce the Front-End's RF signal output to lower frequencies.

6 T102 has two computer selectable IF bandwidths, the second covers 609 to 613 MHz.

See the T101 and T101 gain adjustment procedures in Sections 3.1 an 3.2, respectively. 7

8 Both 100 and 500 MHz a +5 dBm.

9 With G1 set for maximum attenuation 10 Contributes more than 10

2.4 VLBA FREQUENCY CONVERTER DESIGN REQUIREMENTS

This Section briefly describes the specifications and considerations that determined the frequency converter's design. This material was abstracted from the Technical Manual for CONVERTER MODULES by Eric Schlect and rearranged to conform to this manual's format.

Design Specifications and Goals

The most important design goals are:

• No subsystem shall exceed a 1% gain compression for a broadband noise input of 200,000 K into any of the Front-Ends.⁴

- The frequency converters shall not add more than 1 K to the system noise temperature.
- The converter's IF amplifiers gain shall be adjustabile.
- The converter's gain shall be flat within ± 2 dB over any 16 MHz segment of the IF passband.

• Interfering signals adjacent to the band shall be rejected early in the the system to limit interference power going into the mixer.

Design Considerations

The requirement for removing interfering signals and limiting broadband noise power going into the mixer dictates that an RF filter be included in the converter RF input circuitry in some bands. In other bands the filter is installed in the Front-Ends to limit these interfering signals as far up the signal path as possible. Isolators on the converter's RF inputs are used to improve the impedance match between the filter and the long cable run from the Front-Ends in the Feed Tower. Some converters, T106, T107 and T108, have an additional isolator between the RF filter output and the mixer input to improve the filter-mixer impedance match. The inclusion of isolators in the RF input path prevents large variations of gain with frequency.

The mixer typically adds 6 to 8 dB to the noise figure looking into the IF amplifiers. While the converter's noise figure would be improved by using an amplifier between the mixer and filter to overcome this large source of unwanted noise, the system as implemented satisfactorily meets the specification of adding less than 1 degree Kelvin to the system noise temperature. The expense of an additional amplifier is not justified.

In order to compensate for unit-to-unit gain variations in the RF and IF paths, the IF amplifier's gain was made adjustable. The gain control element is a PIN diode, variable attenuator module in the IF amplifier chain. It is desirable to change the gain without changing the output gain compression of the converter. The IF amplifier gain and attenuation blocks are commercial 50 ohm TO-8 case style units made by Watkins-Johnson.

A constraint on gain flatness exists in the mixer, IF filter and first IF amplifier circuitry. As a result of the relatively poor match between the mixer and the IF filter and that between the IF filter and IF amplifier, the filter exhibits some ripple, especially near the edges of the bands. In a lab test it was found that inserting 3 dB of attenuation between the filter and the mixer appreciably reduced the ripple. Although this attenuation reduced the filter ripple, it increased the noise figure. Noise figure was the dominant factor in the ripple-noise figure tradeoff so the mixer IF output is connected directly to the filter. The resultant ripple magnitude is small; measurements of the maximum deviation from gain flatness over any 20 MHz passband segment show about a 1

⁴ VLBA Electronics Memo No. 30.

dB, peak-to-peak deviation for all converter types. This meets the \pm 2 dB gain flatness specification.

2.5 DESCRIPTIONS OF COMPONENTS COMMON TO T101 - T110

Two NRAO IF amplifier subassemblies are used in the converters - the Amp/Attenuator and the Amp/Divider. The assembly drawings for these two units include circuit block diagrams and parts lists. These drawings and the associated components parts data sheets are included at the back of this section. The K&L 6B120-750/X550 bandpass filter is common across T103 to T110; plots of filter attenuation and ripple are shown below. The RLC SR-TC-R-D and Transco 710C70100 transfer switches are used in the converters; they are briefly described below. Transco 909C70100 SPST selector switches are used in T102, T106 and T110 for signal selection as a function of module mode state. Data sheets for the switches are included at the back of this section. The IF Gain Relay is used in T106 and T110 to select IF gain control potentiometer outputs as a function of the module mode. C53500A009, the IF Gain Relay assembly drawings are included in this section.

Amp/Attenuator

The Amp/Attenuator subassembly C53500A006 serves as a gain-controllable IF amplifier that drives the Amp/Divider unit.

The Amp/Attenuator uses Watkins-Johnson components consisting of two A18-1 cascadable amplifiers, one A19 cascadable amplifier and a G1 Voltage-Controlled Attenuator. These units are all in cascade; the input signal is fed to an A18-1 that drives an A19. The A19 in turn drives the G1 and the G1 output drives the final A18-1. The circuit configuration is shown on the T101 to T110 converter block diagrams and the Amp/Attenuator assembly drawing, C53500A006. The A18 and A19 amplifiers provide about 36.9 dB of power gain (using typical gain values) over the IF 500 to 1000 MHz frequency band and the composite frequency response over this band is flat within $< \pm 0.3$ dB. The G1 attenuator insertion loss varies between 2 dB to 22 dB over the IF band; thus the Amp/Attenuator gain is adjustable over the range of 14.9 to 34.9 dB, as a function of the control voltage. For these two extremes of attenuation, the control voltage is +15 and +2.4 volts, respectively. The G1 is actually capable of a much higher attenuation but the bandwidth is seriously degraded when the attenuation exceeds 22 dB; therefore, the control voltage setting should never be less than +2.4 volts.

Refer to the Noise Temperature and Noise Figure discussion in Section 2.2. As a stand-alone amplifier, the Amp/Attenuator noise temperature is 673 K and the noise figure is 5.2 dB.

Amp/Divider

The Amp/Divider subassembly A53500A007 provides the IF output drive to the IF system via the rear panel and the front panel monitor jack.

The Amp/Divider uses a Watkins-Johnson A19 amplifier with a gain (typical) of 7.5 dB over the IF band; this drives the ANZAC DS-313 power divider, which has a 0.6 dB insertion loss. Since the DS-313 is a 2-way divider, the output port levels are 3 dB (plus the insertion loss) below the divider input; thus the net gain of the Amp/Divider is 4.2 dB.

The power divider provides 23 dB of isolation between the two outputs. The Amp/Divider's output VSWR is about 1.5:1 (see the VSWR discussion above). Since the Amp/Divider is the converter's output amplifier, the converter's output VSWR is about 1.5:1.

Refer to the Noise Temperature and Noise Figure discussion in Section 2.2. As a stand-alone amplifierpower divider, the Amp/Divider noise temperature is 2083 K and the noise figure is 9.1 dB.

K&L 6B120-750/X550 Bandpass Filter

This IF bandpass filter is used in all converter modules except T101 and T102, which use narrower bandwidth filters. Two attenuation vs. frequency plots for the 6B120/X550-O/OP are Figures 5 and 6, (next two

pages). The K&L plot is a linear frequency sweep from DC to 1400 MHz. The AOC filter ripple plot is a linear frequency sweep from DC to 1500 MHz and 750 MHz is the plot center frequency.

For K&L filters, the X supplemental code in the K&L part number indicates that the bandwidth is defined by the -1 dB points; if the X code is not used the bandwidth is defined by the -3 dB points.

The center frequency of this six-section filter is 750 MHz and the bandwidth is 550 MHz. The -1 dB frequencies are 475 and 1025 MHz, respectively.

Using K&L formulas for this filter, the 3 dB percentage bandwidth is 73.3% (i.e. 550/750 x 100) and the predicted center-frequency insertion loss is 0.38 dB. Note that the plots show that the 3 dB frequencies and the insertion loss are very close to the values predicted by the K&L formulas. Also note that the peak-to-peak filter ripple is about 0.25 dB and the attenuation at DC and 1500 MHz is about 54 dB. Section 6 has a data sheet for the K&L tubular bandpass filters.

For many observations it is desireable to use the widest possible bandwidth. The 500 MHz IF bandwidth was chosen in consideration of the bandwidth practical for the Baseband Converters, Data Recorders, and other sytem equipment.

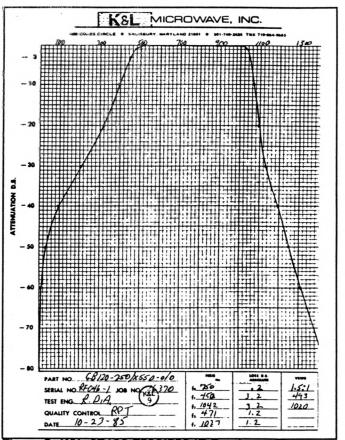


Figure 5 K&L 6B120-750/X550 IF Bandpass Filter

The bandwidths available for the 2.3 through 43 GHz Front-Ends are wider than 500 MHz, so the LO frequency to the converter modules is selectable to allow coverage of any desired portion of the a Front-End band. The frequencies available from the L104 synthesizer module are given by $F_{104} = 500N \pm 100$ MHz where N is an integer between 4 and 32. This gives alternate frequency steps of 200 and 300 MHz, about half the IF bandwidth, allowing the observation band to be placed conveniently within the IF passband.

Transfer Switch

Two types of transfer switches are used in the converter modules, the Transco 710C70100 and RLC Electronics SR-TC-R-D. The physical dimensions, drive characteristics, signal and switch connections are identical. The VSWR, isolation and insertion loss characteristics are very similar although there are some small differences as a function of frequency. Although a converter a drawing may specify either switch, a converter may contain the other type; over the course of module construction, the units with the best price quotes were purchased.

Important features of these switches were described in the LCP-RCP Isolation and Transferand Selector Switch Drive descriptions above. Data sheets for these two switches follow this section.

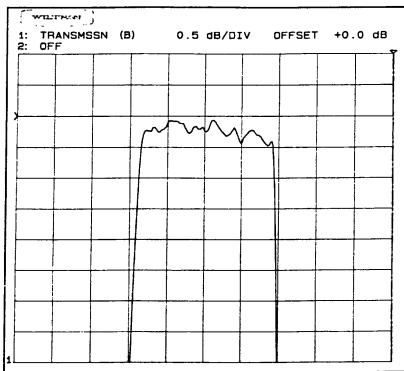
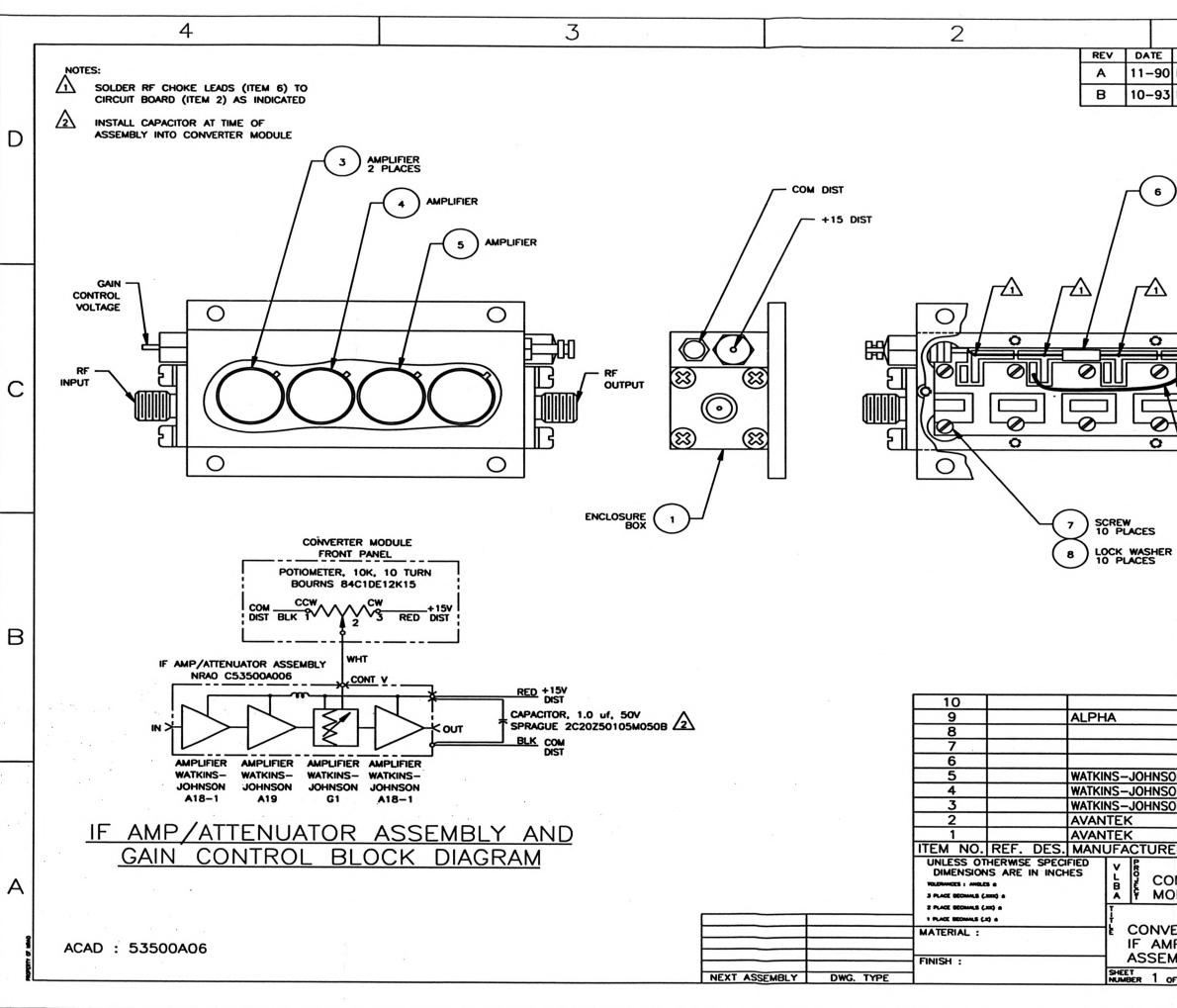
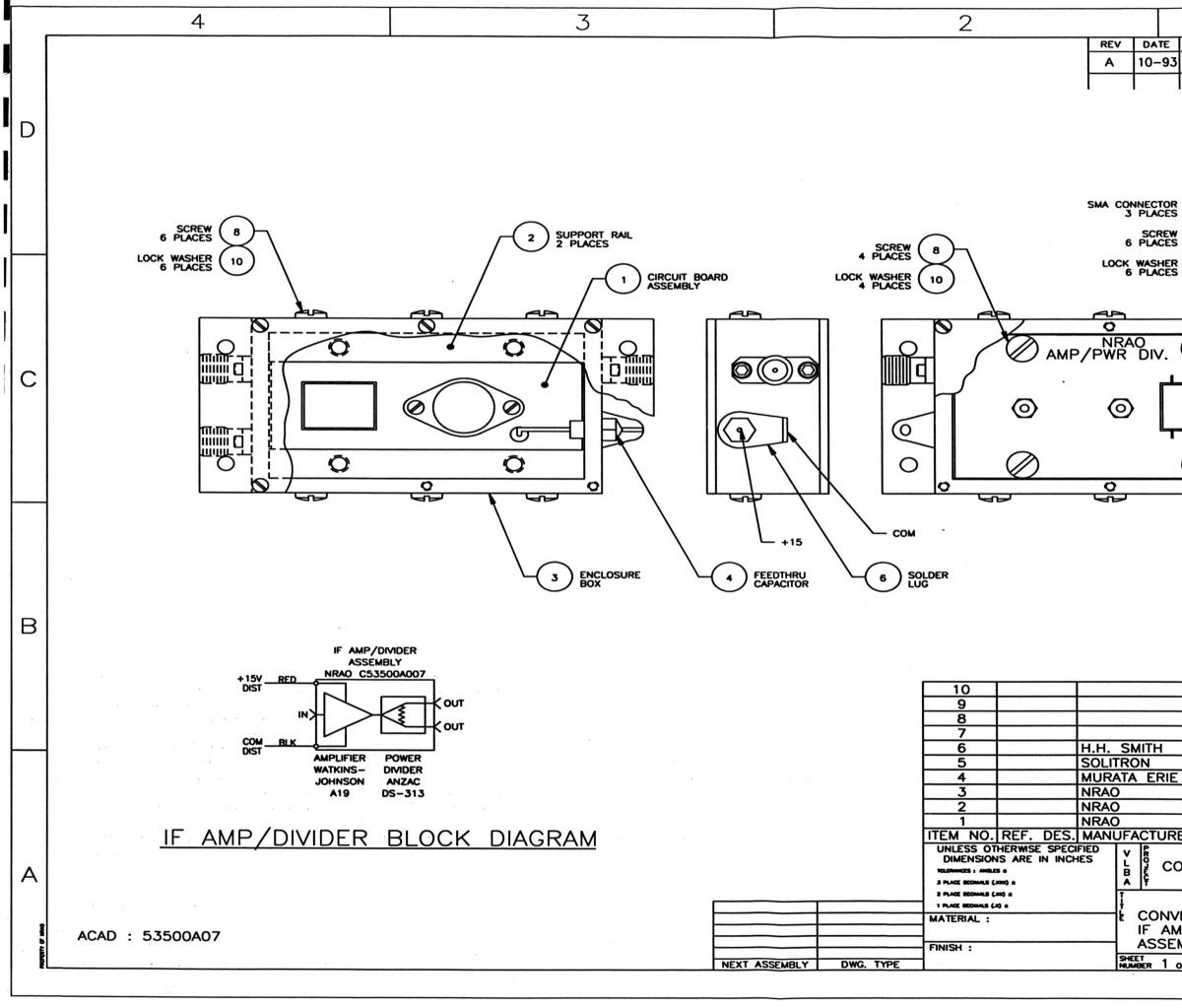
Transco SPDT Selector Switch

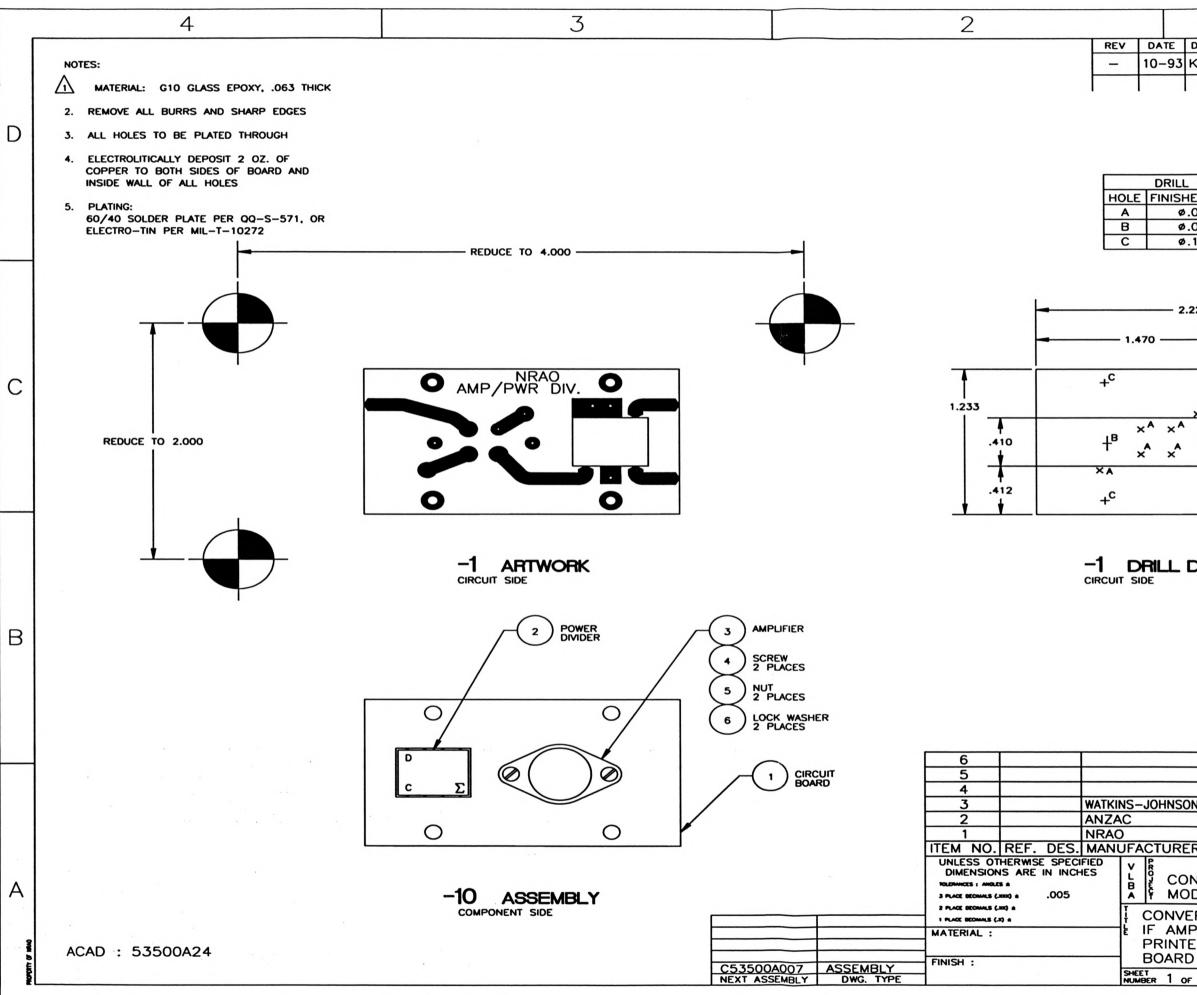
The Transco 909C70100 SPDT selector switch is used in T102, T106 and T110 for input signal selection.

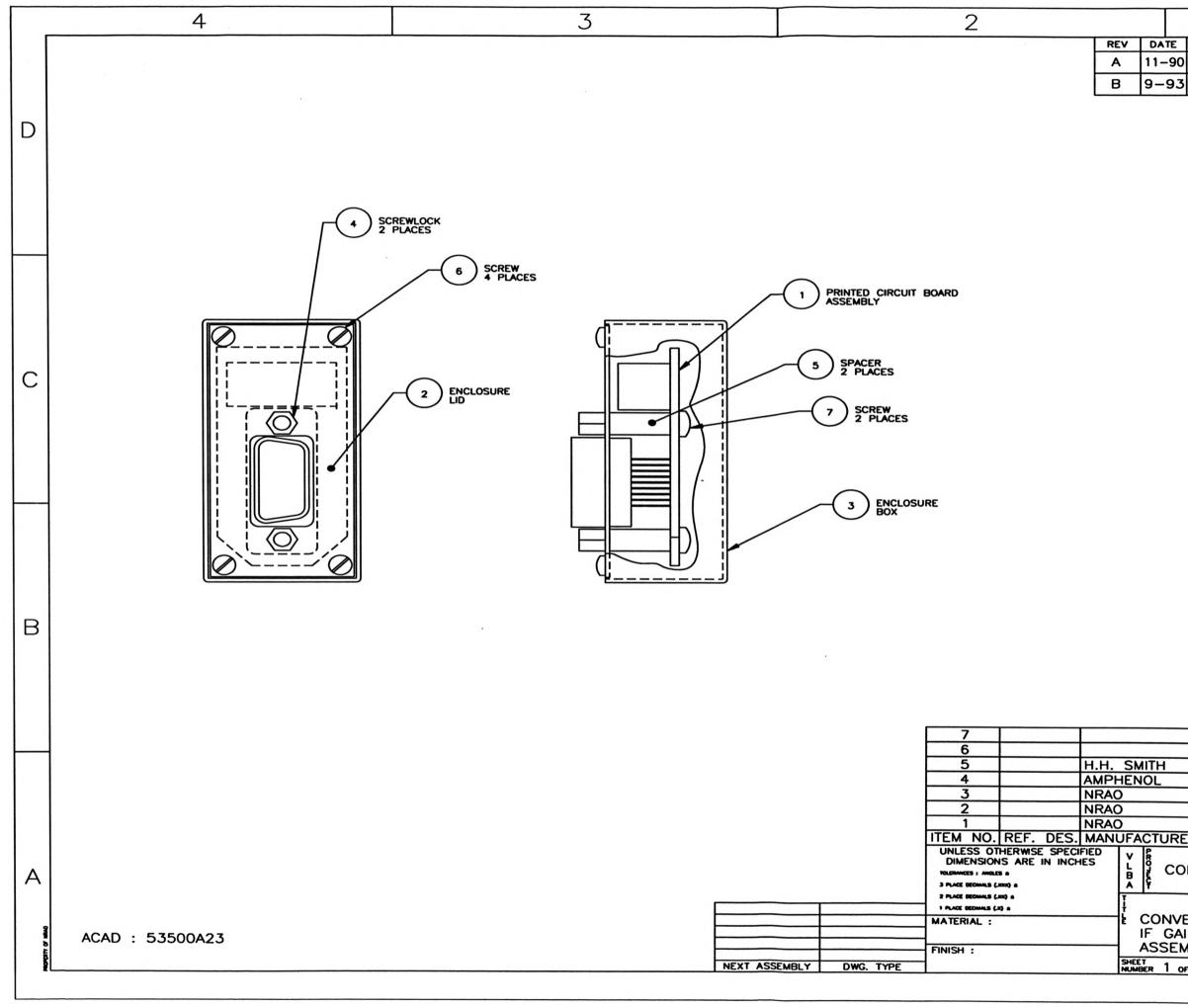
The Transco switch is a two-coil latching relay with two drive inputs; alternate excitation of either coil causes the contact transition. The switch coil common is connected to the module common distribution. The drive characteristics were described in the Transfer and Selector Switch Drive discussion above.

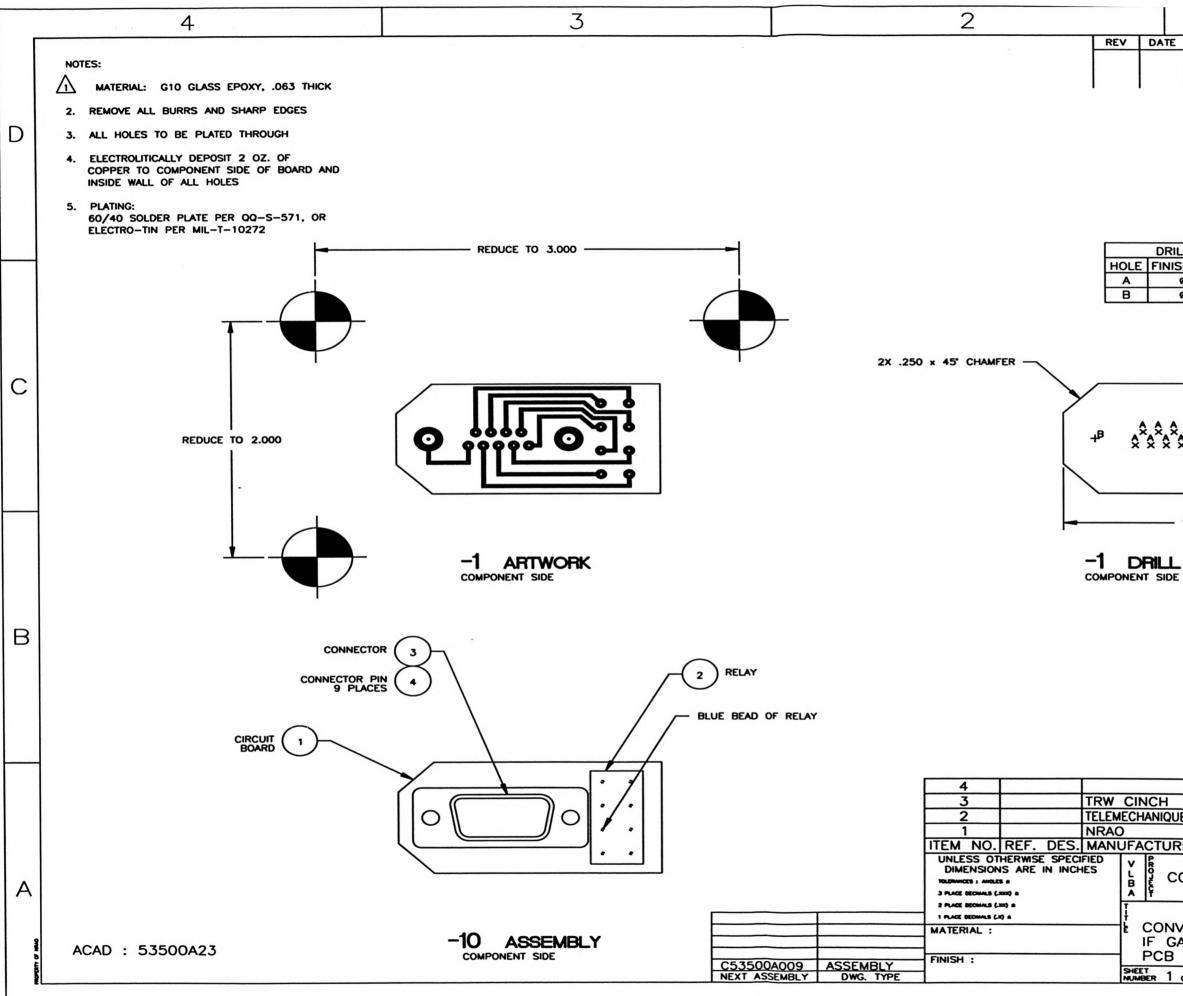
IF Gain Relay Assembly

A DPDT IF Gain Relay Assembly C53500A009 is used in T106 and T110 to select the appropriate pair of front panel IF gain control potentiometers in dualfrequency (T106 and T110) converters. The IF Relay Assembly drawings follow this text.


Figure 6 6B120-750/X550 IF Bandpass Filter Ripple


ł			1	
	RAWN BY	APPRVD BY	DESCRIPTION	
	GS		CHG ORDER 901114-1	
-				
3 K.	TATE	D. WEBER	UPDATED TO NRAO STDS	
-				
				D
) R	RF HOKE			
	HUKE			
		\frown		
	Ц	10) SOLDE		
-				
	1			
20				
-				CI
\mathbf{T}				-
\mathcal{H}				
-1-	10	יוה		
-+	1-			
	()	\frown		
	1	U BOA		
	1			
_	10			
R	Ч,			
		AS REQ	UIKED	
				RI
	SN-62		SOLDER, SILVER AR	
	7055		WIRE, WHT, #22 AR	
			WASHER, LOCK, #0 10	
			WASHER, LOCK, #0 10 SCREW, PAN HEAD, SS. 10	
	CC-09	9-101K	CHOKE, RF, 100UH 1	
SON	G1		AMPLIFIER 1	
SON	A19		AMPLIFIER 1	
SON	A18-1		AMPLIFIER 2	
	TB-4		BOARD, CIRCUIT 1	
	TC-4N			
			BOX, ENCLOSURE 1	
ER	PARII	NUMBER	DESCRIPTION QTY	
			NATIONAL RADIO	
	VERTER		ASTRONOMY	
	ULE		OBSERVATORY	AI
			SOCORRO, NEW MEXICO 87801	
			DRAWN BY DATE MORRIS 8-87	
	TER M		DESIGNED BY DATE	
	ATTEN	UATOR	SCHLECHT 8-87	
МB			APPROVED BY DATE SCHLECHT 8-87	
OF 1	DRAWN	° C53500	AOO6 REV. B SCALE 2/1	
UP I	INOWBER			


	1	
BRAWN BY APPRVD BY	DESCRIPTION JPDATED TO NRAO STDS	D
		С
W. 50 51 50	ASHER, LOCK #4 10 ASHER, LOCK #2 6 Rew PAN HEAD, 55, 10 REW PAN HEAD, 55, 10 SEGUNC 2A x 19 6 LC SCI DEP 1	В
1412-9 Ll 2950-6200 Co 1250-492 Co C53500M016 B C53500M012 R	UG, SOLDER 1 ONNECTOR, SMA 3 APACITOR, FEEDTHRU 1 OX, ENCLOSURE 1 AIL, SUPPORT 2 SSEMBLY, PCB 1 DESCRIPTION QTY NATIONAL RADIO ASTRONOMY OBSERVATORY SOCORRO, NEW MEXICO 87801 DRAWN BY MORRIS DATE SCHLECHT SCHLECHT 8-87	A

		1	
DRAWN BY	APPRVD BY		
K. TATE	D. WEBER	REPLACES DWG. B53500Q001	
			D
CHART			
	QTY		
.028	14		
.070	2 4		
.110	4		
.220 ———			
	530		
	+ ^c		
	^ ^ ^ ^ ^ ^		
×/'	× × × ×		
ив			
+ [₿]			
L	* * * * *		
;			
	+c		
DRAWIN			
	мд		
			в
			D
		WASHER, LOCK, #0 2	
		NUT.HEX.SS.0-80UNF-2B 2	
		SCREW, PAN HEAD, SS, $0-800NF-24 \times .188$ 2	
DN A19 DS-31		AMPLIFIER 1	
-1		DIVIDER, POWER 1 BOARD, CIRCUIT 1	
R PART		DESCRIPTION QTY	
		NATIONAL RADIO	
NVERTER	2	ASTRONOMY	
DULE		OBSERVATORY SOCORRO, NEW MEXICO 87801	A
ERTER M		DRAWN BY DATE	
P/DIVIDE	R	K. TATE 10-93 DESIGNED BY DATE	
ED CIRC		APPROVED BY DATE	
	C53500	DA024 REV SCALE 2/1	
	R C2220(DAU24 - 2/1	

						1				
	DR	AWN	BY	APPRVD E	BY .	D	ESCR	PTION		
0	DC	S		TREACY			_	901108	3-2	
3	к.	TA	TE	D.WEBE	_					
-1	-		-				0.1			
										D
										C
									3	
									16	B
									i i	
-	-				SCREW	PANF	EAD	SS.		
-	+				4-40L SCREW	PAN F NC-2A NC-2A NC-2A NC-2B	EAD.	SS,	2	
_		832	22		SPACE	R NC-2P	x .25		2	
		17-	D20	419-X	SCR	WLOC	<u>K, F</u>	EMALE	2	
				OM038	BOX,	ENCL	OSL	JRE	1	
_				0M032 023-10	LID,	ENCLO			1	
F		PAR		UMBER	ASSY	DESCF		BOARD ON	1 QTY	
-	<u> </u>							AL RAD		
0	NV	ERT	ER	MODUL	E.			ONOMY		
_								VATOR		A
						DRAWN BY	1			
				DULE		DESIGNED	BY	DAT	E	
	N IBL	REI	LAY			APPROVED	BY	REACY 2-8	39 F	1
		Ter	AMNO	CETEO	0400		B. T	REACY 2-8	10	
OF	1	N	MBER	C5350	UAUO	9		B	2/1	

1	1
DRAWN BY APPRVD BY DESCRIPTION	D
LL CHART SHED SIZE QTY Ø.035 17 Ø.120 2	С
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
DRAWING A	В
PIN, CONNECTOR 9 DB-9S CONNECTOR, 9-PIN 1 JE S6A126.5VDC RELAY 1 -1 BOARD, CIRCUIT 1 RER PART NUMBER DESCRIPTION QTY ONVERTER MODULE NATIONAL RADIO VERTER MODULE ASTRONOMY ONVERTER MODULE OBSERVATORY VERTER MODULE DATE AIN RELAY ASSEMBLY OF 1 DRAWNE C53500A023	A

WJ-A18-1/SMA18-1

10 to 1000 MHz **TO-8 CASCADABLE AMPLIFIER**

♦ AVAILABLE IN SURFACE MOUNT

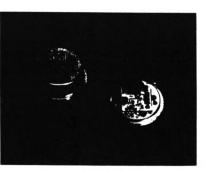
- ♦ HIGH DYNAMIC RANGE
- ♦ HIGH OUTPUT POWER: +16 dBm (TYP.)
- ◆ HIGH THIRD ORDER I.P.: +30 dBm (TYP.)
- ◆ LOW NOISE: 3.8 dB (TYP.)

Specifications*

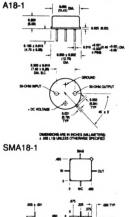
Characteristics	Typical	Guaranteed		
		0° to 50°C	- 54° to +85°C	
Frequency (Min.)	5-1100 MHz	10-1000 MHz	10-1000 MHz	
Small Signal Gain (Min.)	14.7 dB	14 dB	13.5 dB	
Gain Flatness (Max.)	< ±0.3 dB	±0.5 dB	±1.0 dB	
Noise Figure (Max.)	3.8 dB	5.0 dB	5.5 dB	
Power Output				
at 1 dB Compression (Min.)	+16 dBm	+15 dBm	+14.5 dBm	
VSWR (Max.) Input/Output	< 1.5:1	1.8:1	2.0:1	
DC Current (Max.) at 15 Volts	44 mA	46 mA	48 mA	

"Measured in a 50-ohm system at +15 Vdc Nomine

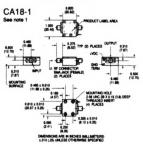
 WJ-CA18 is a standard WJ-A18 installed over 0°C to 50°C temperature range. in a miniature SMA connector h

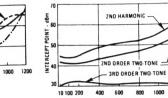

Typical Intermodulation Performance at 25°C

Second Order Harmonic Intercept Point	+45 dBm (Typ.)
Second Order Two Tone Intercept Point	+42 dBm (Typ.)
Third Order Two Tone Intercept Point	+30 dBm (Typ.)


Absolute Maximum Ratings

Storage Temperature	62°C to +125°C
Maximum Case Temperature	
Maximum DC Voltage	
Maximum Continuous RF Input Power	
Maximum Short Term RF Input Power	
Maximum Peak Power	
"S" Series Burn-in Temperature (Case)	


Weight approximately 2.0 grams (0.07 oz.) max.



Typical Performance at 25°C

Intercept Point

+25°C

600 800

FREQUENCY - MHz

NPIN

800 1000 1200

FREQUENCY - MHz

400

OUTPUT

400 600 FREQUENCY - MHz

1000 1200

Typical Automatic Test Data

Frequency MHz	VSWR	VSWR	GAIN
1.0	1.2	1.2	14.8
2.0	1.1	1.2	14.8
5.0	1.1	1.1	14.9
10.0	1.0	1.0	14.9
50.0	1.0	1.0	14.8
100.0	1.1	1.0	14.7
200.0	1.1	1.0	14.6
300.0	1.1	1.1	14.6
400.0	1.2	1.1	14.8
500.0	1.2	1.2	15.0
600.0	1.2	1.2	15.1
700.0	1.2	1.3	15.2
800.0	1.1	1.3	15.3
900.0	1.1	1.4	15.4
1000.0	1.2	1.5	15.4
1100.0	1.6	1.6	15.0

1.6

Frequency	S	11	5	21	S	12	S	22
MHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	.078	-65	5.517	-174	.107	8	.078	110
2.0	.068	-64	5.511	-175	.107	7	.071	110
5.0	.038	-61	5.543	-179	.109	3	.046	100
10.0	.016	-44	5.529	175	.110	-1	.022	73
50.0	.022	9	5.513	167	.111	-4	.015	42
100.0	.028	9	5.443	159	.111	-7	.014	12
200.0	.040	-5	5.377	147	.112	-11	.020	-28
300.0	.055	-28	5.361	132	.113	-18	.037	-74
400.0	077	-51	5.495	116	.117	-25	.006	-113
500.0	.075	-78	5.610	100	.119	-33	.089	-147
60C.0	.075	-92	5.711	81	.121	-41	.101	-175
700.0	.077	-110	5.758	63	.124	-49	.117	158
800.0	.066	-141	5.836	44	.127	-58	.139	127
900.0	.035	143	5.916	24	.131	-68	.106	93
1000.0	.078	39	5.890	1	.134	-79	.196	55
1100.0	216	-8	5.651	-24	134	-93	223	12

Vcc = 5.0 V Frequency MHz VSWR VSWR GAIN 1.0 2.0 5.0 10.0 200.0 200.0 200.0 200.0 500.0 500.0 500.0 500.0 500.0 500.0 1000.0 1100.0 13.2 13.2 13.3 13.2 13.1 13.0 13.0 13.0 13.1 13.2 13.3 13.4 13.3 13.2 12.8 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.4 1.5 1.5 1.6 1.6 12.0

Linear S-Parameters

Frequency	S	11	5	21	S	12	S	22
MHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	.158	-24	4.554	-174	.120	8	.122	50
2.0	.153	-23	4.581	-175	.121	7	.118	45
5.0	.139	-18	4.587	-179	.122	3	115	26
10.0	.127	-18	4.607	174	.123	-1	.119	2
50.0	.133	-21	4.582	106	.123	-4	.120	-14
100.0	.134	-35	4.537	158	.123	-7	.120	-26
200.0	.140	-64	4.478	145	.124	-11	.127	-46
300.0	.145	-79	4.448	129	.126	-18	.143	-73
400.0	.150	-106	4.539	112	.131	-24	109	-103
500.0	.146	-137	4.582	95	.135	-32	.188	-132
600.0	.137	-168	4.632	75	.139	-41	.201	-161
700.0	.128	157	4.651	56	.144	-50	.211	172
800.0	.128	112	4.624	35	.148	-60	224	141
900.0	.170	63	4.557	14	.153	-71	.233	107
1000.0	.251	17	4.345	-9	.152	-84	.236	70
1100.0	.371	-22	3.970	-33	151	-96	225	29

Thermal Data: V_{cc} = 15 Vdc

Thermal Resistance 0ic	45°C/W
Transistor Power Dissipation Pd	0.407 W
Junction Temperature Rise Above Case Tjc	18°C

WJ-A19/SMA19

10 TO 1000 MHZ **TO-8 CASCADABLE AMPLIFIER**

♦ AVAILABLE IN SURFACE MOUNT ♦ HIGH OUTPUT POWER: +21 dBm (TYP.) ♦ HIGH THIRD ORDER I.P.: +34 dBm (TYP.)

Specifications*

Characteristics	Typical	Guaranteed		
		0° to 50°C	-54° to +85°C	
Frequency (Min.)	5-1050 MHz	10-1000 MHz	10-1000 MHz	
Small Signal Gain (Min.)	7.5 dB	6.0 dB	5.5 dB	
Gain Flatness (Max.)	< ±0.3 dB	±1.0 dB	±1.3 dB	
Noise Figure (Max.)	9.0 dB	10.5 dB	11.0 dB	
Power Output				
at 1 dB Compression (Min.)	+21 dBm	+20 dBm	+19 dBm	
VSWR (Max.) Input/Output	< 1.8:1	2.2:1	2.2:1	
DC Current (Max.) at 15 Volts	100 mA	109 mA	114 mA	

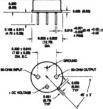
"Measured in a 50-ohm system at +15 Vdc Nominal

1. WJ-CA19 is a standard WJ-A19 installed n a miniature SMA connector housing and guarantee

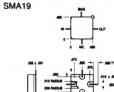
over 0°C to 50°C temperature range

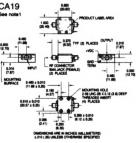
Typical Intermodulation Performance at 25°C

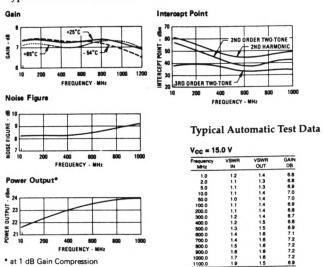
Second Order Harmonic Intercept Point	+45 dBm (Typ.)
Second Order Two-Tone Intercept Point	+40 dBm (Typ.)
Third Order Two-Tone Intercept Point	+34 dBm (Typ.)


Absolute Maximum Ratings

Storage Temperature	-62°C to +125°C
Maximum Case Temperature	
Maximum DC Voltage	+ 17 Volts
Maximum Continuous RF Input Power	+17 dBm
Maximum Short Term Ri ² Input Power	
Maximum Peak Power	
"S" Series Burn-In Temperature (Case)	

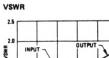

Weight approximately 2.0 grams (0.07 oz.)

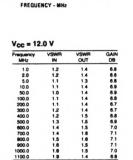




Typical Performance at 25°C

-


NOISE


1000

400 600 800 10 200 FREQUENCY - MHz

* at 1 dB Gain Compression

800 10 200 400 600 1000 1200

MHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	.079	-78	2.195	-109	.165	3	.151	35
2.0	.089	-79	2.198	-170	.165	3	.148	32
5.0	.044	-78	2.216	-177	.166	2	.146	19
10.0	.025	-86	2.227	176	.168	-0	.151	6
50.0	.022	-88	2.228	167	.168	-2	.154	-2
100.0	.036	-101	2.203	159	.168	-4	.157	-8
200.0	.054	-118	2.181	147	.170	-6	.164	-17
300.0	.075	-135	2.109	132	.174	-10	.179	-30
400.0	.101	-155	2.199	116	.180	-14	.196	-47
500.0	.131	180	2.218	99	.185	-18	209	-65
600.0	.155	156	2.264	83	.191	-23	222	-83
700.0	174	133	2.284	66	.199	-28	.230	-102
800.0	.194	110	2.295	48	.207	-34	.233	-122
900.0	232	85	2.289	32	.220	-39	.227	-143
1000.0	.269	58	2.282	13	.230	-46	217	-167
			2 221	-6	242	-53	200	169
	-Param	eters	5	21	5	12		22
Linear S	-Param	eters					MAG	
	-Param	eters	MAG 2.178	21 ANG -169	MAG	ANG	MAG .153	ANC 33
Frequency MHz	-Param	eters	MAG 2.178 2.180	21 ANG -169 -171	MAG .165	112 ANG 3 3	MAG .153 .150	ANC 33 29
Inear S	-Param MAG	ANG -76 -77 -78	2.178 2.180 2.197	21 ANG -169 -171 -177	.165 .165	12 ANG 3 3 1	MAG .153 .150 .149	ANC 33 29 18
Linear S Frequency MHz 1.0 2.0	-Param S MAG .074 .071	-76 -77	MAG 2.178 2.180	-169 -171 -177 176	5 MAG .165 .165 .166 .166	112 ANG 3 3 1 -0	MAG .153 .150 .149 .154	ANC 33 29 18
Linear S Frequency MHz 1.0 2.0 5.0	-Param S MAG .074 .071 .040	ANG -76 -77 -78	MAG 2.178 2.180 2.197 2.207 2.206	-169 -171 -177 176 167	5 MAG .165 .165 .166 .168	112 ANG 3 1 -0 -2	MAG 153 150 149 154 158	ANC 33 29 18 4 -3
Inear S Induency MHz 1.0 2.0 5.0 10.0	-Param S MAG .074 .071 .040 .026	ANG -76 -77 -78 -95	MAG 2.178 2.180 2.197 2.207 2.208 2.187	21 -169 -171 -177 176 167 159	S MAG .165 .165 .165 .166 .168 .169	112 ANG 3 1 -0 -2 -4	MAG 153 150 149 154 158 160	ANC 33 29 18 4 -3 -10
Linear S Frequency MHz 1.0 2.0 5.0 10.0 50.0	-Param S MAG .074 .071 .040 .026 .023	ANG -76 -77 -78 -95 -92	MAG 2.178 2.180 2.197 2.207 2.207 2.208 2.187 2.169	ANG -169 -171 -177 176 167 159 147	5 MAG .165 .165 .166 .166 .168 .169 .170	112 3 3 1 -0 -2 -4 -6	MAG .153 .150 .149 .154 .158 .160 .165	ANC 33 29 18 4 -3 -10 -19
Linear S Frequency MHz 1.0 2.0 5.0 10.0 50.0 100.0	-Param S MAG .074 .071 .040 .026 .023 .030	eters 111 ANG -76 -77 -78 -95 -92 -103	MAG 2.178 2.180 2.197 2.207 2.206 2.187 2.189 2.153	ANG -169 -171 -177 176 167 159 147 131	5 MAG .165 .165 .166 .168 .168 .169 .170 .175	112 3 3 1 -0 -2 -4 -6 -9	MAG 153 150 149 154 158 160 165 178	ANC 33 29 18 4 -3 -10 -19 -33
Linear S Frequency MHz 1.0 2.0 5.0 10.0 50.0 100.0 200.0	-Param S MAG .074 .071 .040 .026 .023 .030 .053	ANG -76 -77 -78 -95 -92 -103 -115 -135 -155	MAG 2.178 2.180 2.197 2.207 2.208 2.187 2.187 2.187 2.183 2.190	ANG -109 -171 -177 178 167 159 147 131 115	8 MAG .165 .165 .165 .166 .168 .168 .169 .170 .175 .181	112 ANG 3 1 -0 -2 -4 -6 -9 -13	MAG 153 150 149 154 156 156 160 165 178 193	ANC 33 29 18 4 -3 -10 -19 -33 -51
Linear S requency MHz 1.0 2.0 5.0 10.0 50.0 100.0 200.0 300.0	-Param S MAG .074 .071 .040 .026 .023 .023 .030 .053 .061	ANG -76 -77 -78 -95 -92 -103 -115 -135	MAG 2.178 2.180 2.197 2.207 2.206 2.187 2.189 2.153	21 ANG -169 -171 -177 178 167 159 147 131 115 99	S MAG .165 .165 .166 .166 .166 .168 .169 .170 .175 .181 .187	112 ANG 3 -0 -2 -4 -6 -0 -13 -18	MAG 153 150 149 154 158 160 165 178 193 205	ANC 33 29 18 4 -3 -10 -19 -33 -51 -69
Englishing Strengthere Strengt	-Param S MAG .074 .071 .040 .028 .023 .030 .053 .061 .102	ANG -76 -77 -78 -95 -92 -103 -115 -135 -155	MAG 2.178 2.180 2.197 2.207 2.208 2.187 2.189 2.153 2.190 2.203 2.246	521 -169 -171 -177 176 167 159 147 131 115 99 62	S MAG .165 .165 .166 .166 .166 .166 .166 .166	112 ANG 3 1 -0 -2 -4 -6 -9 -13 -18 -22	MAG 153 150 149 154 158 160 165 178 193 205 214	ANC 33 29 18 4 -3 -10 -19 -33 -51 -69 -87
Encorr S Frequency MHz 1.0 2.0 5.0 10.0 100.0 200.0 300.0 400.0 500.0	-Param S MAG 074 071 040 023 023 030 053 061 102 133	eters 111 ANG -76 -77 -78 -95 -92 -103 -115 -155 -155 180	MAG 2.178 2.180 2.197 2.208 2.187 2.208 2.187 2.199 2.153 2.190 2.203	21 ANG -169 -171 -177 178 167 159 147 131 115 99	5 MAG 185 185 186 188 189 170 175 181 187 197 194 203	112 ANG 3 1 -0 -2 -4 -6 -9 -13 -18 -22 -27	MAG 153 150 149 154 158 160 165 178 193 205 214 219	ANK 33 29 18 4 -3 -10 -19 -33 -51 -69 -87 -107
Linear S requency MHz 1.0 2.0 5.0 10.0 50.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0	-Param S MAG 074 .071 .040 .023 .030 .061 .102 .133 .158 .179	eters -76 -77 -78 -95 -92 -103 -115 -135 -155 180 155	MAG 2.178 2.180 2.197 2.207 2.208 2.187 2.189 2.153 2.190 2.203 2.246	521 -169 -171 -177 176 167 159 147 131 115 99 62	S MAG .165 .165 .166 .166 .166 .166 .166 .166	112 ANG 3 1 -0 -2 -4 -6 -9 -13 -18 -22	MAG 153 150 149 154 158 160 165 178 193 205 214 219 219	ANK 33 29 18 4 -3 -10 -19 -33 -51 -69 -87 -107 -127
Enguency MHz 1.0 2.0 5.0 10.0 50.0 100.0 200.0 300.0 400.0 500.0 600.0	-Param S MAG 074 071 040 026 023 030 053 061 102 133 156	eters -76 -77 -78 -95 -92 -103 -115 -135 -135 -155 180 155 133	MAG 2.178 2.187 2.207 2.207 2.208 2.187 2.169 2.153 2.190 2.203 2.246 2.276	-109 -171 -177 176 167 159 147 131 115 99 65	5 MAG 185 185 186 188 189 170 175 181 187 197 194 203	112 ANG 3 -0 -2 -4 -6 -0 -13 -16 -22 -27 -39	MAG 153 150 149 154 156 160 165 178 193 205 214 219 212	ANK 333 299 18 4 -30 -109 -33 -51 -69 -67 -107 -127 -150
Linear S Frequency MHz 1.0 2.0 10.0 50.0 10.0 50.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 600.0	-Param S MAG 074 .071 .040 .023 .030 .053 .061 .102 .133 .156 .176 .204	eters -76 -77 -78 -95 -92 -103 -115 -135 -155 180 155 133 109	2.178 2.180 2.197 2.207 2.206 2.187 2.189 2.153 2.190 2.203 2.246 2.277	21 ANG -169 -171 -177 176 167 159 147 131 115 99 82 85 47	5 MAG 165 165 166 166 166 169 170 175 181 167 194 203 213	112 ANG 3 1 -0 -2 -4 -6 -13 -18 -22 -27 -33	MAG 153 150 149 154 158 160 165 178 193 205 214 219 219	ANK 33 29 18 4 -3 -10 -19 -33 -51 -69 -87 -107 -127

2ND ORDER TWO-TONE + 2ND HARMONI

OUT

1.4 1.3 1.4 1.4 1.4 1.4 1.4 1.5 1.5 1.6 1.6 1.6 1.6

GAIN

6.8 6.8 6.9 7.0 7.0 6.9 6.8 6.9 7.1 7.2 7.2 7.2 7.2 7.2 6.9

S21

MAG ANG S22 ANG

MAG

S12

MAG

600 800

VSWF

12 1.1 1.1 1.0 1.1 1.1 1.2 1.2 1.3 1.4 1.4 1.5 1.6 1.7

Linear S-Parameters

MAG ANG

S11

Frequency

Thermal Data: V_{cc} = 15 Vdc

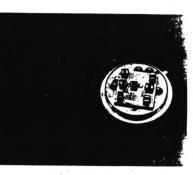
.45°C/W Thermal Resistance θjc Transistor Power Dissipation Pd . .0.944 W Junction Temperature Rise Above Case Tjc ... 42°C

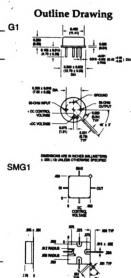
56

WJ-G1/SMG1

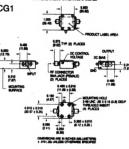
5 TO 2000 MHz **TO-8 VOLTAGE-CONTROLLED** ATTENUATOR MODULE

- ♦ AVAILABLE IN SURFACE MOUNT
- ◆ LOW VSWR: < 1.8:1 (TYP.)
- ♦ LOW INSERTION LOSS: 2.0 dB to 1000 MHz (TYP.)
- ◆ LOW DISTORTION: -25 dBc (TYP.) AT VCONTROL = +15V

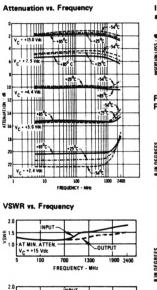

Specifications*

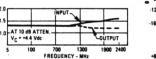

	T		_ G1 _
Characteristics	Typical	Guaranteed	1 11
Frequency Range	5 to 2200 MHz	5 to 2000 MHz	
Maximum Attenuation Available (Min.)			
5 - 500 MHz	36 dB	31 dB	0.300 ± 0
500 - 1000 MHz	30 dB	25 dB	0.300 ± 0 (7.42 ± 0
1000 - 2000 MHz	23 dB	18 dB	80-CHW 80
Insertion Loss (V _{ctrl} = +15 V) (Max.)			+ DC CONTR VOLIA
5 - 1000 MHz	2.0 dB	2.5 dB	+DC VOLD
1000 - 2000 MHz	2.5 dB	3.0 dB	
VSWR (Worst case in attenuation range)			
5 - 2000 MHz	\$1.8:1	2.2:1	
Flatness Over Frequency (Max.)			SMG1
(Attenuation = min. to 15db, 5 - 1000 MHz)	±0.5 dB	±1.0 dB	
Bias Voltage		+15V	
Bias Current (Max.)		15 mA	
Control Voltage		0 V to + 15V	
Control Current (Max.)		7 mA	
Switching Speed (Max.)			
10% - 90%	60 µsec	120 µsec	
0% - 100%	75 µsec	125 µsec	П.

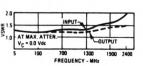
Absolute Maximum Ratings

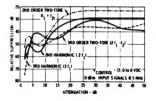

Storage Temperature	62°C to +125°C
Maximum Case Temperature	
Maximum DC Voltage	+18 Volts
Maximum Continuous RF Input Power	+20 dBm
Maximum Short Term RF Input Power (1 Minute Max.)	
Maximum Peak Power	
"S" Series Burn-In Temperature (Case)	

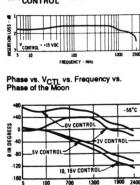
Weight 2.27 grams (0.08 oz.) max.





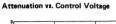


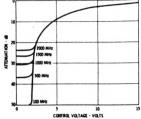

Typical Performance at 25°C



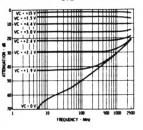
Distortion Products

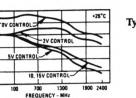
Insertion Loss vs. Frequency at VCONTROL = 15 V

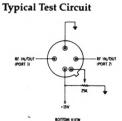

FREQUENCY - MHz


0, 15V COM 700 1300

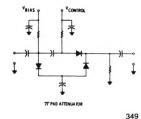
FREQUENCY - MHz


5V CONTRO


100



Attenuation vs. VCTL vs. Frequency



+85°C

Schematic Diagram

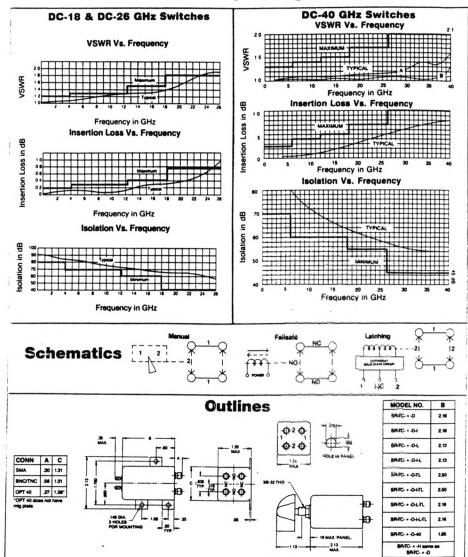
Typical Operating Curves

Type C Transfer Coaxial Switches

RLC Electronics' Type C Transfer Switch line provides extremely high reliability, long life and outstanding electrical performance by utilizing high density packaging. The mid-size transfer electrical characteristics feature extremely low insertion loss and VSWR over the entire DC-18 GHz range with option to

40 GHz, while maintaining high isolation. The switch is available in the following configurations - manual or remote, BNC, TNC, or SMA connectors, 28 Vdc or 115 Vac operation, with or without indicator terminals. failsafe or latching cut throat.

Specifications


Switch Type		Transfer	
Freq. Range	DC-18 GHz	DC-40 GHz (Opt. 40)	
Ins. Loss: (dB Max)		Ins. Loss: (dB Max)	
DC-4 GHz 4-12.4 GHz 12.4-18 GHz	0.2 0.3 0.4	DC-6 GHz 6-12 GHz 12-18.5 GHz 18.5-26.5 GHz 26.5-40 GHz	0.25 0.4 0.5 0.7 1.0
VSWR:	Max	VSWR:	Max
DC-4 GHz 4-12.4 GHz 12.4-18 GHz	1.2 1.3 1.5	DC-6 GHz 6-12 GHz 12-18.5 GHz 18.5-28.5 GHz 26.5-40 GHz	1.3 1.4 1.5 1.7 2.0
Isolation: (dB Min)	Isolation: (dB Min)
DC-4 GHz 4-12.4 GHz 12.4-18 GHz Power Rating, RF, Cold Sw Impedance: 50 ohms. Operating Power 25 *C: (Feilsafe): 12 Vdc at 50 28 Vdc at 200 ma noi 115 Vac at 40 ma noi (Latching): 12 Vdc at 7	00 ma.nom., m.	Life: 1,000,000 operat Switching Time: 15 n Weight: 6 oz. Environmental Cond Operating Mode: Ma	Feed through solder lu tions. nilliseconds max. ittions: MIL-S-3928 nual, failsafe or latchir
at 300 ma nom. 115 Current applied 10 m standard, recovery tir	Vac at 225 ma nom. s min.; cutthroat	Switching Sequence	Break before make.
	To designate the s		
 "M" for Manual or "R" for Remote. "B" for BNC, "T" for TNC or "R" for SMA type connectors. "A" for 115 Vac, "H" for 12 Vdc., or "D" for 28 Vdc. 		(4) "I" for indicators (5) "L" for latching ci (6) "TL" for TTL Drive (7) "40" for 40 GHz	ut throat if desired. er if desired. coption.
Example: SR-TC-T-D-I	L is a remote TNC, 28 Ve	dc with indicators, latchin	g cut throat switch.

Specials requiring closer tolerances, different frequency ranges, special connectors, different materials, finishes, etc. can be furnished upon request.

Specifications subject to change without notice.

RLC ELECTRONICS, INC. 83 Radio Circle, Mt. Kisco, N.Y. 10549 • (914) 241-1334

Tolerances unless otherwise specified are: .xx, ± .02; .xxx, ± .005.

COAXIAL SWITCH TYPES HO & HOF DATA SHEET 104B	RF CIRCUIT ACTUATOR CONNECTOR FREQUENCY	Transfer Fail-Safe SMA 0-18 GHz
---	--	--

DESCRIPTION

The Type HO TRANSFER Switch has RF geometry optimized for SMA connectors and operates over a 0-18 GHz frequency band. It is also available with or' without indicators. Transco's design mechanically links indicating switches to the rotating armature for positive indications.

Actuator features:

- 1. Balanced rotating armature
- 2. Low current required to develop the actuating torque
- 3. Dual holding power-permanent magnet plus electromagnet

The design features a dual magnetic field for high efficiency and long life reliability - also excellent shock/vibration characteristics.

The Type HOF is designed for miniature packaging and is the smallest TRANSFER switch available. This switch utilizes a non-polarized linear solenoid for actuation.

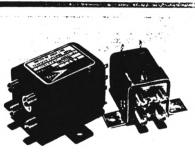
This switch is part of a Transco family of switches. Other types in this family are referenced below.

TYPE	CONN	FREQ
н	N	12.4 GHz
HT	TNC	12.4 GHz
нх	SC	6.5 GHz

STANDARD PRODUCTS

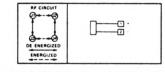
P/N	SCHEMATIC	MIL SPEC	
71CC70100	1	MIL-S-3928/19-02	
710C70200	2		
715C70100	3		
710C70100-8	1	QUALIFIED PRODUCT LIST MIL-S-3928/19-02	

SCHEMATIC P/N

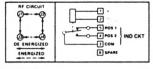

710C71400	4*	
710C71400-8	4*	QUALIFIED PRODUCT LIST MIL-S-3928/19-05

TRANSCO PRODUCTS, INC.

44

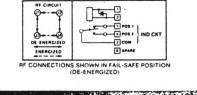

With arc suppression diode

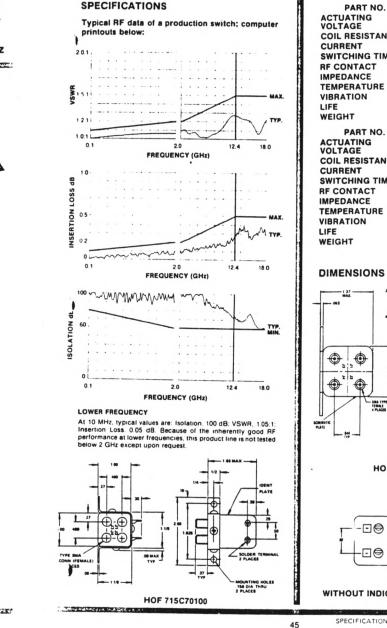
IPI



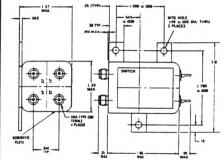
SCHEMATIC

#1. FAIL-SAFE

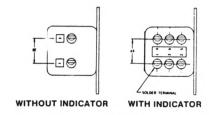

#2. FAIL-SAFE WITH INDICATOR CIRCUIT



#4. FAIL-SAFE WITH INDICATOR CIRCUIT



PART NO. 710C70100 & 710C70200 20 to 30 Vdc COIL RESISTANCE 250 ±25 ohms @ 20°C 120 mA @ 28 Vdc & 20°C SWITCHING TIME 20 mS @ 28 Vdc & 20°C break-before-make 50 ohms nominal -55° C to 85° C 20 g's sine/random 100.000 cycles min 3.5 oz max PART NO. 715C70100 24 to 32 Vdc COIL RESISTANCE 145 +5% ohms @ 20°C 200 mA @ 28 Vdc & 20°C SWITCHING TIME 20 mS @ 28 Vdc & 20°C break-before-make 50 ohms nominal -55° C to 85° C 10 g's sine up to 500 Hz


100.000 cycles min

3.0 oz max

DIMENSIONS

HO 710C70100 & 710C70200

SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

TWO-WAY IN-PHASE POWER DIVIDER 10-2000 MHz MODEL DS-313

0.6 dB Typical Midband Loss 28 dB Typical Midband Isolation 1.2:1 Typical Midband VSWR

Guaranteed Specifications*

(From - 55°C to + 85°C)

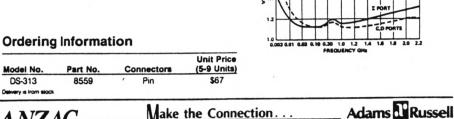
Frequency Range		10-2000 MHz
Insertion Loss	20-1000 MHz	1.1 dB Max
(Less coupling)	10-1500 MHz	1.3 dB Max
	1500-2000 MHz	1.8 dB Max
Isolation	20-1000 MHz	23 dB Min
	10-1500 MHz	18 dB Min
	1500-2000 MHz	12 dB Min
Amplitude Balance	20-1000 MHz	0.3 dB Max
	10-1500 MHz	0.4 dB Max
	1500-2000 MHz	0.6 dB Max
Phase Balance	20-1000 MHz	4° Max
	10-1500 MHz	6° Max
	1500-2000 MHz	8° Max
VSWR (All Ports)	20-1000 MHz	1.5 Max
	10-1500 MHz	1.6 Max
	1500-2000 MHz	1.8 Max

Typical Performance

1.0									4.6
1				T	Π		7	Τ	
0.8	X	POR	TS I.C.	0.2		1	1		3.6
0.6		++	+	-		-	+		10
0.4		+	-+-	+-	$\left \right $	-	+	+	3.4
0.2		\vdash		+-	\vdash	-+	+	+	11
									10

Operating Characteristics

*All specifications apply with 50 ohm source and load impedance


Impedance	50 Ohms Nominal
Maximum Power Rating or Input Power	250 mW Max
Internal Load Dissipation	50 mW Max
Package Type (See page -	Flatpack (FP-2) 474 for physical dimensions.)
Environmental These units are designed to meet the requirements of Table 1A, page 496 of	
Pin Configuration	z; P1, Output 'C'; P4, Output 'D'; P8

20	4	2	10	ATEC	0			
10						-	-	
al				20 1				

VSWR

DS-313

Case and all other pins ground.

Ordering Information

COMPONENTS GROUP 80 Cambridge Street, Burlington, MA 01803 Fax (617) 273-1921

POI

For Technical Information, Call (617) 273-3333

For Ordering Information, Call (617) 273-3333

COAXIAL SWITCH TYPE DO DATA SHEET 103B	RF CIRCUITSPDTACTUATORLatchingCONNECTORSMAFREQUENCY0-18 GHz	SPECIFICATIONS Typical RF data of a production switch; computer printouts below: 201	VOLTAGE 20 to 30 Vdc COIL RESISTANCE 310±15 ohms @ 20°C CURRENT 95 mA inax @ 28 Vdc & SWITCHING TIME 20 milliseconds RF CONTACTS break-before-make IMPEDANCE 50 ohms nominal
DESCRIPTION The Type DO Latching SPDT Switch has RF geom- etry optimized for SMA connectors and operates over a 0-18 GHz frequency band. It is magnetically latched and available with or without Actuator Cut- off Circuit. It is also available with or without Indicating Switches. Transco's design mechanically links indicating switches to the rotating armature for positive indication.		H 151 151 101 0,1 FREQUENCY (GHz) HAX. NAX. TYP. 12.4 18.0 FREQUENCY (GHz)	TEMPERATURE -55° C to 85° C VIBRATION 20 g s sine/random LIFE 1 000 000 cvcles min WEIGHT 909C70100 909C71100 1.5 oz 909C70200 909C71200 2.0 oz
Actuator features: 1. Balanced rotating armature 2. Reliable actuation with low current 3. Positive latching with permanent magnets 4. Basic design concept qualified for space applications A single voltage pulse of 20 milliseconds is all that is required to change positions: no holding power is required in position. Magnetic latching offers distinct advantages over other mechanisms since it uses no springs or mechanical detents which are prone to fatigue and wear. Transco considers magnetic latching to be the optimum design for applications which require high vibration levels, environmental extremes, long life and reliability. This switch is part of the Type D family of switches featuring different RF connectors and frequencies. TYPE CONN. FREO. D N & TC 12 GHz DO SMA 18 GHz DO 3.5 mm 26.5 GHz DESIGNED TO MEET: MIL-S-3928/15-08 SCHEMATIC 1 MIL-S-3928/15-08 SCHEMATIC 2 STANDARD PRODUCTS PION 1 909C70100 1 909C70200 2 909C71100 3 909C71200 4 Qualified Product List MIL-S-3921/507 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SCHEMATIC #1. LATCHING POS 1 + TO THE POSTOR OF THE POST	$\mathbf{FREQUENCY} \left(\mathbf{GHz} \right)$	SULDER TERM 3 OR 6 PLACES 3 OF 6 P
909C70200-8 5 MIL-S-3928/15-08 SPECIAL CONFIGURATION Actuating Voltage Mounting Configuration Transient Circuit Terminal Location TTL Logic Circuit (For dimensions and circuit diagrams see page 20) TRANSCO PRODUCTS. INC.	POS 1	Insertion Loss. 0.05 dB. Because of the inherentity good RF performance at lower frequencies, this product line is not tested below 2 GHz except upon request.	SPECIFICATIONS SUBJECT TO CHANGE WITHOUT M

2.6 CONVERTER REPLACEMENT PROCEDURE

When replacing a frequency converter, it is necessary to adjust the replacement converter's LCP and RCP channels. This requires an HP 436A power meter, preferably equipped with an 8484A sensor. The 8481A sensor may also be used. The antenna should be pointing at the zenith.

Connect the power meter sensor to the LCP IF output jack on the front panel. Set the converter LO band switches to the correct positions for the converter under test, and set the LO frequencies to the values listed in the table in Section 2.3.

Adjust the front panel LCP gain adjustment potentiometer until the meter reads the power level indicated in the "Nominal Total Output Power @ Std Syst Temp, dBm" row in the Section 2.3 table.

Repeat this procedure for the RCP IF channel.

Repeat the LCP and RCP adjustment procedures for the range of LO frequencies listed in the table. The potentiometers should be set so that the average measured power level over the LO frequency settings is the value listed in the table.

When replacing T101 or T102, use the gain adjustment procedures described in Section 3.1 or 3.2 instead of this procedure.

2.7 CONVERTER TEST PROCEDURES

The test procedures in this section were abstracted from the Technical Manual for CONVERTER MODULES cited above and have been adapted for use at the VLBA AOC. These procedures are general and apply to all converter modules to verify performance and adjust IF gain. In the case of T101 and T102, gain adjustment procedures particularized to these modules are included in Sections 3.1 and 3.2. The test procedures specify the required test equipment and set-up. Modules that have mode or frequency-dependent switching features should have provisions to set these switches to the appropriate state. The procedures reference tabulated frequencies, gains and levels; these are the values found in the Section 2.3 table. All tests require an SMA to OSP adapter bracket to simulate the module-bin interface. The tests performed are:

- I. Adjustment of LO power, converter gain and flatness.
- II. Measurement of power output at the 1 dB compression point.
- III. Test of inter-channel isolation.
- IV. Noise Figure test.
- V. Test for spurious output signals.

I. LO Power, Gain and Flatness

Equipment Requirements:

- 1. An LO signal generator that covers the tabulated LO frequencies and is capable of at least +5 dBm output power.
- 2. An RF sweeper that sweeps the RF band tabulated in the specification table of Section 2.3 above.
- 3. A scalar network analyzer (SNA) such as the HP 8757 or PM 1038 with a detector covering the RF frequency range tabulated above, and the IF range of 500 to 1000 MHz.

Test Procedure:

- 1. Refer to Figure 7, below. Connect the sweeper and SNA as detailed in the manufacturer's instructions. Set the sweeper to sweep the RF input band at a power level of about -20 dBm and calibrate the SNA with the detector connected to the sweeper output.
- 2. Connect the LO signal to the module's LO input. Set the LO source's level 1.5 dB below the nominal level tabulated above. Connect the RF sweeper output to the module's RF LCP input. Connect the detector to the module's IF LCP output. Connect a +15 volt DC power source to the module's power connector (P11). Verify that the transfer switch is not set to interchange the two channels. In converters with selector switches, set the selector switch to the mode or frequency channel under test.
- 3. Measure the LO power at the input to the mixers. Select an input LO attenuator that will produce the appropriate level of LO power at the input to each mixer.
- 4. Reconnect the mixers to the LO lines. Rotate the front-panel gain adjustment through its range while observing the SNA. The gain should change smoothly over a ≥ 20 dB range while remaining flat over the IF band.

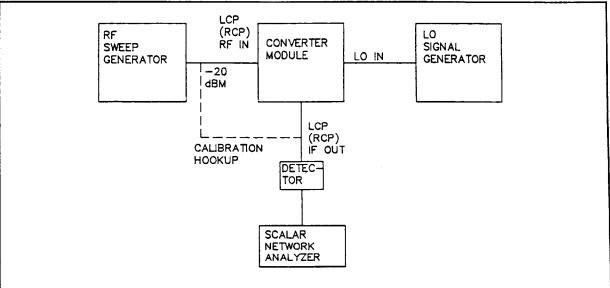


Figure 7 Test Setup for LO Power, Gain and Flatness

- 5. Set the gain control to about the middle of its range. This should give about 12 dB gain for converters without input amplifiers. Use this gain setting for the remainder of the tests.
- 6. Disconnect the RF source and the SNA detector from the LCP RF input and IF outputs; then connect them to the RCP counterparts. Repeat steps 3 and 5.
- 7. This concludes the LO power, gain and flatness tests.

II. Power Output at the 1 dB Gain Compression Point

Equipment Requirements:

- 1. Three signal generators, one for the LO signal and two for the RF signals. These need not be sweepers. One of the RF generators should be capable of square-wave modulation.
- 2. A directional coupler, 10 or 20 dB isolation. The coupler must work across the entire input RF band.
- 3. A spectrum analyzer good to 1000 MHz.
- 4. Isolator for the RF frequency range being used. Fixed attenuators may be substituted at lower frequencies.

Test Procedure:

Note that this is a "desensitization" ("de-sense") measurement - measuring the change in level of a desired signal due to the presence of a strong, undesired signal. A true compression test would use only one signal, increasing its power until the gain for that signal decreased from the predicted power by 1 dB.

Although compression levels in radio astronomy are typically specified in terms of the 1% compression level, this compression level is quite difficult to measure on the bench. A more convenient alternate is the measurement of the 1 dB compression level, which is simpler and more directly corresponds to the manufacturer's specifications.

This procedure is based upon the rule of thumb that the 1% compression level is about 12 dB below the 1 dB level. This rule seems to be roughly correct for the types of devices that are used in the converters, but has no theoretical foundation. (If converters were perfectly "hard" limiters, 1 dB compression would only be slightly less than 1 dB above 1%.)

1. Connect the equipment shown in Figure 8. The LCP input is connected to the output of the directional coupler and the spectrum analyzer is connected to the LCP IF output. RF signal generator #1 represents the strong, undesired signal. Set it at midband. RF signal generator #2 represents the desired, weaker signal. Set its

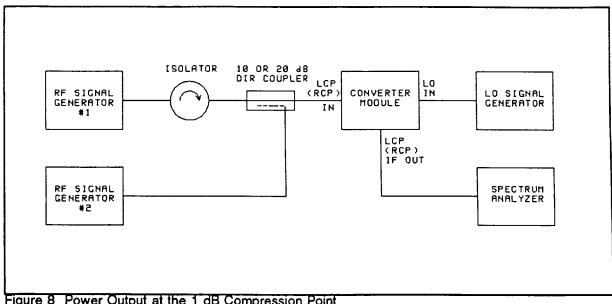


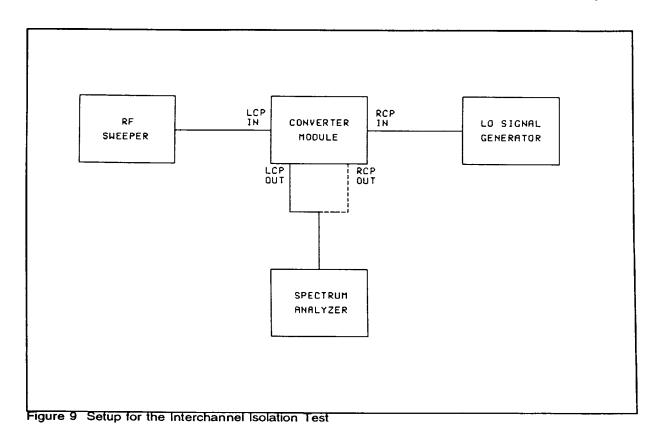
Figure 8 Power Output at the 1 dB Compression Point

frequency close to generator #1, but far enough away so that the spectrum analyzer can separate them easily.

- 2. Turn on the square-wave modulation on Signal Generator #1. It should be 100% modulation, chopping the power from full on to full off.
- 3. Tune the spectrum analyzer to the IF output corresponding to generator #2. It should be possible to distinguish generator #2's signal from generator #1 since it will be weaker and not modulated.
- 4. Set the generator #2 signal to the center of the spectrum analyzer screen and set the analyzer sweep width to 0. The spectrum analyzer is now acting as a fixed-frequency receiver, and the trace will show the amplitude of any modulation on the carrier. Set the vertical scale to its most sensitive, usually 2 dB/div. Slowly increase the power output from generator #1 while observing the spectrum analyzer trace. At some point, modulation will begin to be visible as the power from generator #1 begins modulating the gain of the converter. Increase the power until 1 dB modulation is seen.

Verify that the modulation is happening in the converter module and not the spectrum analyzer by increasing the attenuation at the spectrum analyzer input by 10 dB. The trace should drop 10 dB (bring it back on screen by adjusting the gain, not the input attenuation) but the modulation depth should remain the same.

- 5. Measure the power out of generator #1 (with the modulation off) at this point. This is the 1 dB de-sense level.
- 6. The accuracy of the 12 dB rule may be verified by noting the rate at which the modulation increases with power. 1% is 1/23 dB or 1/46 divisions at 2 dB/division. This is too small to see on the Tektronix 2710-2172 analyzers where one pixel is 1/30 div. Also note that these, and probably other analyzers, are not very "linear" for changes of less than 2 dB.
- 7. Repeat the above for frequencies at the low end and the high end of the band.
- 8. Repeat the above for the RCP channel.
- 9. This concludes the 1 dB compression (de-sense) test.


III. Inter-Channel Isolation Test

Equipment Requirements:

- 1. LO signal generator that covers the specified LO frequencies, and is set to the nominal power level listed in the table.
- 2. RF sweeper that covers the converter's nominal input frequency band. The RF output power should be about 15 dBm.
- 3. A spectrum analyzer with a bandwidth of at least 1000 MHZ.

Test Procedure:

- 1. Set up the equipment shown on Figure 9, below. Connect the RF sweeper to the LCP input. Connect the spectrum analyzer to the LCP IF output.
- 2. Allow the sweeper to sweep slowly across the converter's frequency range.
- 3. Set the spectrum analyzer to display the the swept output. At 10 dB/division, it should be flat across the band. Set the gain and attenuator so that the trace is about 10 dB below the top of the spectrum analyzer display. Note the gain and attenuator settings.
- 4. Connect the sweeper to the opposite (RCP) input. Note the level of the trace on the spectrum analyzer and the reference level. It may be necessary to increase the gain or decrease the attenuation of the analyzer to

bring the trace to a convenient level. The sum of the change in level on the screen and the change in reference level is the interchannel isolation.

For example: Suppose the trace is at the -8 dB level with the reference level set to +10 dBm. After moving to the other input, it is necessary to change the reference level to -30 dBm to bring the trace to -35 dB. The isolation is then +10 - (-30) + (-8) - (-35) = +10 + 30 - 8 + 35 = 67 dB.

- 5. Connect the sweeper and analyzer to the RCP ports and repeat the measurement.
- 6. This completes the interchannel isolation test.

IV. Noise Temperature and Noise Figure Test

Equipment Requirements:

- 1. LO signal generator that covers the nominal LO frequencies and is set to the nominal power listed in the table above.
- 2. Noise source, HP 346C or similar that covers the RF input band.
- 3. Power meter with a sensor head.
- 4. Amplifier with 30 to 40 dB of gain; the gain may be adjusted by attenuator pads on the input. When testing the 330 MHz converter (T101), use an amplifier with 40 to 50 dB of gain.
- 5. Filter: for bands other than 330 MHz (T101) and 610 MHz (T102), use a K&L 6B120-750/X550-O/OP. In the case of T101, use a K&L 6B120-827/50-OP/O and for T102, use a K&L 6B120-611/30-OP/O filter.
- 6. Two 50 Ohm terminations.

Test Procedure:

- 1. Connect the equipment as shown in Figure 10 on the next page, using the broken line connections with the SMA termination on the LCP RF input.
- 2. Set the converter gain adjustment to minimum gain.

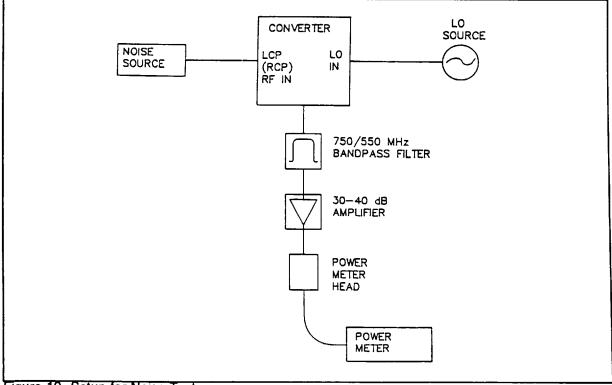


Figure 10 Setup for Noise Tests

- 2. Record the power level on the power meter as P_1 .
- 3. Replace the SMA termination by the noise source on the RF input.
- 4. Record the reading on the power meter as P_2 .
- 5. Calculate the LCP channel noise temperature from P_1 and P_2 using the following formulas:

 $T_{\bullet} = (T_2 - YT_1)/(Y-1)$

where $Y = P_2/P_1$ if P_1 and P_2 are in mW.

or $Y = 10^{(P_2 \cdot P_1y_{10})}$ if P_1 and P_2 are in dBm.

 $T_1 = room$ temperature in Kelvins

 $T_2 = [10^{(ENR/10)} + 1] \times 290$

ENR = Effective noise ratio of the noise source at the midband RF frequency listed on the noise source.

- 6. Repeat steps 1 through 6 for the RFC RF input and IF output. The two noise temperatures should meet the specification tabulated above.
- 7. Then Noise Figure = $10\log((290 + T^{\circ})/290)$ dB.
- 8. This concludes the noise temperature tests.

V. Spurious Signals Test

Equipment Requirements:

- 1. This test should be performed in the equipment racks as a part of the system integration tests. The LO synthesizer (L104) should be switched to the converter and set to an appropriate LO frequency from the table in Section 6.
- 2. Spectrum analyzer with a range of at least 1.5 GHz. Set the analyzer to sweep the full range, 10 dB/division, 3 MHz bandwidth.
- 3. SMA 50-Ohm termination.

Test Procedure:

- 1. Connect the equipment as shown in Figure 11 below. Set the center frequency to 750 MHz and the span to 1500 MHz.
- 2. Set the converter module gain to the maximum. Set the analyzer input attenuation to 0 dB. The analyzer should show a spectrum similar to that in Figure 12, below. It may be necessary to add amplification following the converter to overcome the noise level of the spectrum analyzer.
- 3. Now examine the frequency span for spurious signals. The most important frequency range is the 500 to 1000 MHz IF band. Reduce RBW and sweep speed to look for low-level spurs. There should not be any spurious signals. If there are spurious signals present, look for:
 - A. Leakage from other modules in the system.
 - B. Parasitic oscillations.
 - C. Spurious garbage on power supply lines.
 - D. Radio or TV signals getting into test cables.
- 4. This concludes the spurious signals test.

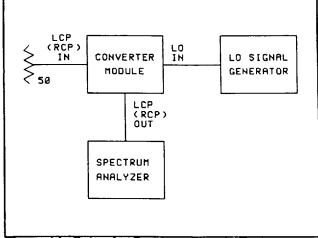
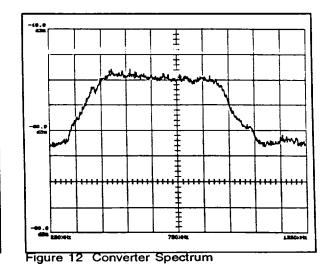



Figure 11 Setup for Spurious Signals Test

3.0 FREQUENCY CONVERTER DESCRIPTIONS

The following sections describe the operation of the nine converter modules. For convenience in usage, the descriptions are based upon a common format.

The converter descriptions below refer to selector and transfer switches. Typical examples are S101A, S106D, S108E, etc. These designations are not shown on the converter block diagrams; they are VLBA system control designations and are included in the descriptions to relate the converter switches to the VLBA system control functions. These switching functions are shown on drawing D58001K001, Rev E, Electronic System Block Diagram (Antenna Electronics). These designations are also used in VLBA Technical Report No. 5, Rev June 1990 which lists the VLBA monitor and control functions.

3.1 T101, 330 MHz CONVERTER MODULE

T101 Band Coverage and LO Frequency

This section describes the T101 frequency converter. It also includes a T101-peculiar procedure for adjustment of the IF gain.

T101 upconverts the P-Band 90 cm/330 MHz Front-End signal to an 812-842 MHz IF signal using a fixed LO frequency of 500 MHz. The Front-End's RF output is limited to a bandwidth of 30 MHz by T101's RF circuitry bandpass filter, a K&L 6B120-327/X30. For VLBA K&L filters, the X supplemental code indicates that the bandwidth is defined at the -1 dB points; the -1 dB band edges are 312 and 342 MHz.

The LO frequency is 500 MHz because a phase-stable 500 MHz signal is conveniently available. The 500 MHz LO signal level drive to T101 is +1.7 dBm.

F102, the 330/610 MHz (90/50 cm) Front-End, has a K&L X3DFV-327/610 diplexer to separate the 327 and 610 MHz signals. This is a dual-frequency filter with 327 and 610 MHz ports. The bandwidth of the 330 Mhz port is about 50 MHz and the bandwidth of the 610 MHz port is about 75 MHz. The 327 MHz signal is a potentially interfering signal on the 610 MHz port and the converse; the 327 and 610 MHz port signals are each about 25 dB below the other port's levels. T101 must reject the 610 MHz, 75 MHz bandwidth signals in the F102 327 MHz port spectrum.

T101 Size and Location

T101 is a double-width module installed in Rack B, Bin D, Slots 11-12.

T101 Drawings and Data Sheets

The following T101 functional and assembly drawings are found at the end of this section.

C53500K005, Rev C	- T101 330 MHz Converter Module Block Diagram
D53500A015, Rev C	- T101 330 MHz Converter Module Assembly
A53500B002, Rev B	- T101 330 MHz Converter Module Assembly BOM
C53500A011, Rev A	- T101 330 MHz Converter Module Converter Unit Assembly
C53500A025	- T101 330 MHz Converter Module Converter Unit PCB Assembly
C53500A017	- T101 330 MHz Converter Module Input Amplifier Assembly

Data sheets for the MCL-TFM-4H mixer and WJ A88 amplifier follow the drawings. Data sheets for the WJ A18-1 amplifier, Narda 4772-X attenuator and Anzac DS-313 power divider are included in the Appendix, Section 6.

T101 Differences From the General Converter Block Diagram

The differences between T101 Block Diagram and the general converter block diagram of Section 2.1 are the use of an Input Amplifier A53500A017, omission of the input isolator and LO bandpass filters and the use of a dual LO drive amplifier rather than a single LO drive amplifier. The mixers, power divider and dual LO amplifiers are packaged in a 330 MHz Converter Unit, C53500A011. This subassembly is described below. The 3B120-827/50 IF filter is used instead of the 6B120-750/X550 filter. Since the converter's band is so low and is so narrow, there are no isolators in the RF circuity. The RF and IF filters are much narrower (30 MHz and 50 MHz, respectively) than those used in the higher frequency converters. Note that the IF filter has a wider bandwidth than the RF filter.

330 Mhz Converter Assembly

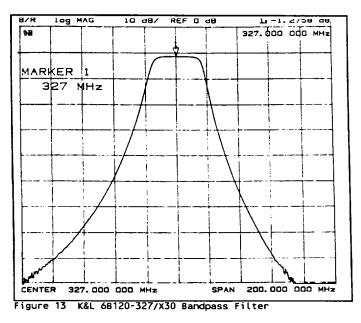
The C53500A011 330 MHz Converter Assembly consists of an Anzac DS-313 two-way power divider, two WJ A88 LO drive amplifiers and two MCL-TFM-4H mixers. The 500 MHz LO signal enters at a power level of about +1.7 dBm and is split into two -1.3 dM signals that drive the two WJ A88 amplifiers. These amplifiers have a typical small signal gain of 18.7 dB. The amplifier output levels are about +17 dBM, the proper LO drive level for the MCL-TFM-4H mixers. The amplifiers have a minimum 1 dB compression point of +20.5 dBm. The A88 amplifiers's gain is flat from 5 to 500 MHz.

T101 Specifications

Nominal Gain, dB	30	Gain Flatness, ± dB	2	LCP-RCP Path Isol, dB	65
Nom Output Pwr Ə Std Syst Temp, dBm	-50	Min Out Pwr a 1% Compression, dBm	0.0	Nom Output Pwr Density, dBm/MHz	-67
Avg Noise Temperature, K	1000	Noise Temperature for 1 ⁰ added Syst Noise, K	6000	Nom LO Pwr input, dBm	5
Avg Noise Figure, dB	6.5	Noise Figure for 1 ⁰ added Syst Noise, dB	16.5		
15 Volt Power Req't, mA	2000				

Unwanted Sideband and Image Band Attenuation

Because T101 is an upconverter, the IF band is the $F_{LO} + F_{RF}$ mixer output. The unwanted sideband is 158 to 188 MHz and is the result of the $F_{LO} - F_{RF}$ mixer output. The unwanted sideband upper band edge frequency (188 MHz) is about 624 MHz below the lowest frequency (812 MHz) in the IF passband. The unwanted sideband is attenuated by the K&L 3B120-827/50 IF bandpass filter attenuation plot shown in Figure 13, below. This plot shows that at 188 MHz, the filter attenuation is greater than 70 dB.


The image band (148 to 198 MHz) is attenuated by the Front-End's K&L 3DFV-327/610 diplexer.

Noise Temperature

The T101 noise temperature is a composite value that is a function of the noise temperatures of the input amplifier, mixer, Amp/Attenuator and Amp/Divider. The average of the measured noise temperatures of the LCP and RCP channels is 1000 K. A T101 noise temperature of 6000 would add 1 K to the system temperature.

Mixer

The MCL-TFM-4H mixer is an important component; a data sheet follows the drawings at the rear of this section. This mixer is designed for RF inputs having a high dynamic range - up to +14 dBm. It accommodates LO and RF frequencies of 5 to 1200 MHz, IF frequencies of DC to 1200 MHz and a LO drive of +17 dBm. In the 330 MHz frequency band, the typical conversion loss is 5.3 dB. Noise figure is not

specified. At 330 MHz, LO to RF and LO to IF isolation are each about 30 dB.

RCP-LCP Isolation

The RCP-LCP isolation is a function of the isolation properties of two shunt paths - the isolation between the two mixer LO ports and the transfer switch leakage. As shown in the table above, the module's specified RCP-LCP path isolation is 65 dB.

Since LO isolation filters are not used, the RCP-LCP path isolation is the 28 dB provided by the ANZAC DS-313 power divider and the 30 dB (typical) between the mixer's LO ports and the RF-IF ports. The isolation of this shunt path is thus about 90 dB.

The typical RCP-LCP path isolation of the RLC SRC-TC-R-D transfer switch at 330 MHz is about 90 dB.

VSWR's

The input VSWR is about 1.5:1 and is the composite of the VSWR's of the transfer switch (1.05:1), RF filter (1.5:1) and WJ A18-1 amplifier input VSWR (<1.5:1). The output VSWR is the composite VSWR of the Amp/Divider, which is about 1.5:1.

RF Circuitry

The RF Input Amplifier A53500A017 uses an Avantek enclosure and printed circuit board. A Watkins-Johnson A18-1 amplifier is the gain element. This amplifier has a typical small signal gain of 14.7 and its gain is flat to about 1000 MHz. The WJ A18-1 amplifier is described in Section 2.5.

The RF circuitry has K&L 6B120-327/X30 bandpass filters that have a 327 MHz center frequency and a -1 dB bandwidth of 30 MHz. This filter determines the receiver's bandwidth. The filter attenuation is shown in Figure 13, below. T101's RF filter must reject the 610 MHz interfering signals present on F102's 327 MHz port. These 610 MHz signals have a bandwidth of 75 MHz and are about 25 dB below the 327 MHz level on the 327 MHz port. T102's RF filter must reject these 610 MHz signals; Figure 13 shows that the filter attenuates them by more than 80 dB. Thus at the filter's output, the 610 MHz signal level is 105 dB below the 327 MHz signal level.

The losses in the RF circuitry are the insertion losses of the transfer switch (0.1 dB) and K&L 6B120-327/X30 RF filter (2 dB).

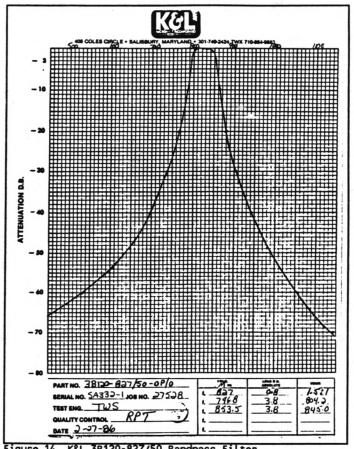
IF Circuitry

The IF bandpass filters are K&L 3B120-827/50 that have a center frequency of 827 MHz, and a 3 dB bandwidth of 50 MHz. Note that the T101 IF bandwidth is really determined by the RF 327/30 filters which have a narrower bandwidth. Figure 14 on the next page shows the filter attenuation plot.

The IF path Amp/Attenuator and Amp/Divider were described in Section 2.5. IF gain adjustment is described in Test I, Section 2.7.

RF Switching

S010A, the RLC SR-TC-R-D transfer switch is shown on the Block Diagram; the Transco 710C70100 transfer switch may be installed in some T101 modules as an alternate unit. This switch is described in Section 2.5. The transfer switch is driven by M102, address 10H, bit 0.


T101 Power Circuitry

All T101 active components are powered by +15 volts. +15 volts from P11-16 is connected to TB1 (terminal strip 1) terminals 3 and 4 where it is distributed to the amplifiers. The common returns for these devices are connected to TB-1 terminals 1 and 2 that are connected to P11-34, P11-42 and a frame ground lug. This ground is also the ground return for the +28 volt drive to the transfer switch. The Amp/Attenuator has a 1.0 uF bypass capacitor connected across the amplifier's power terminals.

T101 Gain Adjustment

Section 2.6 describes a gain adjustment procedure used to set the RCP and LCP frontpanel gain potentiometers after replacement of a converter module. This procedure uses an HP 4836A Power Meter equipped with an HP 8484 sensor. In the case of T101, it is difficult to use a power meter with this procedure for the following reasons:

1. The T101 signal bandwidth is 30 MHz but the bandwidth of the IF Amp/Attenuator and Amp/Divider may exceed 1000 MHz. Thus these amplifiers contribute noise over a much larger bandwidth than the T101 signal band.

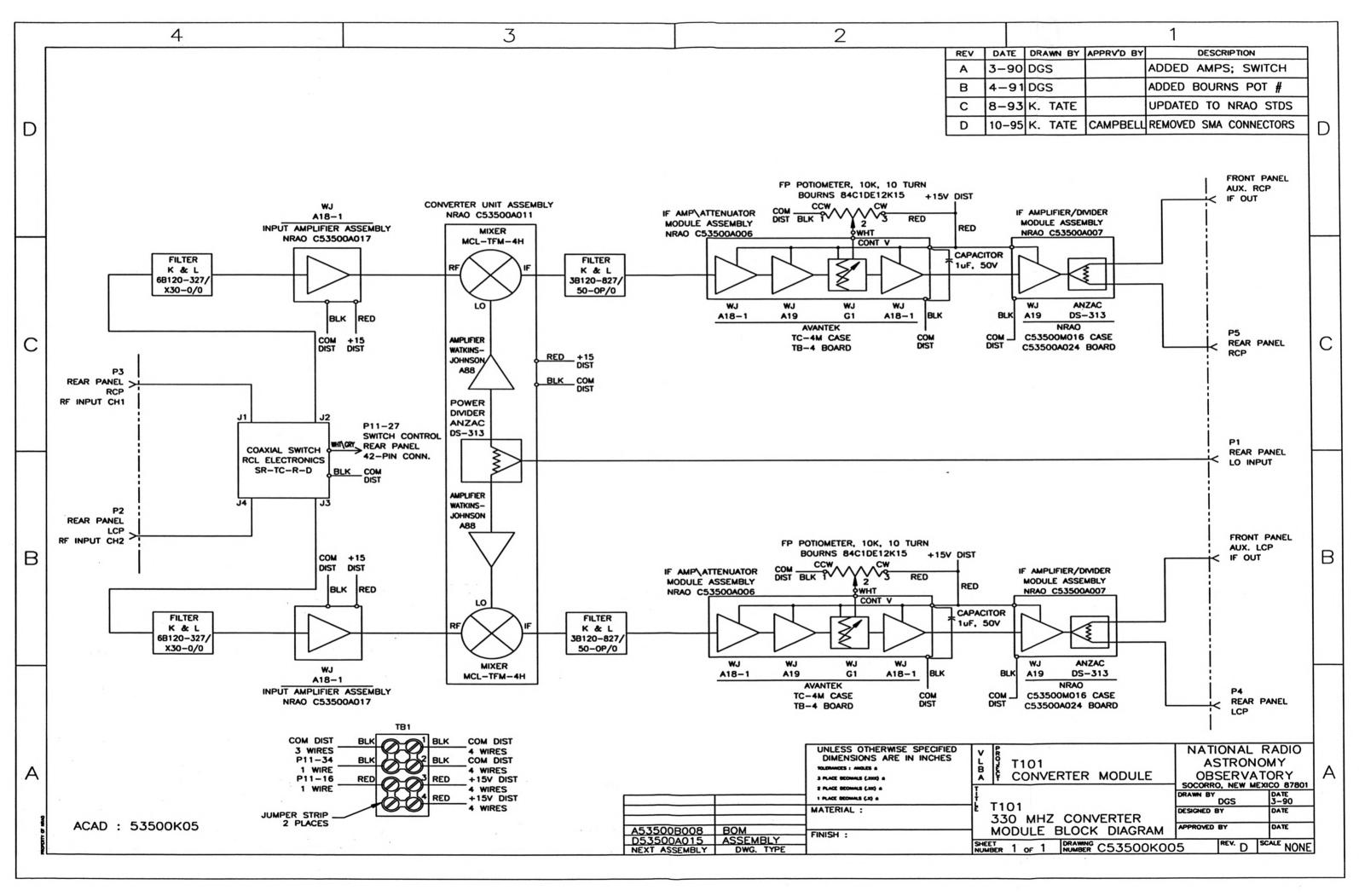
K&L 3B120-827/50 Bandpass Filter Figure 14

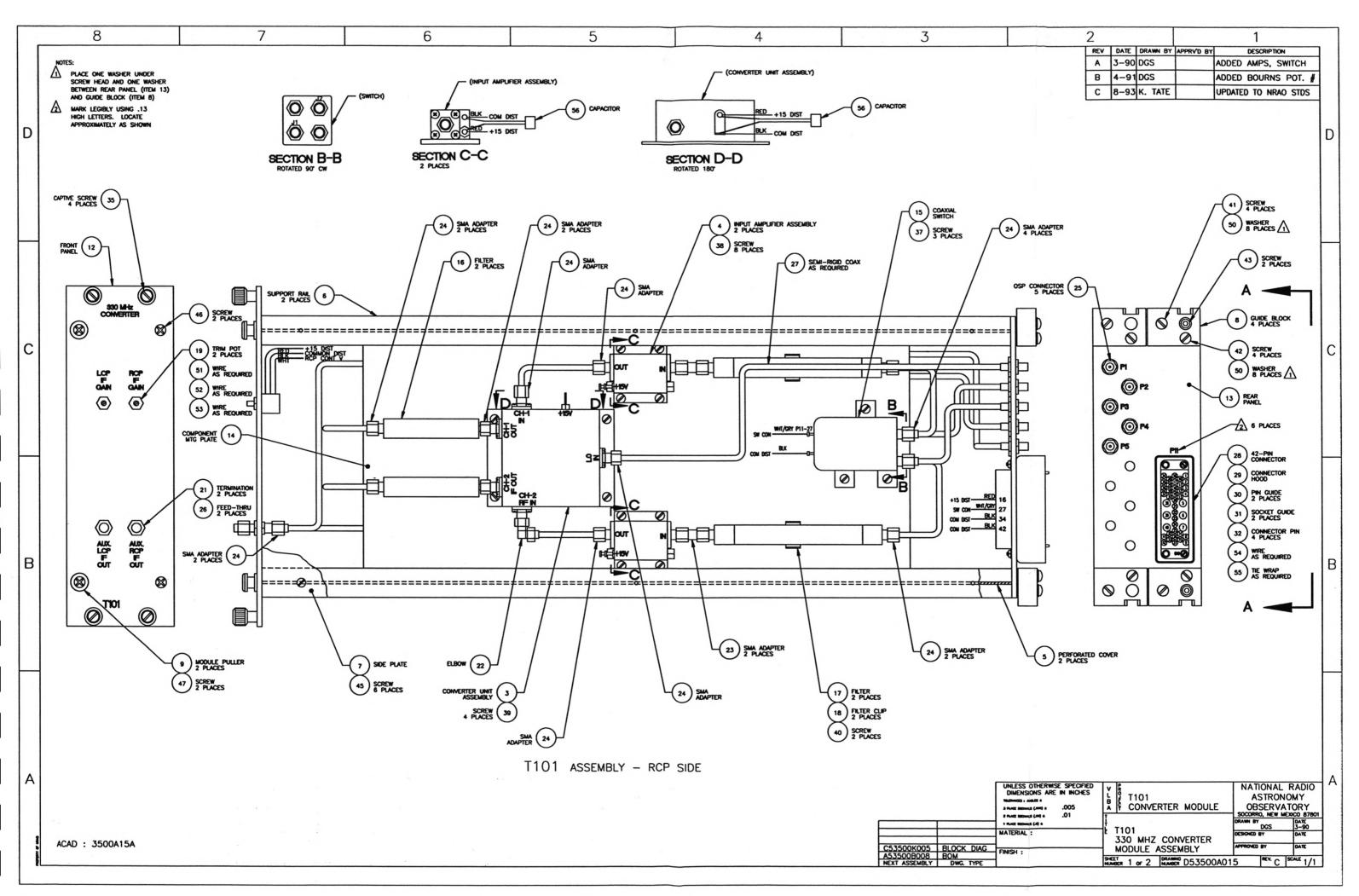
When attempting to adjust T101's gain, this wideband noise tends to obscure the measurements.

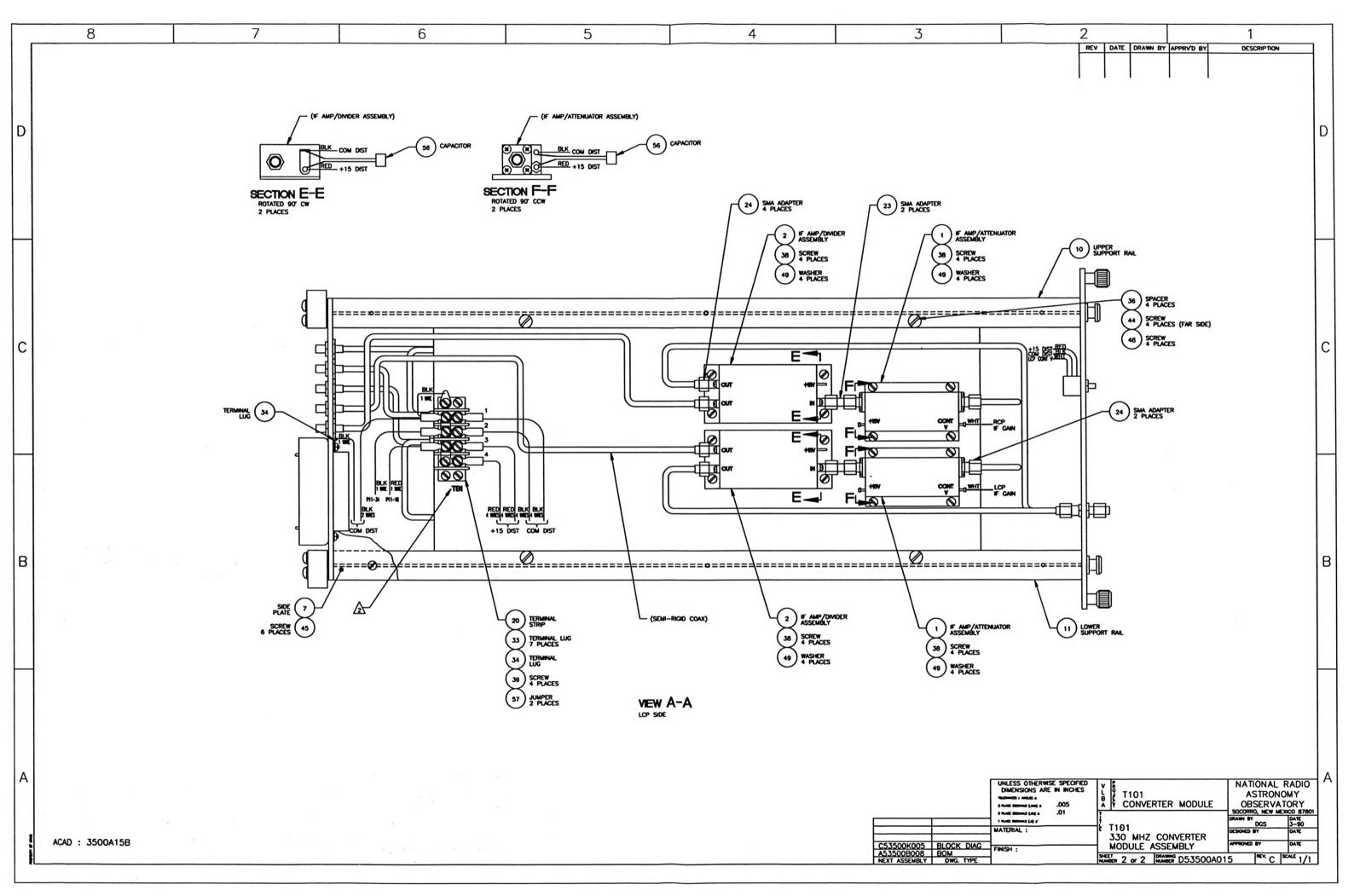
2. There may be interference signals within the T101 band.

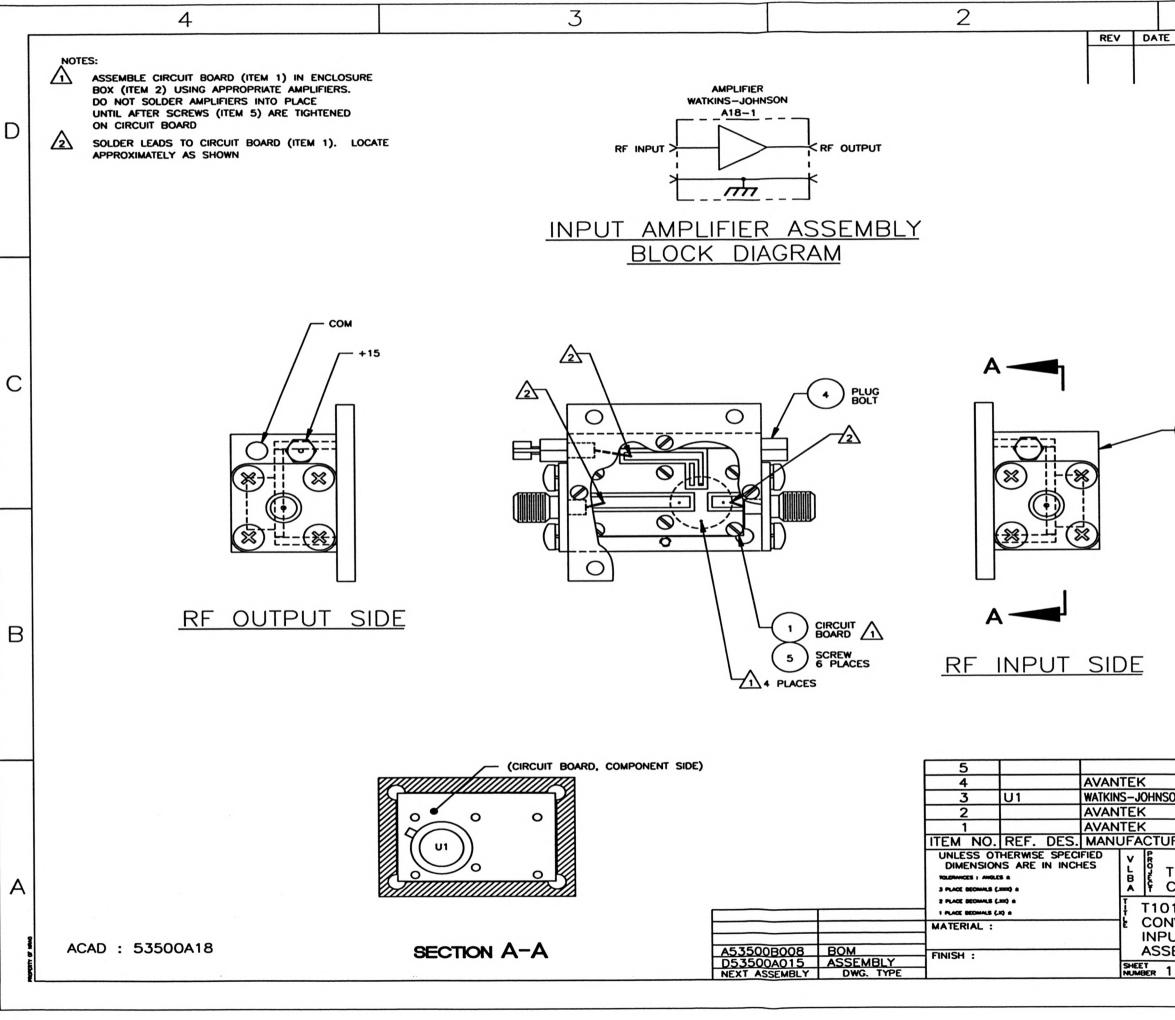
This alternate procedure uses the Baseband Converters, an HP 436 power meter and a display device that can show the Station Computer Baseband Converter overlays. The overlay digital value proportional to total power is used as a measure of a converter's power spectral density. The converter's power spectral density should be -67 dBm/MHz.

This procedure uses the narrow-band filtering capabilities of the Baseband Converter to facilitate the adjustment of T101's gain. A high frequency converter's output power level is first measured with the power meter to verify that it is -40 dBm (normal power level at standard system temperature); the Baseband Converter is then used to measure the high frequency converter's power spectral density over a 2 MHz bandwidth at an IF frequency of 826 MHz.

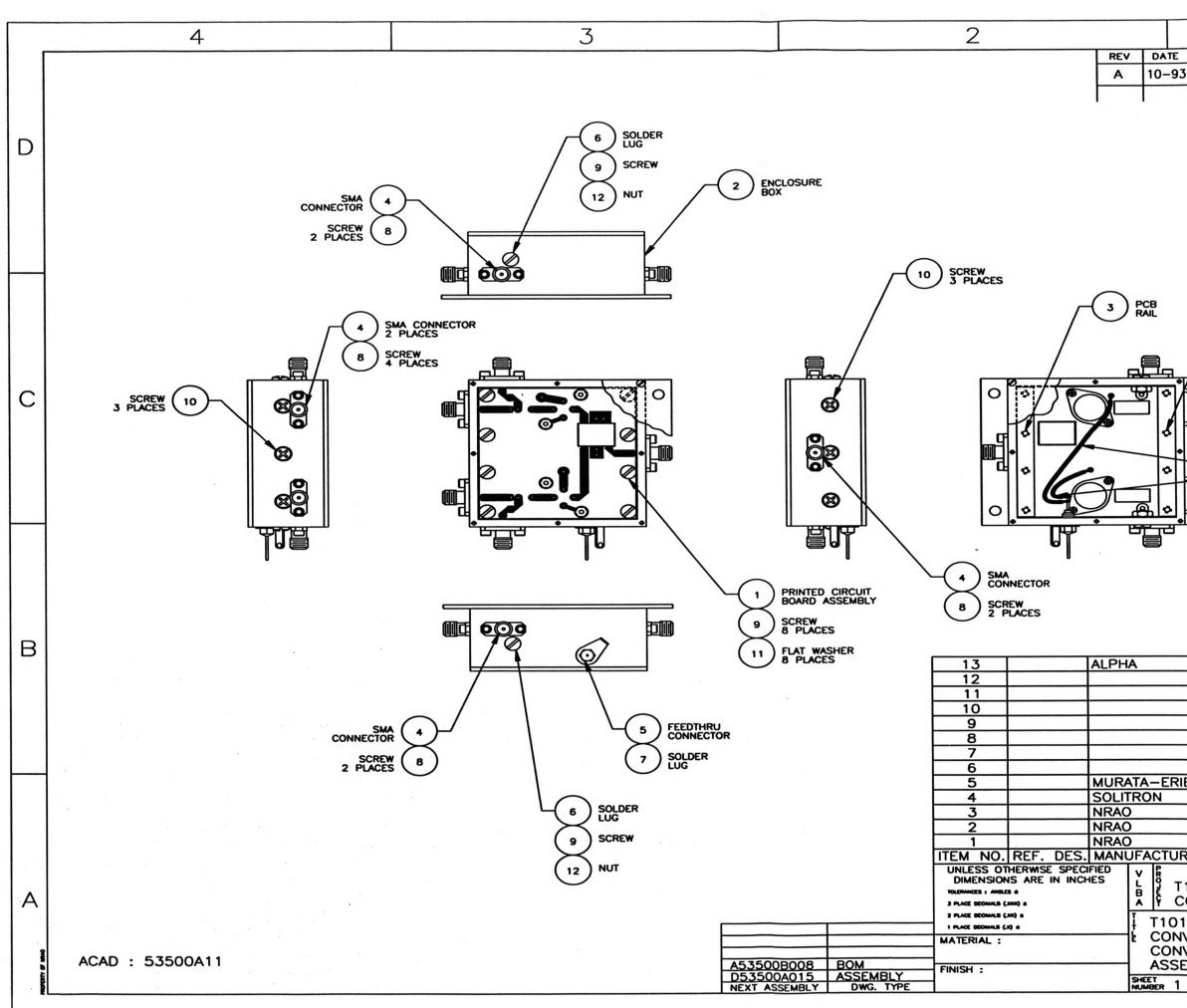

Next, T101's output is switched to the Baseband Converter used to measure the high frequency converter's output while retaining the Baseband Converter's setup. T101's IF gains are then adjusted to produce a power spectral density value equal to that produced by the high frequency converter.


Gain Adjustment Procedure


To set the T101 output levels to a -67 dBm/MHz spectral power density (the same level as the other converters) do the following:


- 1. Set the receiving system to a high frequency band that is not subject to interference. Use a band that has IF signals in the B and D IF's as is the case with the 90 cm/50 cm bands; the 4 cm band is suggested.
- 2. Route the high frequency converter outputs to a Baseband Converter. Set the Baseband Converter LO to 826 MHz and use a 2 MHz conversion bandwidth.
- 3. Using the power meter, check the high frequency converter power levels on the front panel SMA monitor connectors. The power level should be -40 dBm over 500 MHz bandwidth at standard system temperature.
- 4. Using the Baseband Converter overlays for this high frequency converter, jot down the values (i.e. counts) proportional to LCP and RCP total power.
- 5. Set the receiving system to the 90 cm band, and without modifying the Baseband Converter's set up, adjust T101's front-panel gain potentiometers to produce a total power value identical (or close to) that obtained in Step 4 above. The gain adjustment error tolerance is ± 0.5 dB or up to 10% of the overlay value proportional to total power.

This procedure can be used to adjust the gains of other converters in bands where external RFI in the IF passband is a problem.



1	
DRAWN BY APPRV'D BY DESCRIPTION	D
- 2 ENCLOSURE	С
	В
SCREW, PAN HEAD, SS, 0-BOUNF-2A x 25 6 C22-000401 BOLT, PLUG,12-32 HEX 1 ON A18-1 AMPLIFIER 1 TC-2M BOX, ENCLOSURE 1 TB-1 BOARD, CIRCUIT 1 RER PART NUMBER DESCRIPTION QTY NATIONAL RADIO ASTRONOMY CONVERTER MODULE OBSERVATORY SOCORRO, NEW MEXICO 87801 DATE NVERTER MODULE DRAWN BY DATE VERTER MODULE DRAWN BY DATE UT AMPLIFIER SCHLECHT 8-90 APPROVED BY SCHLECHT B-90 OF 1 DRAWING C53500A017 REV. SCALE 2/1	А

	1	
DRAWN BY APPRVD BY	DESCRIPTION	D
		С
	NUT HEX. SS. 4 N-BOUNF-28 4 WASHER, LOCK #0 4 WASHER, FLAT, #0 4	в
M A88 TS MCL-TFM-4H DS-313 C53500Q002 RER PART NUMBER 101 CONVERTER MODULE VERTER MODULE VERTER UNIT ASSEMBLY OF 1 DRAWING C53500	SCREW, PAN HEAD, SS, O-BOUNE-2A x, 25 4 AMPLIFIER 2 MIXER 2 DIVIDER, POWER 1 BOARD, CIRCUIT 1 DESCRIPTION QTY NATIONAL RADIO ASTRONOMY ASTRONOMY E OBSERVATORY SOCORRO, NEW MEXICO 87801 DRAWN BY K. TATE 10-93 DESIGNED BY SCHLECHT 1-86 APPROVED BY DATE SCHLECHT 1-86	А

	1	
DRAWN BY APPRVD 1	DESCRIPTION RUPDATED TO NRAO STDS	D
3 PCB RAL	WIRE AS REQUIRED	С
7055	WIRE, RED, #22 AR NUT, HEX, SS. 2 4-40UNC-28 2 WASHER, FLAT #4 8 SCREW, FLAT HEAD, SS. 6 4-40UNC-2A 25 SCREW, FLAT HEAD, SS. 6 SCREW, PAN HEAD, SS. 10 LUG, SOLDER #8 1	В
IE 1250-402 2950-6200 C53500M022 C53500M021 C53500A025 RER PART NUMBER 101 CONVERTER MODU 1 330 MHZ IVERTER MODULE IVERTER MODULE IVERTER UNIT EMBLY of 1 DRAWING C535	JLE NATIONAL RADIO ASTRONOMY OBSERVATORY SOCORRO, NEW MEXICO 87801 DRAWN BY DGS 11-90 DESIGNED BY SCHLECHT 1-86 APPROVED BY SCHLECHT 11-90	A

					REVISIONS		- <u>-</u>	·	
REV	DATE	DRAWN BY	APPRY'D BY					DESCRIPTION	
В	8-93	K. TATE		UP	DATED	то	NRAO	STANDARDS	
В	8-93	K. TATE			DATED	ΤΟ	NRAO	STANDARDS	
DRAWN BY K. DESIGNED BY APPROYED BY	TATE		DATE 8-93 DATE DATE					C53500K005 D53500A015 NEXT ASSY	 LOCK DIAG SSEMBLY USED ON
	OBS	ADIO ASTRO ERVATORY EW MEDICO 878		V L B A	PROJECT TITLE	T1(ASS	01 33	NVERTER MOD D MHZ CONVE Y BOM	 MODULE

 X
 ELECTRICAL
 X
 MECHANICAL
 BOM # A53500B008
 REV_B
 DATE_8-18-93
 PAGE_2_0F_5

 MODULE
 T101
 NAME
 330 MHZ CONVERTER
 DWG# ______
 DWG# ______
 DWG# ______

 SCHEM.
 DWG# ______
 C53500K005
 LOCATION ______
 QUA/SYS. ______
 PREPRD BY __K. TATE
 APPRVD BY _____
 D. WEBER

ITEM #	REF DES	MANUFACTURER	PART NUMBER	DESCRIPTION	TOTAL QTY.
1		NRAO	C53500A006	ASSY, IF AMP/ATTENUATOR	2
2		NRAO	C53500A007	ASSY, IF AMP/DIVIDER	2
3	······································	NRAO	C53500A011	ASSY, CONVERTER UNIT	1
4		NRAO	C53500A017	ASSY, INPUT AMPLIFIER	2
5		NRAO	C53306M014-1	COVER, PERFORATED	2
6		NRAO	C53306M016	RAIL, SUPPORT	2
7		NRAO	C53306M017	PLATE, SIDE	2
8		NRAO	B53306M018	BLOCK, GUIDE	4
9		NRAO	A53306M035	PULLER, MODULE	2
10		NRAO	B53500M001	RAIL, UPPER	1
11		NRAO	B53500M002	RAIL, LOWER	1
12		NRAO	B53500M003	PANEL, FRONT	1
13		NRAO	B53500M004-1	PANEL, REAR	1
14		NRAO	D53500M028	PLATE, COMPONENT MOUNTING	1
15		RLC ELECTRONICS	SR-TC-R-D	SWITCH, COAXIAL	1
16		K&L	38120-827/50-0P/0	FILTER	2
17		K&L	6B120-327/X30-0/0	FILTER	2
18		K&L	M12-A CLIP, FILTER		2
19		BOURNS	84C1DE12K15 TRIM POT, 10K PANEL		2
20	TB1	TRW CINCH	4-140	STRIP, TERMINAL	1

ITEM #	REF DES	MANUFACTURER	PART NUMBER	DESCRIPTION	TOTAL QTY.
21		SOLITRON	8018-6005	TERMINATION, 50Ω	2
22		SOLITRON	2993-6005	ELBOW, SMA MALE/MALE	1
23		SOLITRON	2993-6001	ADAPTER, SMA MALE/MALE	4
24		SOLITRON	2902-6001	ADAPTER, SMA MALE/.141 TUBE	22
25	P1 - P5	OMNI-SPECTRA	4503-7941-00	CONNECTOR, OSP .141 MALE	5
26		OMNI-SPECTRA	2084-0000-00	FEED-THRU, SMA	2
27		PRECISION TUBE	AA50141	COAX, .141. SEMI-RIGID	AR
28	P11	AMP	204186-5	CONNECTOR BLOCK, 42-PIN	1
29		AMP	202394-2	CONNECTOR HOOD, 42-PIN	1
30		AMP	200833-2	PIN, GUIDE	2
31		АМР	203964-5	SOCKET, GUIDE	2
32		AMP	201578-1	PIN, 16 GA. CONNECTOR	4
33		ETC/MOLEX	AA-832-06	LUG, TERMINAL	7
34				LUG, TERMINAL	2
35		SOUTHCO	47-11-204-10	SCREW, CAPTIVE	4
36		H.H. SMITH	9244	SPACER, 8-32UNC-2B x .44	4
37				SCREW, PAN HEAD, SS, 4-40UNC-2A x .19	3
38				SCREW, PAN HEAD, SS, 4-40UNC-2A x .25	20
39				SCREW, PAN HEAD, SS, 4-40UNC-2A x .38	8

X ELECTRICAL X MECHANICAL BOM # A53500B008 REV B DATE 8-18-93 PAGE 3 OF 5

ITEM #	REF DES	MANUFACTURER	PART NUMBER	DESCRIPTION	TOTAL QTY.
40				SCREW, PAN HEAD, SS, 6-32UNC-2A x .19	2
41				SCREW, PAN HEAD, SS, 6-32UNC-2A x .75	4
42				SCREW, PAN HEAD, SS, 6-32UNC-2A x .88	4
43				SCREW, SOCKET HEAD, SS, 6-32UNC-2A x .38	2
44				SCREW, PAN HEAD, SS. 8-32UNC-2A x .25	4
45				SCREW, FLAT HEAD, SS, 4-40UNC-2A x .25	12
46				SCREW, FLAT HEAD, SS, HP GREY, 6-32UNC-2A x .38	2
47				SCREW, FLAT HEAD, SS, 6-32UNC-2A x .75	2
48				SCREW, FLAT HEAD, SS, 8-32UNC-2A x .63	4
49				WASHER, INT. TOOTH #4	16
50				WASHER, EXT. TOOTH #6	16
51		ALPHA	7055	WIRE, WHT #22	AR
52		ALPHA	7055	WIRE, BLK #22	AR
53		ALPHA	7055	WIRE, RED #22	AR
54		ALPHA	7055	WIRE, BLK/GRY #22	AR

2C20Z50105M050B

X ELECTRICAL X MECHANICAL BOM # A53500B008 REV B DATE 8-18-93 PAGE 4 OF 5

55

56

SPRAGUE

WRAP, TIE

CAPACITOR, 1µf, 50V

AR

5

<u> </u>	ELECTRIC	AL X MECHANICAL BOM	#A53500B08REVB	DATE <u>8-18-93</u> PAGE <u>5</u>	_0F_5
ITEM #	REF DES	MANUFACTURER	PART NUMBER	DESCRIPTION	TOTAL QTY.
57	TB1	TRW CINCH	140J-1	STRIP, JUMPER	2
58					
59				· · · · · · · · · · · · · · · · · · ·	
60			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
61					
62					
63					
64					ļ
65				· · · · · · · · · · · · · · · · · · ·	
66					
67					
68					
69				· · · · · · · · · · · · · · · · · · ·	
70				······································	
71			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
72		· · · · · · · · · · · · · · · · · · ·			
73					
74		· · · · · · · · · · · · · · · · · · ·			
75	·····				
76					
77					
78					

WJ-A88/SMA88

5 to 500 MHz TO-8 CASCADABLE AMPLIFIER

♦ AVAILABLE IN SURFACE MOUNT

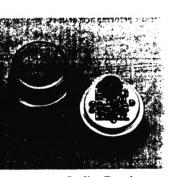
- ♦ HIGH GAIN: 18.7 dB (TYP.)
- ♦ HIGH OUTPUT POWER: +20.5 dBm (TYP.)
- ♦ HIGH THIRD ORDER I.P.: +30 dBm (TYP.)

Specifications*

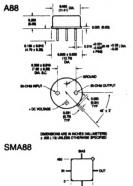
Characteristics	Typical		Guaranteed
		0° to 50°C	-54° to +85°C
Frequency (Min.)	2-500 MHz	5-500 MHz	5-500 MHz
Small Signal Gain (Min.)	18.7 dB	18.0 dB	17.5 dB
Gain Flatness (Max.)	±0.3 dB	±0.5 dB	±0.7 dB
Noise Figure (Max.)			
Vcc= +15 V	6.5 dB	7.5 dB	8.0 dB
Vcc= +12 V	4.5 dB	5.5 dB	6.0 dB
Power Output			
at 1 dB Compression (Min.)	+20.5 dBm	+19.5 dBm	+19.0 dBm
VSWR (Max.) Input/Output	1.5:1	1.8:1	2.0:1
DC Current (Max.) at 15 Volts	79 mA	83 mA	87 mA

"Measured in a 50-ohm system at 15 Vdc

 WJ-CA88 is a standard WJ-A88 installed in a miniature SMA connector housing a guaranteed over 0°C to 50°C temperature range.

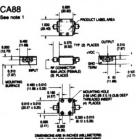

Typical Intermodulation Performance at 25°C

Second Order Harmonic Intercept Point	.+41	dBm (Typ.)
Second Order Two Tone Intercept Point		
Third Order Two Tone Intercept Point		

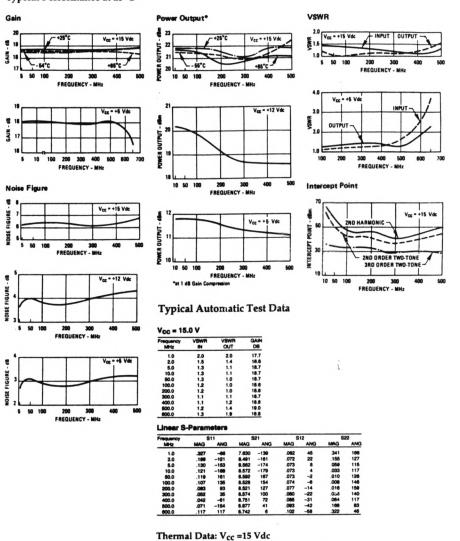

Absolute Maximum Ratings

Storage Temperature	
Maximum Case Temperature	
Maximum DC Voltage	
Maximum Continuous RF Power	+13 dBm
Maximum Short Term RF Input Power (1 Minute Max.)	
Maximum Peak Power	0.5 Watt (3 µsec Max.)
"S" Series Burn-In Temperature (Case)	

Weight approximately 2.0 grams (0.07oz.)



Outline Drawings



05 ± .001		.07	28 -	000 TYP
-	.080	•	-0,1	014 ± 008
	DIZ NADIUS	1	ŢĊ	+;
4	.360	-L	-p-	001 TVP
				D.

Typical Performance at 25°C

50 KHz to 1.2 GHz

LEVEL 17S(+17 dBm LO, up to + 14 dBm RF)

		FREQU	JENC Y Hz	C	ONVI	dB	NLOSS	LO	-RF	ISOL	ATIO	ON, dB	LC)-IF	ISOLA	ION	dB	PRICE	F	BUTOR
	MODEL NO.	LO/RF fL-fu	F	M x	n d-Ba	Ind Max.	Total Range Max.	Iyp		M Typ. I		U Typ. Min.	Тур	L Min.	M Typ. Mi	n. Typ	U Min	Qty. (1-9)	ACTORY	-004-
oti RMS-H case 17-100	RMS-1H RMS-1WH RMS-2H RMS-2UH RMS-5H	2-500 5-750 5-1000 10-1000 10-1500	DC-500 DC-750 DC-900 10-750 DC-900	6 25 7 00 6 98 7 10 6 36	034 11 054 083 05	70 85 85 85 80	85 88 93 96 98	55 55 55 50 65	44 40 40 40 40	38		33 20 28 20 33 20 30 23 22 15	50 52 52 50 50	30 30 30	45 25 38 22 45 22 40 25 30 18	29 30 34	20 17 1 22	10 95 11 95 11 95 14 45 17 95	:	:
oti LRMS-H case QQQ 130	LRMS-1H LRMS-1WH LRMS-2H LRMS-2UH LRMS-5H	2-500 5-750 5-1000 10-1000 10-1500	DC-500 DC-750 DC-900 10-750 DC-900	6 25 7 00 6 98 7 10 6 36	034 11 054 083 05	70 85 85 85 80	85 88 93 96 98	55 55 55 50 65	44 40 40 40	43 39 38	25 22 22 30 20	33202820332030232215	50 52 52 50 50	30 30 30	45 25 38 22 45 22 40 25 30 18	29 30 34	20 17 17 22	10 95 11 95 11.95 14.45 17 95	:	
TFM-H case B02		2-500 5-1000 1-250	DC-500 DC-1000 DC-250	6 14 6 12 4 58	11 12 11	75 70 70	85 10 85	50 50 50	45 45 45		30 30 30	30 20 30 20 28 23	45	40 40 40	35 25 35 25 35 25	25	5 20 5 17 5 20	25 95 36 95 25 95	:	:
case B13	IFM-4H	5-1200	DC-1200	5 24	05	80	90	50	40	35	25	30 20	50	40	35 20	30	20	39 45	•	•
TAK-H cuse A05		2-500 5-750 05-300	DC-500 DC-750 DC-300	5 93 5 71 4 82	08 08 09	75 75 70	85 90 85	50 50 55	40 40 45		30 30 30	30 25 30 25 30 25		35 35 40	35 25 35 25 35 25	30		21 45 25 95 23 45	:	:
ZFM-H case K18		2-500 5-1000 05-300 5-1200	DC-500 DC-1000 DC-300 DC-1200	6 14 6 12 5 18 4 97	11 12 11 11	75 70 70 80	85 10 85 90	50 50 55 50	45 40 45 40	40 40	30 30 30 25	3U 25 30 20 30 25 30 20	45 45 50 50	40 40	35 25 35 25 35 25 35 20	25	5 20	64 95 71 95 64 95 73 95	:	
ZLW-SH case M21	ZLW-1SH ZLW-1WSH ZLW-3SH	2-500 5-750 05-300	DC-500 DC-750 DC-300	5 93 5 83 4 65	08 07 09	75 75 70	85 90 85	50 50 55	40 45 45	40	30 30 30	30 25 30 20 30 25	45 45 50		35 25 35 25 35 25	30	20	62 95 66 95 64 95	:	
ZAD-SH case M22	ZAD-1SH ZAD-1WSH ZAD-3SH	2-500 5-750 05-300	DC - 500 DC - 750 DC - 300	5 98 5 64 5 08	08 08 09	75 75 70	8.5 90 85	50 50 55	40 45 45	40	30 30 30	30 25 30 20 30 25	45	35 40 40	35 25 35 25 35 25	30	20	54 95 56 95 55 95	:	
LI TUF-H case B02	TUF - 1H TUF - 2H TUF - 3H TUF - 5H TUF - 11AH TUF - 860H	0 15-400 20-1500 1400-190	DC-600 DC-1000 DC-400 DC-1000 0 40-500 0 DC-250	59 62 50 75 73 68	18 22 33 17 28 31	70 75 70 85 90 83	8.0 90 80 90 90 83	68 58 60 62 	50 40 50 55 -	47 50 50 35	30 30 35 40 25 25	43 25 42 25 40 30 38 25 	58 60		48 30 44 25 45 25 29 18 30 15 24 18	28 38 20	8 18 5 20 0 8	9.25 10.20 11.10 14.45 21.95 14.45		
L=	low ran	ge (f, t	to 10 f)		M=	mid ra	nge	(10		to	f _u /2)			U=u	ope	r ra	nge ($f_{\rm U}/2$	to f _u)

\mathbf{m} = mid band (2f_L to f_U/2)

pin and coaxial connections see case style outline drawing

Series	TUF-H TFM-H	TAK	(-н	ZFM-H	ZLW-H ZLW-SH	ZAD H ZAD-SH	RMS-H LRMS-H			SRA			GRAH	SIMAH	SYM H
Models								1H	1WH	1 1H	- 13	73H			
	ali	114	1WH	all	all	ali	all	3H	2H		Contigura	tion	al		a
	models	ЗН		models	models	models	models	6HA			1	2	models	5H	models
LO	4	8	8	1	1	1	1	8	8	8	34.	8	1	8	2
RF	1	1	1	2	3	3	4	1	1	1	1	1	6	1	1
IF.	2	3.4	3.4	3	2	2	5	3.4*	3.4.	3	8	3.4*	4	3	3
GND	3	2.5 6.7	2.5.6.7				2.3.6	2.5 6.7	2.507	2 5.6.7	2.5.6.7	2 5.6.7	2.3.5	4	456
CASE GND	3	2	2.561					2	2,5.6.7	2.5.6.7	2,5.6.7	2.5.6.7		2.5 6.7	-

3.2 T102, 610 MHz FILTER MODULE

This section describes T102, the 610 MHz Filter Module. It also includes a T102-peculiar procedure for adjustment of the IF gain.

This unit is a special converter implementation; although it does have conversion circuitry, it does not convert the Front-End band output to an IF band. The 610 MHz Front-End band lies within the 500 -1000 MHz IF band and T102's input and output frequencies are identical. T102 downconverts the input RF to reject interfering signals in a 4 MHz, steep-sided filter. The filtered signal is then upconverted to the output frequency and amplified by the Amp/Attenuator and Amp/Divider.

The reason for these down/up conversions and filtering is that the 608-614 MHz radio astronomy band was originally allocated to television channel 37. Since channels 36 and 38 (and other nearby channels) may be strong signals in some VLBA antenna locations, a steep-sided filter must be used on the F102 Front-End output.

F102, the 330/610 MHz (90/50 cm) Front-End, has a K&L X3DFV-327/610 diplexer to separate the 327 and 610 MHz signals. This is a dual-frequency filter with 327 and 610 MHz ports. The bandwidth of the 330 Mhz port is about 50 MHz and the bandwidth of the 610 MHz port is about 75 MHz. The 327 MHz signal is a potentially interfering signal on the 610 MHz port and the converse; the 327 and 610 MHz port signals are each about 25 dB below the other port's levels.

The 610 MHz filter in the diplexer thus encompasses TV channels 29 (560-566 MHz) through 41 (632-638 MHz); these and the 327 MHz potential interference signals must be removed from the F102 610 MHz port spectrum.

In the conversion process, the Front-End center frequency (611 MHz) is converted to 111 MHz by a fixed 500 MHz fixed LO and then downconverted again to 11 MHz using a 100 MHz fixed LO. The resultant 11 MHz signal is filtered by an eight-pole, 11 MHz center frequency, 4 MHz bandwidth filter to reject interfering signal and image responses. The filtered signal is converted back in two corresponding steps to the 610 MHz band. The reasons for the downconversion to perform the filtering is that a 4 MHz bandwidth filter at 610 MHz would require many sections, have a high loss and be very expensive. Other things being equal, bandpass filter costs tend to be inversely proportional to the BW/CF ratio. A second reason for the downconversion is that narrow bandpass filters (i.e. a small BW/CF ratio) have higher phase temperature coefficients than wider bandpass filters. The downconversion filtering technique reduces this temperature sensitivity.

T102 has a wideband mode that bypasses the conversion and filtering for use in observations that can tolerate the RFI that may be present. In this mode, the bandwidth is 30 MHz.

T102 Band Coverage and LO Frequencies

In the narrow band mode, the 3 dB band edges 609 and 613 MHz, respectively, are defined by an eightpole K&L 8B51-11/4 Bandpass filter. In the wide band mode, the 3 dB band edges 596 and 626 MHz, respectively, are defined by the K&L 4B120-611/30 bandpass filter Figure 15 (page 51).

Two fixed LO frequencies are used - 500 MHz and 100 MHz, both at a +5 dBm level.

T102 Size and Location

T102 is a triple width module installed in Rack B, Bin D, Slots 6-10.

T102 Drawings and Data Sheets

D53500K007, Rev E	- T102 610 MHz Filter Module Block Diagram
D53500A001, Rev C	- T102 610 MHz Filter Module Assembly
A53500B009, Rev C	- T102 610 MHz Filter Module BOM
C53500A018, Rev A	- T102 610 MHz Filter Module Input Amplifier Assembly
	- T102 610 MHz Filter Module Filter Block Diagram
D53500A013	- T102 610 MHz Filter Module Filter Unit Assembly
D53500A022	- T102 610 MHz Filter Module Filter Unit PCB Assembly

Data sheets for the Avantek UTO-1012, UTO-509 and GPD-1003 amplifiers, QBH-160 amplifier and MCL-TFM-4H mixer follow the drawings. Data sheets for the WJ A18-1 and A19 amplifiers, Anzac DS-313 power divider and Narda 4772-X attenuator are included in the appendix, Section 6.

T102 Specifications

Nominal Gain, dB	30	Gain Flatness, ± dB 2		LCP-RCP Path Isol, dB	65
Nom Output Pwr a Std Syst Temp, dBm	-61	Min Out Pwr a 1% 0 Compression, dBm	.0	Nom Output Pwr Density, dBm/MHz	-67
Avg Noise Temperature, K	1000	Noise Temperature for 1 ⁰ 30 added Syst Noise, K	00	Nom LO Pwr input, dBm Both 500 and 100 MHz LO's	+5
Avg Noise Figure, dB	6.5	Noise Figure for 1 ⁰ added Syst Noise, dB	2		
15 Volt Power Req't, mA	760				

T102 Differences From the General Converter Block Diagram

Although there are some similarities, T102 differs greatly from the general converter block diagam of Section 2.1. Like the general converter model, T102 has RF bandpass filters in the RF circuitry and uses the Amp/Attenuator and Amp/Divider to amplify the output LCP and RCP IF signals. In contrast, it does not have a transfer switch. It has a wideband input RF preamplifier, uses two LO signals, and has the switch-selectable capability of either filtering the Front-End RF signal with a narrow band filter or a wideband filter.

RF Circuitry Filtering

The RF circuitry filter is a K&L 4B120-611/30 bandpass filter with a 611 MHz center frequency and a 3 dB bandwidth of 30 MHz. The lower and upper band edges are 596 MHz and 626 MHz, respectively. The attenuation plot is shown in Figure 15, (next page). This filter strongly attenuates the 560-596 MHz and 626-638 MHz portions of the F102 output spectrum.

Adjacent Television Channel Frequencies

Nearby TV channels are: 33 (584-590 MHz); 34 (590-596 MHz); 35 (596-602 MHz); 36 (602-608 MHz); 38 (614-620 MHz); 39 (620-626 MHz) and 40 (626-632 MHz). The RF circuitry K&L 4B120-611/30 filter plot on the previous page shows that it will pass channels 35 through 39 without attenuation. Channels 34 and 40 will have some attenuation because the filter's 3 dB frequencies are the upper band edge of channel 34 and the lower band edge of channel 33 (584-590 MHz) and 41 (632-638 MHz) will be attenuated about 20 dB; channels below and above these two will have greater attenuation.

In the filter mode, the filtering function must reject the 596 to 608 MHz and 614 to 626 MHz portion's of the RF circuitry filter's output.

Frequency Downconversion and Filtering

The frequency conversions and filtering are performed by the Filter Unit Assembly D53500A013. Refer to the Filter Unit Block Diagram B53500K006 during the following description. Figure 16 is a simplified rendering of the filter's responses centered on the first and second conversion's center frequencies. This figure illustrates the attenuation of adjacent TV signals by the RF and downconversion filters. The filter responses are all plotted at 1 MHz/division.

The first conversion (using the 500 MHz LO frequency) produces a difference frequency band IF₁, which is 96 MHz through 126 MHz. The converted 610 MHz radio astronomy band's LBE, center and UBE frequencies are 108, 111 and 114 MHz, respectively.

The first conversion's unwanted sideband (sum) is 1096 through 1126 MHz and is greatly attenuated by the 5B120-111/5.5 filter.

 IF_1 is filtered by a K&L 5B120-111/5.5 filter (Figure 17, next page) that has a 111 MHz center frequency and a 3 dB bandwidth of 5.5 MHz, 0.5 MHz narrower than the radio astronomy band's 6.0 MHz bandwidth. This

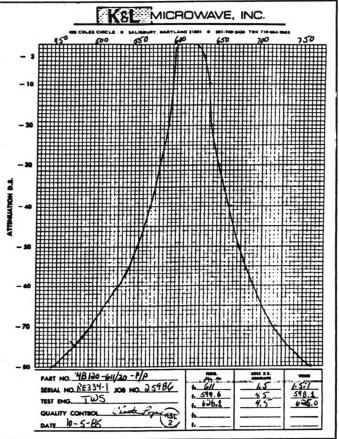


Figure 15 K&L 4B120-611/30 Bandpass Filter

filter's lower and upper band edges are 108.25 and 113.75 MHz, respectively. Thus the filter selects most (5.5 MHz out of 6 MHz) of the allotted 608-614 MHz band and attenuates adjacent TV channels 36 (602-608 MHz) and 38 (614-620 MHz).

The second downconversion operates upon the 5B120-111/5.5 (page 52) filter's output using the 100 MHz LO frequency. The filter's LBE, center and UBE frequencies are 108.25, 111 and 113.75 MHz, respectively. The

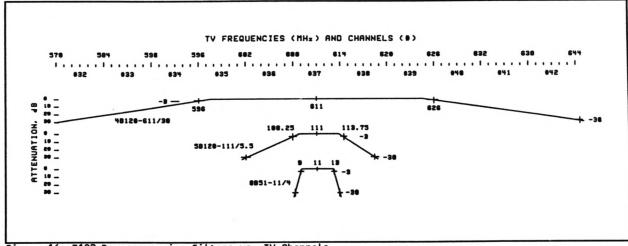


Figure 16 T102 Downconversion Filters vs. TV Channels

resultant IF₂ difference frequency LBE, center and UBE are 8.25, 11 and 13.75 MHz, respectively. IF₂ is filtered by a K&L 8B51-11/4 filter having a center frequency of 11 MHz and a 3 dB bandwidth of 4 MHz. The resultant lower and upper band edge frequencies are 9 and 13 MHz, respectively. Note that this filter has truncated 1 MHz off each side of the 6 MHz radio astronomy band. Figure 18, page 53, shows the 8B51-11/4 filter attenuation plot.

The second conversion's unwanted sideband (sum) band is 208.25 to 213.75 MHz; the 8B51-11/4 filter attenuation plot shows that the filter attenuates this image by more than 80 dB.

The net result of the two stages of conversion and filtering is that TV channel 36's converted UBE (8 MHz) is attenuated 40 dB by the 8B51-11/4 filter and channel 38's LBE (14 MHz) is attenuated 32 dB by this filter. Remembering that the 5B120-111/5.5 filter above attenuated these band edges 3 dB, the resultant channel 36 UBE and the channel 38 LBE attenuations are 43 and 35 dB, respectively. Figures 16, 17 and 18 show that the attenuation of channels 35 and 39 (and the others in the 4B120-611/30 RF filter's passband) is greatly in excess of 40 dB.

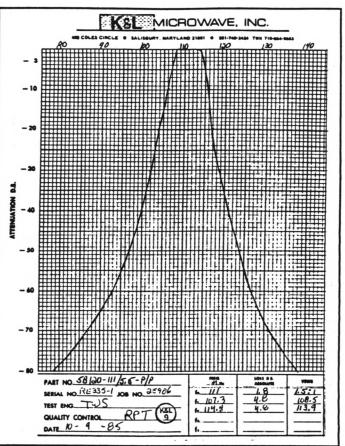


Figure 17 K&L 5B120-111/5.5 Bandpass Filter

Upconversion and Filtering

The upconversion process is the inverse of the downconversion and uses the same LO frequencies. The first upconversion uses the 100 MHz LO and the resultant IF₃ (sum) band edge frequencies are 108.25 and 113.75 MHz. The center frequency is 111 MHz.

The first upconversion unwanted sideband (difference) frequency band is 86.25 to 91.75 MHz; this is attenuated by the K&L 3B120-111/5.5 bandpass filter. The filter attenuation plot (page 54) shows that the filter attenuates this image by about 50 dB.

The second upconversion uses the 500 MHz LO and produces an IF_4 (sum) with band edges of 608.25 and 613.75 MHz. The center frequency is 611 MHz.

The second upconversion unwanted sideband (difference) is 386.25 to 391.75 MHz. This sideband is attenuated more than 80 dB by the K&L 4B120-611/30 bandpass filter driven by the output of the Filter Unit Assembly. This filter is identical to the RF filter and the attenuation plot is shown in Figure 15 above.

LO Isolation in the Filter Unit Assembly

An important consideration unique to T102 is the isolation that must exist between the pair of 500 MHz LO signals used to perform down/up conversions in the Filter Unit Assembly. The RF inputs to the Filter Unit Assembly cover the 596 to 626 MHz band. This band is input to the RF port of the first downconversion mixer and some of this power will be coupled into the 500 MHz LO port because the mixer's RF-LO isolation is about

30 dB. If these out-of-band signals are coupled into the second upconversion's mixer LO port via a common 500 MHz LO signal, the filtering is compromised. Clearly, the two 500 MHz LO signals must be isolated from each other and the upconversion's LO must not be contaminated by interfering signals. The same consideration applies to the 100 MHz LO used in the second downconversion and first upconversion.

The two 500 MHz LO signals are isolated from each other by the properties of several circuit elements. The isolation between the output ports of the ANZAC DS-313 power divider is 23 dB. Two AVANTEK UTO-509 amplifiers provide individual drive to the first downconversion and second upconversion mixers. S_{12} the UTO-509's output-input isolation parameter is 28 dB at 500 MHz. Finally, the typical RF to LO and LO to IF isolations of the MCL-TFM-4H mixer are about 30 dB. The net isolation between these two 500 MHz LO signals is the sum of the isolation of these components, about 139 dB.

The net isolation between the two 100 MHz signals is also the sum of the component's isolations and is about 123 dB.

Unwanted Sideband and Image Band Rejection

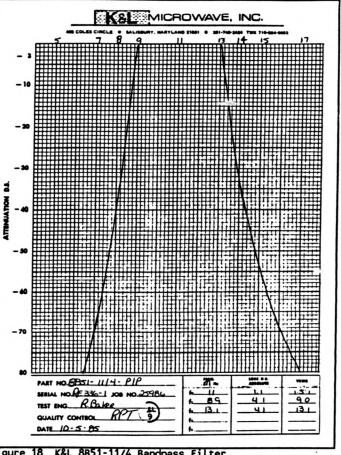


Figure 18 K&L 8B51-11/4 Bandpass Filter

Since T102 is not a superheterodyne converter, there are no image signals from the Front-End in the usual sense but the downconversions and upconversions in the filter unit have unwanted sidebands that are attenuated by filters in the filter unit. The unwanted sideband attenuation is described below.

Intermodulation

Intermodulation is a concern in frequency conversion. The worst case is third order, 2F_{RF} - F_{LO}, that typically produces IM product frequencies in the region of the IF filter passband. Third order intermodulation performance was briefly described in the Mixer discussion of Section 2.2.

The MCL TFM-4H data sheet shows that with two RF tones at 0 dBm, the IM product frequencies are 60 dB below the IF tones. The Filter Unit Assembly output power level is about -72 dBm and the net gain through the assembly is about +5.7 dB. The highest signal level in the Filter Unit Assembly is -56.3 dBm at the RF port of mixer #4, the last mixer. This level and the other mixer input levels in the Filter Unit are so low relative to the 0 dBm level of the TFM-4H intermodulation specification that IM product frequency power levels are vanishingly small.

T102 Gain

Using typical amplifier gain values, filter center frequency insertion loss values, Transco switch insertion losses and typical mixer conversion loss values, T102's net gain is calculated to be 30 dB. The output level is -61 dBm over a 4.0 MHz bandwidth and the output power spectral density is -67 dBm/MHz. The net gain of the Filter

Unit Assembly is +5.7 dB and its input and output levels are -78.1 and -72.4 dBm, respectively.

Noise Temperature

The T102 noise temperature is a composite value that is a function of the noise temperatures of the RF Input Amplifier, Filter Unit Assembly, Amp/Attenuator and Amp/Divider. The average of the measured noise temperatures of the LCP and RCP channels is 1000 K. A T102 noise temperature of 300 K would add 1 K to the system temperature. Note that T102 does not meet the gain compression specification described in Section 2.4

Mixer

The mixers used in the Filter Unit Assembly are Minicircuits Laboratory MCL-TFM-4H and are designed for RF inputs of 5 to 1200 MHz, an IF of DC to 1200 MHz, and an LO drive of +17 dBm. At a 600 MHz RF frequency and an LO drive of +17 dBM, the typical conversion loss is about 6.7 dB. The RF-LO isolation is 29 dB and the LO-IF isolation is 26.5 dB. A data sheet for this mixer follows the drawings at the rear of this section.

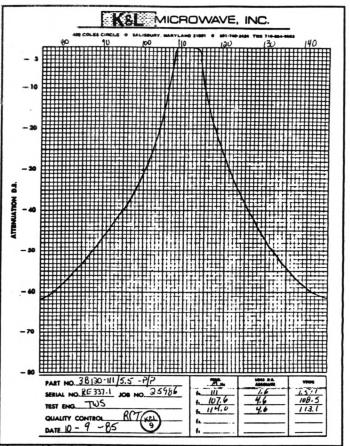


Figure 19 K&L 3B120-111/5.5 Bandpass Filter

RCP-LCP Isolation

The only couplings between the RCP and LCP channels are the 500 and 100 MHz LO signals; there is no transfer switch. The two LO signals for the Filter Unit Assembly are each split into RCP and LCP components by a Merrimac PDM-20-500 power divider, which typically provides 30 dB of isolation between the outputs.

Additional isolation is provided by LO drive amplifiers in the Filter Unit Assembly (refer to the Filter Unit Block Diagram, B53500K006). The 500 MHz amplifier is a Q-BIT QBH-160 and S_{12} , (Isolation Out-In) is 25 dB. The resultant isolation between the 500 MHz RCP-LCP LO drives is thus about 90 dB or 45 dB for each LO path. The 100 MHz drive uses two cascaded amplifiers, AVANTEK GPD-1003 and UTO-509. The associated S_{12} isolation values are 21.5 and 18.6 dB at 100 MHz, respectively, so that the resultant isolation between the 100 MHz RCP and LCP LO drives is 120 dB or 60 dB for each LO path.

From the T102 specification table above, the RCP-LCP channel isolation specification is 65 dB.

VSWR's

The input VSWR is the composite of the K&L 4B120-611/30 bandpass filter (1.5:1) and the input VSWR of the Avantek UTO-1012 amplifier (1.25:1 at 600 MHz). The composite input VSWR is about 1.5:1. The output VSWR is the composite VSWR of the Amp/Divider, which is about 1.5:1.

RF Input Circuitry

The RF circuitry consists of a K&L 4B120-611/30 bandpass filter and a wideband input amplifier, C53500A018. The filter's function was described above.

The Input Amplifier block diagram is shown on the assembly drawing, C53500A018. The Input Amplifier consists of a cascade connection of an AVANTEK UTO-1912 amplifier that drives a a Q-BIT QBH-160 amplifier. The UTO-1012 amplifier is a high gain, low power unit and the QBH-160 amplifier is a medium gain, high power unit. This configuration thus provides a high gain, high power drive to the selector switch and Filter Unit Assembly. Both amplifiers have DC blocking capacitors on the inputs and outputs and are cascadable. The Input Amplifier composite gain is 28.6 and the composite noise figure is 3.0 dB.

The AVANTEK UTO-1012 is characterized for a frequency range of 5 to 1000 MHz. At 600 MHz, typical characteristics are: gain, 15.8 dB; gain flatness, ± 0.5 dB; noise figure, 2.6 dB; power output @ 1 dB compression point, +5 dBm; input VSWR, 1.25:1 and output VSWR, 1.2:1.

The Q-BIT QBH-160 is characterized for a frequency range of 20 to 1200 MHz. At 600 MHz, typical characteristics are: gain, 13 dB; gain flatness, \pm 0.5 dB; noise figure, 7 dB; power output @ 1 dB compression point, +17 dBm; input VSWR, 1.2:1 and output VSWR, 1.25:1.

Data sheets for the UTO-1012 and QBH-160 follow the drawings at the rear of this section.

IF Circuitry

The IF path Amp/Attenuator and Amp/Divider were described in Section 2.5. In the filtering mode, the 4B120-611/30 bandpass filter on the output of the Filter Unit Assembly functions as an IF bandpass filter. In the wideband mode, there is no IF bandpass filter; the band-limiting function is performed by the RF circuitry 4B120/611/30 bandpass filter.

In the filtering mode, a NARDA 4772-16 attenuator is used on the output of the Filter Unit Assembly to reduce the filtered signal level to approximately the same level as the unfiltered signal. This attenuator value is nominal and should be selected to make the two path gains identical. 10/7

IF gain adjustment is described in Test I, Section 2.7.

LO Drive Circuitry

The input 500 and 100 MHz LO signals each have a power level of +5 dBm from B-Rack power dividers.

The 500 MHz level is reduced 3 dB by a NARDA 4772-3 attenuator and input to a Merrimac two-way power divider, so the divider's output level is -4.7 dBm. Each output is fed to the associated Filter Unit Assembly which has additional LO power amplification.

The 100 MHz level is reduced 5 dB by a NARDA 4772-5 attenuator and input to a Merrimac two-way power divider, so the divider's output level is -6.7 dBm. Each output is fed to the associated Filter Unit Assembly which has additional LO power amplification.

The Merrimac PDM-20-500 power divider provides 30 dB (typical) of isolation between the two divider output ports; this provides a portion of the isolation required between the RCP and LCP LO signals. See the RCP-LCP isolation discussion above.

RF Switching

Unlike most of the converters, T102 does not have a transfer switch. Four SPDT selector switches (S102A, S102B, S102C and S102D) are used in pairs to select either the wideband or filter modes. Referring to the T102 Block Diagram, the switching is straightforward; the first switches (S102A and S102C) connect the output of the RCP and LCP Input Amplifiers to the Filter Unit Assembly inputs or to the IF Amp/Divider inputs via switches S102B and S102D. The switches are Transco 909C70100 SPDT electrically driven switches described in Section 2.5. Transfer and Selector Switch drive is discussed in Section 2.

S102A and S102B are driven by L107, address 1BH, bits 0 and 1. S102C and S102C are driven by L107, address 1CH, bits 0 and 1.

T102 Power Circuitry

All T102 active components are powered by +15 volts. +15 volts from P11-16 is connected to TB1 (terminal strip 1) terminals 3 and 4 where it is distributed to the amplifiers. The common returns for these amplifiers are connected to TB1, terminals 1 and 2, which are connected to P11-34 and P11-42 and a frame ground lug at P11. This common return is also the ground return for the +28 volt drive to the transfer switch. The Input Amplifier, Amp/Attenuator and Amp/Divider all have a 1.0 uF bypass capacitor connected across the amplifier power terminals.

T102 Gain Adjustment Procedure

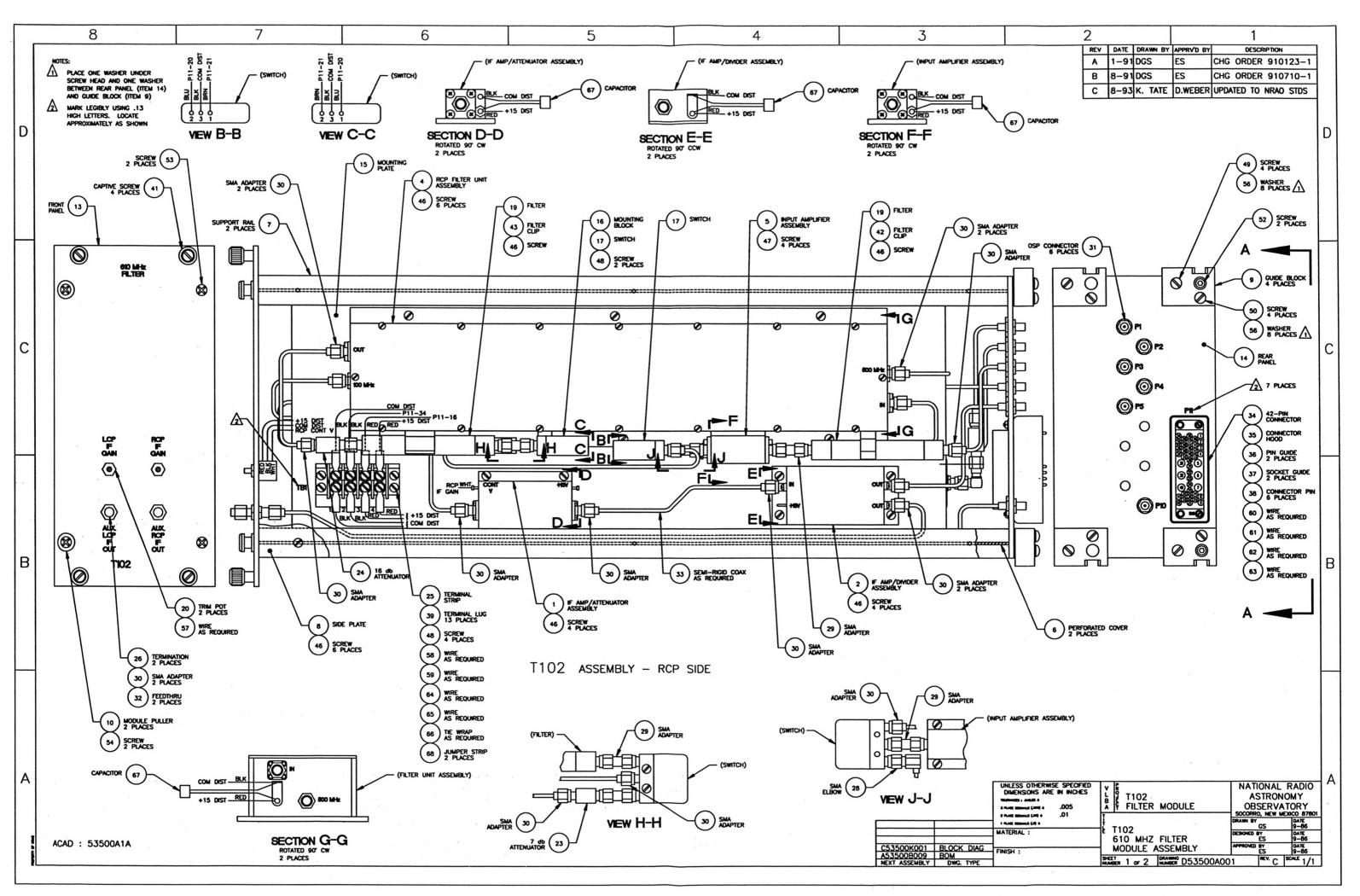
Section 2.6 describes a gain adjustment procedure used to set the RCP and LCP front-panel gain potentiometers after replacement of a converter module. This procedure uses an HP 4836A Power Meter equipped with an HP 8484 sensor. In the case of T102, it is difficult to use a power meter with this procedure for the following reasons:

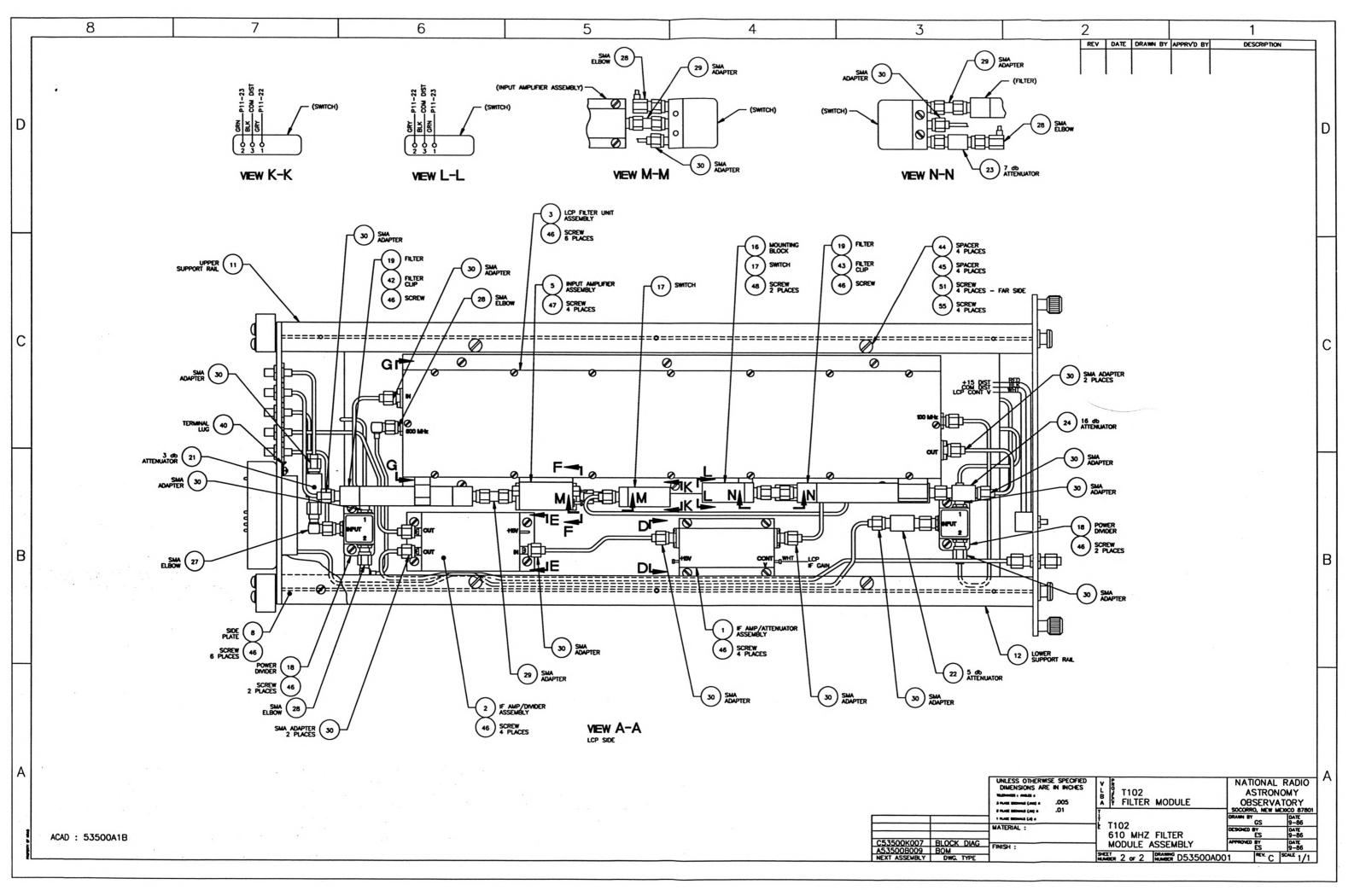
- 1. The T102 signal bandwidth is 4 MHz but the bandwidth of the IF Amp/Attenuator and Amp/Divider may exceed 1000 MHz. Thus these amplifiers contribute noise over a much larger bandwidth than the T101 signal band. When attempting to adjust T102's gain, this wideband noise tends to obscure the measurements.
- 2. There may be interference signals within the T102 band.

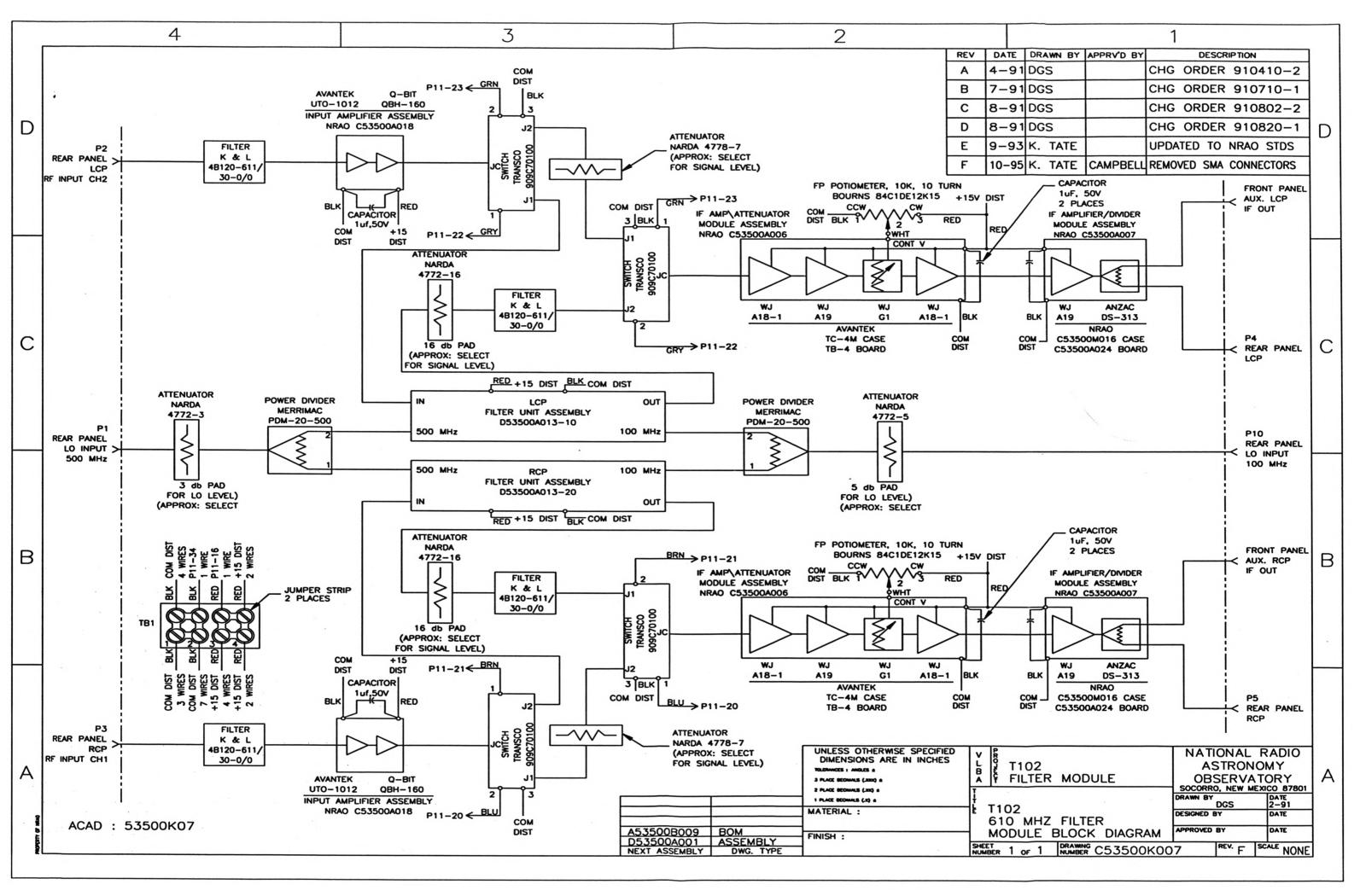
This alternate procedure uses the Baseband Converters, an HP 436 power meter and a display device that can show the Station Computer Baseband Converter overlays. The overlay digital value proportional to total power is used as a measure of a converter's power spectral density. The converter's power spectral density should be -67 dBm/MHz.

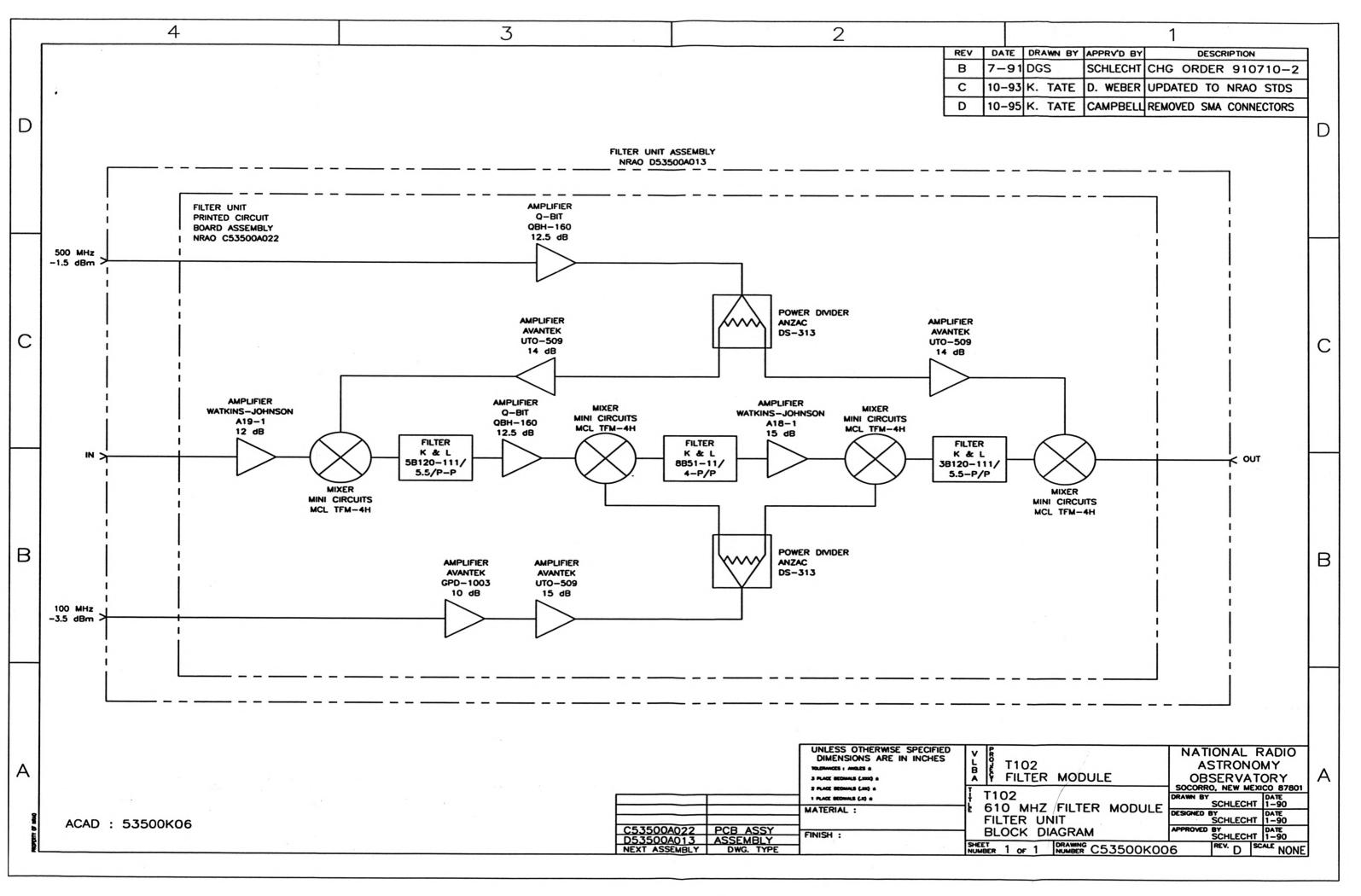
This procedure uses the narrow-band filtering capabilities of the Baseband Converter to facilitate adjustment of T102's gain.

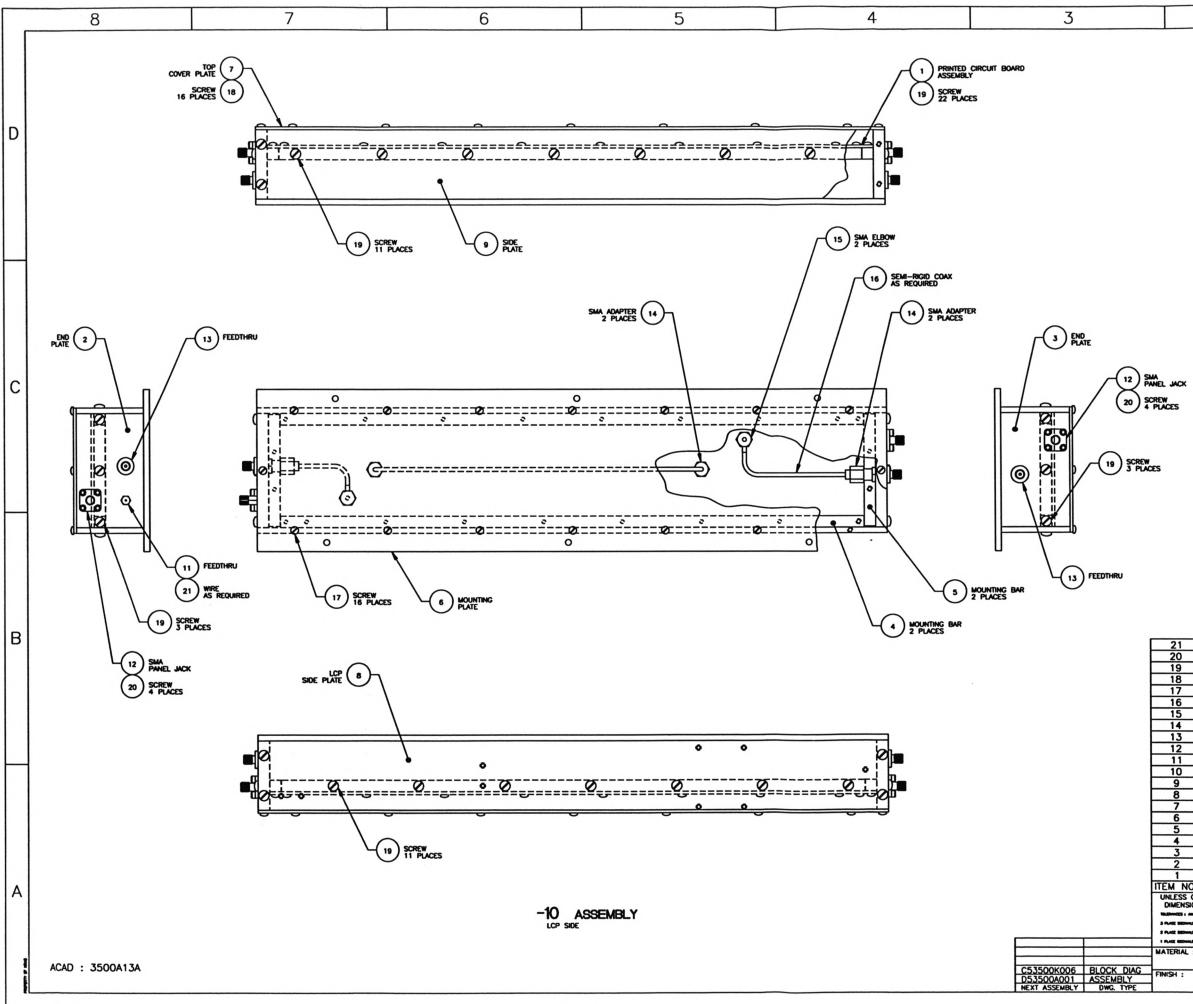
A high frequency converter's output power level is first measured with the power meter to verify that it is -40 dBm (normal power level at standard system temperature); the Baseband Converter is then used to measure the high frequency converter's power spectral density over a 2 MHz bandwidth at an IF frequency of 611 MHz.

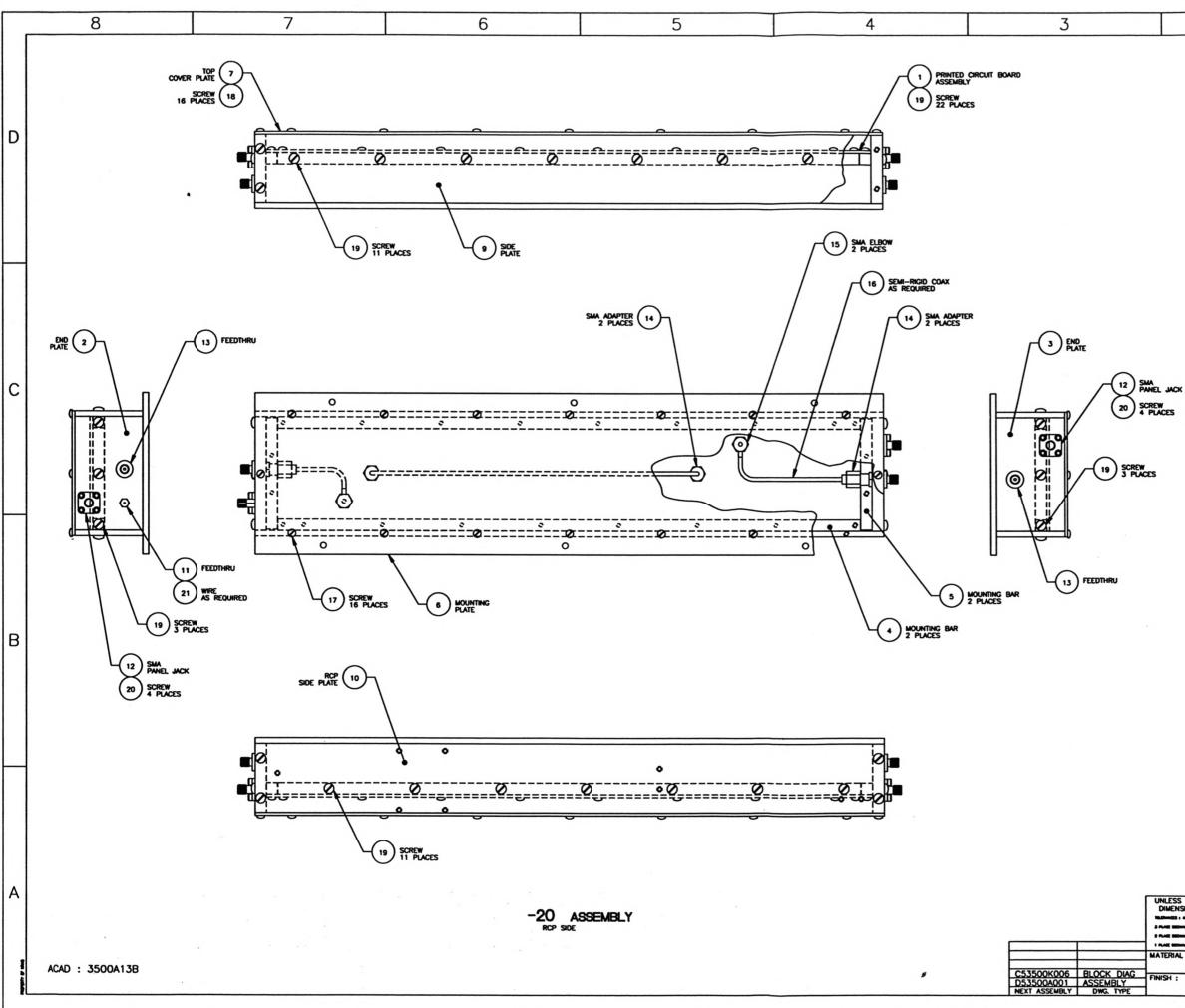

Next, T102's output is switched to the Baseband Converter used above while retaining the Baseband Converter's setup. T102's IF gains are then adjusted to produce a power spectral density value equal to that produced by the high frequency converter.

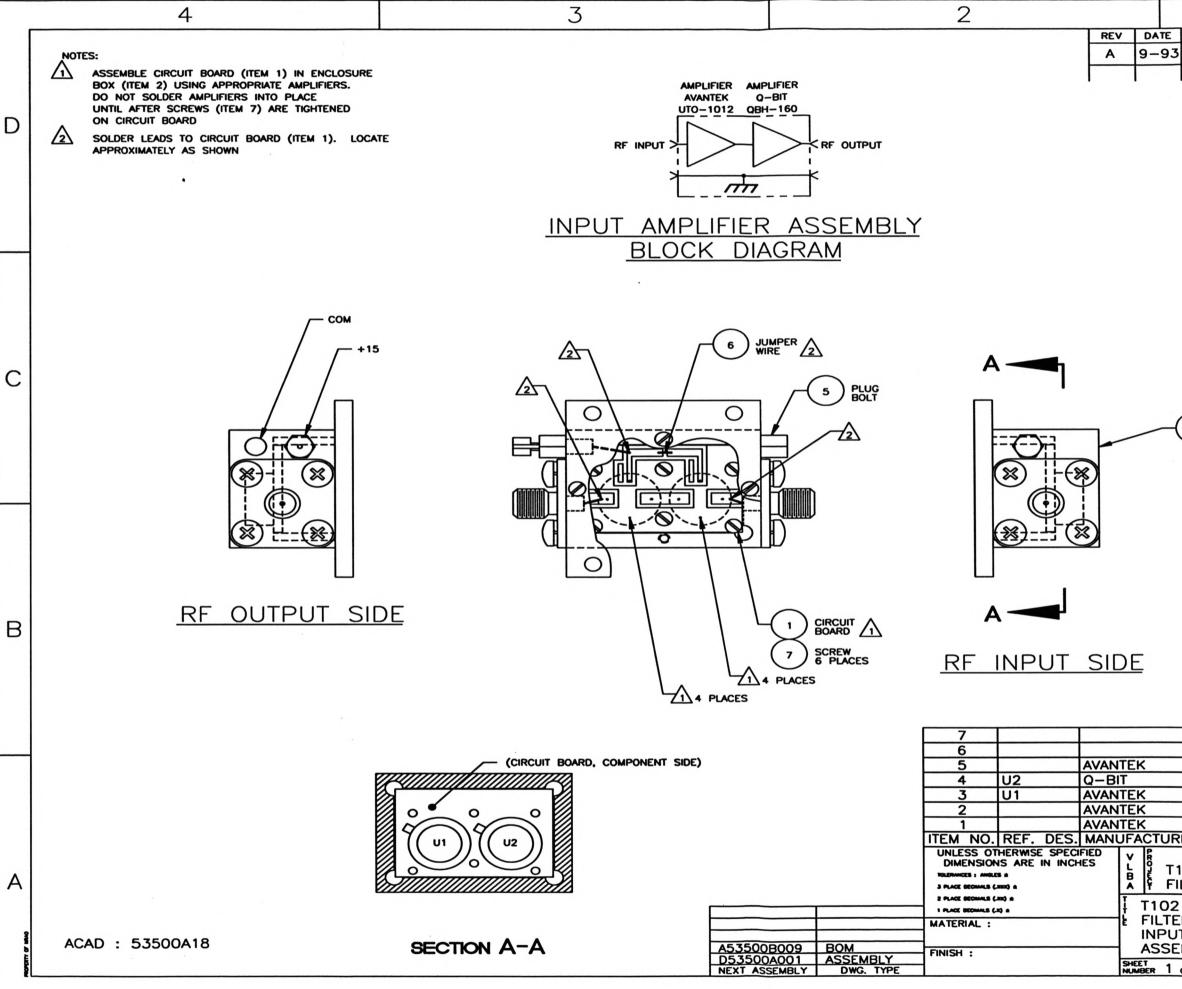

Gain Adjustment Procedure

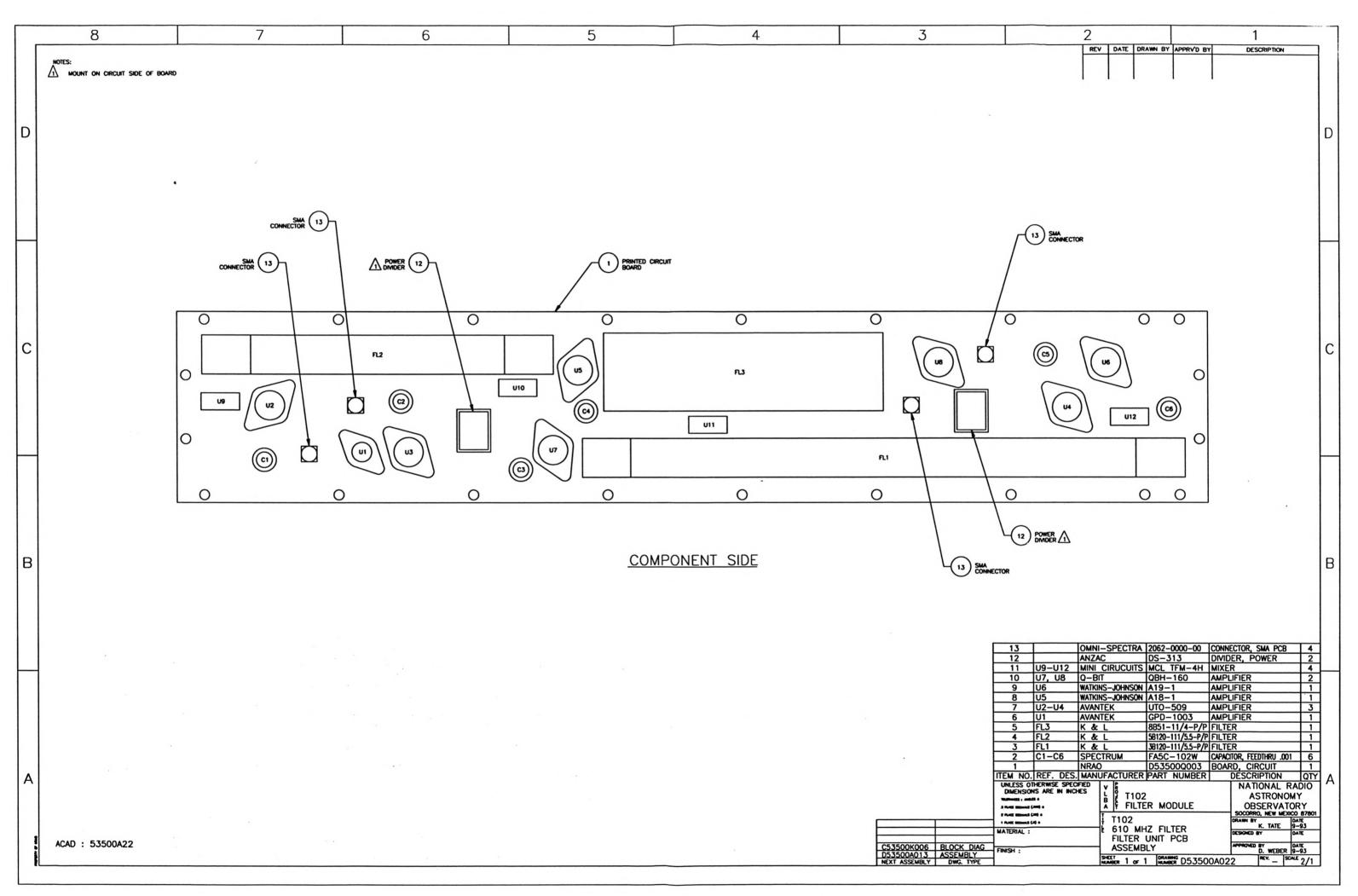

To set the T102 output levels to a -67 dBm/MHz spectral power density (the same level as the other converters) do the following:


- 1. Set the receiving system to a high frequency band that is not subject to interference. Use a band that has IF signals in the B and D IF's as is the case with the 90 cm/50 cm bands; the 4 cm band is suggested.
- 2. Route the high frequency converter outputs to a Baseband Converter. Set the Baseband Converter LO to 611 MHz and use a 2 MHz conversion bandwidth.
- 3. Using the power meter, check the high frequency converter power levels on the front panel SMA monitor connectors. The power level should be -40 dBm over 500 MHz bandwidth at standard system temperature.
- 4. Using the Baseband Converter overlays for this high frequency converter, jot down the values (i.e. counts) proportional to LCP and RCP total power.
- 5. Set the receiving system to the 50 cm band, and without modifying the Baseband Converter's set up, adjust T102's front-panel gain potentiometers to produce a total power value identical (or close to) that obtained in Step 4 above. The gain adjustment error tolerance is ± 0.5 dB or up to 10% of the overlay value proportional to total power.


This procedure can be used to adjust the gains of other converters in bands where external RFI in the IF passband is a problem.






	2		1	7
	REV DATE DR	AWH BY APPRVD BY	r DESCRIPTION	D
				с
	ALPHA PRECISION TUBE SOLITRON SOLITRON OMNI-SPECTRA OMNI-SPECTRA	7055 AA50085 2084-0000-00 2052-1201-00	WIRE, RED #22 AR Softw Socket 1420, SS, 16 Softw Para 25, SS, 100 Softw Para 20, SS, 32 Softw FLA 1420, SS, 32 Softw FLA 1420, SS, 32 Softw FLA 1420, SS, 32 COAX, .085 SEMI-RIGID AR ELBOW, SMA/.085 4 ADAPTER, SMA/.085 8 FEEDTHRU, SMA 4 JACK, SMA PANEL 4	В
O. REF. DES. OTHERWISE SPEC SIONS ARE IN INCO MALE 4 MALE	+ES L P T102	ER MODULE 1Z MODULE UNIT ASSEMBL	Y APPROVED BY DATE	$]^{}$

2	V DATE DRAWN BY A	000140 01	1 DESCRIPTION	
				D
				с
				в
OTHERWISE SPECIFIED SIONS ARE IN INCHES mail of a ma (at a . :	T102 T102 FILTER MOD FILTER MODULE FILTER UNIT AS FILTER UNIT AS FILTER UNIT AS FILTER UNIT AS	Ĩ	NATIONAL RADIO ASTRONOMY OBSERVATORY SOCORRO, NEW MEXICO 87801 DRAWN BY K. TATE 9-93 DESONED BY DATE APPROVED BY DATE APPROVED BY DATE APPROVED BY DATE APPROVED BY DATE	A

				1				
E 93		AWN BY TATE	APPRVD BY			CRIPTION ON ACA	D	D
-((2)) ENCLO	SURE					С
								в
	-			SCREW	PAN HE	A9, 55.	6	
				WIRE,	JUMPER		1	
		C22-0 QBH-	000401		<u>PLUG,1</u> IFIER	2–32 HEX		1
-		UTO-			IFIER		1	1
_		TC-2		BOX,	ENCL	OSURE	1	1
		TB-2		BOAF	RD, CIF		1	
	02 LTE 6 R MB	R MO 10 MH MODUL MPLIF LY	IZ _E IER		NATI AS OB SOCORRI DRAWN BY DESIGNED I	SCHLECHT	MY ORY 00 87801 DATE 9-93 DATE 8-90 DATE 8-90	A
_	OF 1		₩ C5350	0A01	8	REV. A SC	2/1	1

<u> </u>				REVISION	;		····	
REV	DATE	DRAWN BY	APPRV'D BY	[DESCRIPTION	
С	8–93	K. TATE	D. WEBER		TO N		STANDARDS	
1	i		•	ſ				
DRAWN BY			DATE					
K.	TATE		8-93 DATE				С53500К007	BLOCK DIAG
							D53500A001	ASSEMBLY
APPROVED BY D.	WEBER	2	DATE 8-93				NEXT ASSY	USED ON
			<u></u>					
NA'	TIONAL F	ADIO ASTR	ONOMY	V PROJEC	110		LTER MODULE	
	OB	SERVATORY		L			IO MHZ FILTER	MODULE
1	BOCORRO, I	NEW MEXICO 87	7801	B A Dwg			LY BOM	GT 1 AL F
				A DWG	A535	NOBC	10A	eer <u>1</u> of <u>5</u>

X ELECTRICAL	X MECHANICAL	BOM # <u>A53500B009</u>	REVC	DATE <u>8-30-93</u> PAGE <u>2</u> OF <u>5</u>
MODULE T102 NAME	610 MHZ FILTER	DWG# <u>D53500A001</u> SU	B ASSY	DWG#
SCHEM. DWG#	LOCATION	QUA/SYS P	PREPRD BY <u>K</u> .	TATE APPRVD BY D. WEBER

ITEM #	REF DES	MANUFACTURER	PART NUMBER	DESCRIPTION	TOTAL QTY.
1		NRAO	C53500A006	ASSY, IF AMP/ATTENUATOR	2
2	<u></u>	NRAO	C53500A007	ASSY, IF AMP/DIVIDER	2
3		NRAO	D53500A013-10	ASSY, LCP FILTER UNIT	1
4		NRAO	D53500A013-20	ASSY, RCP FILTER UNIT	1
5	· · · · · · · · · · · · · · · · · · ·	NRAO	A53500A018	ASSY, INPUT AMPLIFIER	2
6	<u></u>	NRAO	C53306M014-2	COVER, PERFORATED	2
7		NRAO	С53306М016	RAIL, SUPPORT	2
8		NRAO	C53306M017	PLATE, SIDE	2
9		NRAO	B53306M018	BLOCK, GUIDE	4
10		NRAO	A53306M038	PULLER, MODULE	2
11		NRAO	B53500M001	RAIL, UPPER	1
12		NRAO	B53500M002	RAIL, LOWER	1
13		NRAO	B53500M006	PANEL, FRONT	1
14		NRAO	B53500M004-2	PANEL, REAR	1
15		NRAO	D53500M027	PLATE, COMPONENT MOUNTING	1
16		NRAO	С53500М039	BLOCK, SWITCH MOUNTING	2
17		TRANSCO	82152-909C70100	SWITCH, SPDT	4
18		MERRIMAC	PDM-20-500	DIVIDER, POWER	2
19		K&L	4B120-611/30-0/0	FILTER	4
20		BOURNS	84C1DE12K15	TRIM POT, 10K PANEL	2

X ELECTRICAL X MECHANICAL BOM # A53500B009 REV C DATE 8-30-93 PAGE 3 OF 5

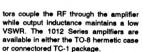
ITEM #	REF DES	MANUFACTURER	PART NUMBER	DESCRIPTION	TOTAL QTY.
21		NARDA	4772-3	ATTENUATOR, 3 db	1
22		NARDA	4772-5	ATTENUATOR, 5 db	1
23		NARDA	4778-7	ATTENUATOR, 7 db	2
24		NARDA	4772-16	ATTENUATOR, 16 db	2
25	TBl	TRW CINCH	4-140	STRIP, TERMINAL	1
26		SOLITRON	8018-6005	TERMINATION, 50Ω	2
27		SOLITRON	2993-6005	ELBOW, SMA MALE/MALE	1
28		SOLITRON		ELBOW, SMA MALE/.085 COAX	5
29		SOLITRON	2993-6001	ADAPTER, SMA MALE/MALE	6
30		SOLITRON		ADAPTER, SMA MALE/.085 COAX	36
31	P1-P5,P10	OMNI-SPECTRA	2081-0000-00	CONNECTOR, OSP .085 MALE	6
32		OMNI-SPECTRA	2084-0000-00	FEED-THRU, SMA	2
33		PRECISION TUBE	AA50085	COAX, .085, SEMI-RIGID	AR
34	P11	AMP	204186-5	CONNECTOR BLOCK, 42-PIN	1
35		АМР	202394-2	CONNECTOR HOOD, 42-PIN	1
36		AMP	200833-2	PIN, GUIDE	2
37		AMP	203964-5	SOCKET, GUIDE	2
38		AMP	201578-1	PIN, 16 GA. CONNECTOR	6
39		ETC/MOLEX	AA-832-06	LUG, TERMINAL	13
40				LUG, TERMINAL	1
41		SOUTHCO	47-11-204-10	SCREW, CAPTIVE	4

X ELECTRICAL X MECHANICAL BOM # A53500B009 REV C DATE 8-30-93 PAGE 4 OF 5

ITEM #	REF DES	MANUFACTURER	PART NUMBER	DESCRIPTION	TOTAL QTY.
42		K&L	M12-A	CLIP, FILTER	2
43		K&L		CLIP, FILTER	2
44		H.H. SMITH	8367	SPACER, 8-32UNC-2B x 1.00	4
45		H.H. SMITH	8522	SPACER, 8-32UNC-2B x .38	4
46				SCREW, PAN HEAD, SS, 4-40UNC-2A x .25	48
47				SCREW, PAN HEAD, SS, 4-40UNC-2A x .38	8
48				SCREW, PAN HEAD, SS, 4-40UNC-2A x .75	8
49	. <u></u>			SCREW, PAN HEAD, SS, 6-32UNC-2A x .75	4
50				SCREW, PAN HEAD. SS, 6-32UNC-2A x .88	4
51				SCREW, PAN HEAD, SS, 8-32UNC-2A x .63	4
52				SCREW, SOCKET HEAD, SS, 6-32UNC-2A x .38	2
53				SCREW, FLAT HEAD, SS, HP GREY, 6-32UNC-2A x .38	2
54				SCREW, FLAT HEAD, SS, 6-32UNC-2A x .75	2
55				SCREW, FLAT HEAD, SS, 8-32UNC-2A x .63	4
56				WASHER, EXT. TOOTH #6	16
57		ALPHA	7055	WIRE, WHT #22	AR

X ELECTRICAL X MECHANICAL BOM # A53500B009 REV C DATE 8-30-93 PAGE 5 OF 5 ITEM # REF DES MANUFACTURER PART NUMBER DESCRIPTION TOTAL QTY. 7055 58 ALPHA WIRE, BLK #22 AR ALPHA 7055 WIRE, RED **#**22 59 AR 60 ALPHA 7055 WIRE, GRY #22 AR WIRE, GRN #22 61 ALPHA 7055 AR 7055 62 ALPHA WIRE, BLU #22 AR 7055 WIRE, BRN #22 ALPHA 63 AR 7056/19 64 ALPHA WIRE, BLK #20 AR 7056/19 ALPHA WIRE, RED #20 65 AR WRAP, TIE 66 AR 67 SPRAGUE 2C20Z50105M050B CAPACITOR, MONOLITHIC 8 CERAMIC, $1\mu f$, 50V 140J-1 2 68 TB1 TRW-CINCH STRIP, JUMPER 69 70 71 72 73 74 75 76 77 78

AVANTEK


UTO/UTC 1012 Series Thin-Film Cascadable Amplifier 5 to 1000 MHz

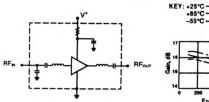
FEATURES

- Frequency Range: 5 to 1000 MHz
- . Low Noise Figure: 2.5 dB (Typ)
- Medium Gain: 16.0 dB (Typ)
- Temperature Compensated

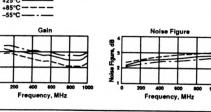
DESCRIPTION

The 1012 Series is a wideband, generalpurpose thin-film bipolar RF amplifier using resistive feedback and active bias for stability over temperature and bias variations. Input and output blocking capaci-

6


ELECTRICAL SPECIFICATIONS (Measured in a 50-ohm system @ +15 VDC nominal unless otherwise noted)

APPLICATIONS


IF/RF Amplification

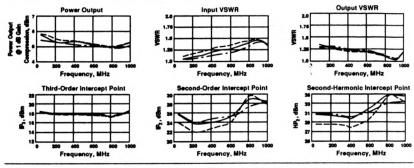
Symbol	Characteristic	Typical	Guarantee		
Symoor	Characteristic	T _c = 25°C	T _c = 0° to 50°C	T _c = -55° to +85°C	Unit
BW	Frequency Range	5-1000	5-1000	5-1000	MHz
GP	Small Signal Gain (Min.)	16.0	15.0	14.0	dB
	Gain Flatness (Max.)	±0.5	±1.0	±1.0	dB
NF	Noise Figure (Max.)	2.5	4.0	4.5	dB
Pim	Power Output @ +1 dB Compression (Min.)	+5.0	+4.0	+3.0	dBm
-	Input VSWR (Max.)	<1.5:1	2.0:1	2.0:1	-
-	Output VSWR (Max.)	<1.3:1	2.0:1	2.0:1	-
IP,	Two Tone 3rd Order Intercept Point	+17.0	-	_	dBm
IP ₂	Two Tone 2nd Order Intercept Point	+23.0	-		dBm
HP ₂	One Tone 2nd Harmonic Intercept Point	+30.0		_	dBm
I _D	DC Current	18	-	-	mA

SCHEMATIC

TYPICAL PERFORMANCE OVER TEMPERATURE (@ +15 VDC unless otherwise noted)

MAXIMUM RATINGS									
DC Voltage									 17 Volts
Continuous RF Input Power									
Operating Case Temperature									
Storage Temperature									
"R" Serles Burn-In Temperatur									

Gain


_	THERMAL CHARACTERISTICS*
Its	θ _{JC}
Bm	Active Transistor Power Dissipation
°C	Junction Temperature Above Case Temperature 13°C
°C	MTBF (MIL-HDBK-217E, Aur @ 90°C) 1,253,000 Hrs
°C	*For further information, see High Reliability section, p. 17-2.

WEIGHT: (typical) UTO-2.1 grams; UTC-21.5 grams

Avantes, Inc. . 481 Cottonwood Drive, Milipitae, CA 95035 . Contact your local repreor or field eales office for further information. Listings are in the back of this Data Book

400

AUTOMATIC NETWORK ANALYZER MEASUREMENTS (Typical production unit @ +25°C ambient)

NUMERICAL READINGS

BIAS = 15.00 VOLTS

FREQ MHz	VSWR	GAIN dB	PHASE	PHASE DEV	GPDEL	VSWR	ISOL dB
100.0	1.13	17.03	167.43	- 46	.00	1.20	22.33
150.0	1.13	17.09	161.48	-77	.31	1.18	22.45
200.0	1.13	17.07	156.10	- 50	.30	1.18	22.27
250.0	1.14	16.96	150.74	-21	.30	1.17	22.48
300.0	1.15	16.92	145.33	.01	.30	1.16	22.71
350.0	1.16	16.85	140.01	.34	.30	1.15	22.83
400.0	1.18	16.77	134.47	.44	.31	1.14	22.80
450.0	1.18	16.65	128.96	.44	.32	1.13	22.90
500.0	1.21	16.56	122.97	.22	.31	1.11	22.98
550.0	1.23	16.46	117.72	.61	.31	1.11	23.28
600.0	1.25	16.40	111.01	.36	.34	1.11	23.64
650.0	1.28	16.43	105.60	-20	.32	1.11	23.65
700.0	1.31	16.47	100.30	.12	.30	1.13	23.99
750.0	1.36	16.46	94.95	.42	.30	1,15	24.23
800.0	1.41	16.43	89.51	.62	.31	1.18	24.53
850.0	1.48	18.44	\$ \$3.70	.44		1.22	24.86
900.0	1.56	16.46	77.85	.24	.32 .34	1.26	25.12
950.0	1.66	16.48	71.46	50	.37	1.31	25.58
1000.0	1.80	16.56	64.54	-1.79	.30	1.37	26.02
1100.0	2.21	16.66	40.00	-	.45	1.53	27.19
1200.0	2.86	16.58	32.77	-	.46	1.75	29.35
1300.0	3.76	15.87	15.05	-	.54	2.02	31.86
1400.0	4.67	14.55	-3.57	-	.50	2.33	34.08
1500.0	5.17	12.72	-19.84	-	.50	2.51	32.48

BIAS = 15.00 VOLTS S-PARAMETERS FREQ S11 Sn Siz Sz dB dB Ang MHz Mag Ang Ang Mag Ang 170.5 167.5 163.5 160.0 156.3 156.6 156.4 155.7 -22.180 -22.099 -22.274 -22.317 -22.559 -22.669 -22.774 -22.046 -6.5 -6.8 -10.2 -13.1 -14.3 -16.8 -20.0 100.00 150.00 200.00 250.00 300.00 350.00 400.00 450.00 .026 .044 .053 .056 .063 .073 .083 .094 -12.0 -32.5 -40.0 -45.1 -46.5 -40.2 -61.1 -62.9 17.090 17.084 17.019 16.964 16.966 16.942 16.905 16.706 167.5 162.0 155.9 149.8 144.1 138.5 133.2 127.8 .092 .084 .084 .076 .074 .071 .066 .063

480.00		-02.0	10.700			-21.5	.059	161.0
500.00	.106	-65.4	16.727	122.4	-23.142		.058	165.8
550.00	.116	-67.0	16.677	117.0	-23.342	-23.5		
600.00	.128	-69.8	16.629	111.6	-23.378	-27.1	.056	175.4
650.00	.142	-61.9	16.580	106.2	-23.704	-28.8	.056	-175.4
700.00	.158	-64.5	16.568	100.8	-23.711	-31.0	.062	-167.8
750.00	.173	-67.2	16.551	95.2	-24.059	-33.2	.072	-160.4
800.00	.192	-71.0	16.516	89.4	-24.432	-35.6	.084	-153.9
850.00	.211	-75.9	16.532	83.3	-24.883	-38.3	.100	-150.7
900.00	.237	-80.5	16.560	77.4	-24.993	-40.4	.118	-149.5
950.00	.263	-86.0	16.573	70.9	-25.518	-41.7	.138	-149.5
	.295	-92.2	16.595	64.1	-25.979	-44.5	.160	-150.5
1000.00		-107.1	16.633	49.1	-27.098	-49.3	.212	-154.6
1100.00	.379			32.3	-29.122	-60.7	.277	-161.5
1200.00	.479	-124.6	16.531		-31.710	-44.2	.343	-172.6
1300.00	.572	-144.6	15.908	13.6			398	174.3
1400.00	.642	-165.5	14.638	-3.7	-33.189	-26.2		
1500.00	.674	176.0	12.896	-17.6	-32.245	-5.5	.432	160.8

entative, distributor or field sales office for further information. Listings are in the back of this Data Book . All Callonwood Drive, Milpline, CA 95035 . Contact your local rep 3-121

UTO/UTC 1012 Series Thin-Film Cascadable Amplifier

HYBRID RF AMPLIFIER OBH-160 1987

Thin Film Hybrid Amplifiers

Orbit Corporation's thin film amplifiers are computer designed for optimum VSWR and gain flatness, and built on stable TaN-TW-Au sputtered substrates. Temperature compensated bias circuits, eutectic die bonding and all gold-to-gold interfaces help to give reliable performance over a broad temperature range.

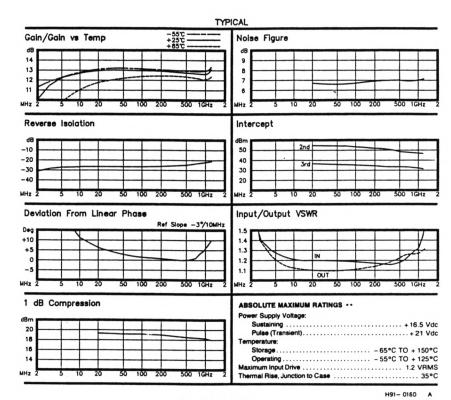
Construction, Reliability and Screening.

Orbit Corporation's hybird amplifier line utilizes both thick and thin film construction (depending on unit models) with an all-gold active chip bonding system. These units have been manufactured and environmentally tested for use in vanous military and space programs in the U.S. and internationally. Qualification and Conformance testing can be tailored to meet specific customer high reliability requirements.

Housing Outline — TO-8/3	PARAMETERS
Finish — Header: Gold Plated Kovar Cap: Nickel	•
Weight — 2.0 grams	Small Signal Gain 12.
206(1.23)	Gain Flatness
	Gain vs. Temperature
	Noise Figure
230.510	VSV/R In/Out (50 Ohm system)
44 0 01 00 00 00 00 00 00 00 00 00 00 00 0	Output 1 dB Compression
	Output Intercept Point 3rd
2 X00'14)	Reverse isolation
1 - COMMON - C ON 044 2 - 60 Own OutPut	DC Power @ 15 Vdc± 1%
e - Po Creek marte	Gain vs. Vdc

	+25-0	- 33 - C 10 + 83 - C	201200
Small Signal Gain	12.5 ± .5	-	dB
Gain Flatness	1.0	1.0	dB max PP
Gain vs. Temperature	-	+ .6 / - 1.6	dB max
Noise Figure	8.0	8.5	d8 max
VSW/R In/Out (50 Ohm system)	1.5:1	1.5:1	max
Output 1 dll Compression	17	16	dBm min
hut	30	29	dBm min
Output Intercept Point 3rd	45	42	dBm min
Reverse Isolation	22	21	dB min
DC Power @ 15 Vdc ± 1%	140	150	mA max
C	.20	-	dB/volt max

SPECIFICATION LIMITS*



UNITS FREQUENCY

20-1200 MHz

NOTE: input and output pins are capacitance coupled mum recommended offset current is ± 25 Vdc.

		QBH-160 TYPICAL		
FREQUENCY MHZ	INPUT VSWR (S11) RATIO	GAIN Forward (S21) db Ang	ISOLATION REVERSE (S12), dB ANG	OUTPUT VSWR (S22) RATIO
20.000 100.000 200.000 300.000 400.000 500.000 600.000 700.000 800.000 900.000 1000.000 1000.000 1200.000	1.2:1 1.2:1 1.2:1 1.2:1 1.2:1 1.2:1 1.2:1 1.2:1 1.2:1 1.3:1 1.3:1 1.3:1 1.4:1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.1:1 1.2:1 1.2:1 1.2:1 1.2:1 1.3:1 1.3:1 1.3:1 1.3:1 1.3:1 1.3:1 1.3:1 1.3:1 1.3:1
POWER: 15 Vdc NOISE FIGURE:	130 mA 6.9 dB @ 120	MHz INTERCEP		
	7.0 dB @ 1200			∾ 0 600 MH± ∾ 0 600 MHz

H91-0160 Revision A Feb. 1988

ngri u to nevision A voi tase capicable lo the revision level indicated. For latest revision level, please contact Q-bit Corporation. **Maximum coeraing simperature is defined as matismperature which, if accessed for extended pencis, could result in premature unit failure. This data is provided for user reliability information. This may or may not prevent the maximum temperature for exercised partners toefcictions.

AVANTEK

UTO/UTC/PPA 509 Series Thin-Film Cascadable Amplifier 5 to 500 MHz

FEATURES

- Frequency Range: 5 to 500 MHz
- High Dynamic Range
- Output Power: +22.3 dBm (Typ)
- Noise Figure: 4.5 dB (Typ)
- Temperature Compensated
- Surface Mount Option
- Low Phase Noise

DESCRIPTION

The 509 Series is a wideband single stage high power bipolar RF amplifier using thinfilm construction with two Avantek transistors in parallel for better RF and thermal performance. Resistive feedback and active bias provide for temperature compensation and increased immunity to bias

voltage variations. Blocking capacitors couple the RF through the amplifier. The 509 Series amplifiers are available in three packages: the surface mount PlanarPak PP-38 (.375 in. x .375 in.) case, the TO-8 hermetic case and the connectorized TC-1 case.

PPA-PP-38, p. 16-35

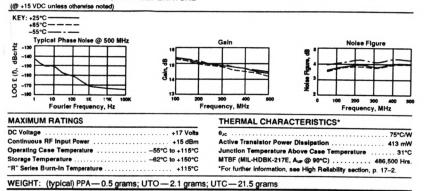
UTC

UTO-TO-8T, p. 16-48

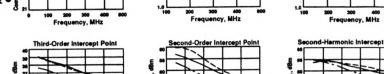
-TC-1, p. 16-42

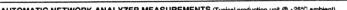
ELECTRICAL SPECIFICATIONS (Measured in a 50-ohm system @ +15 VDC nominal unless otherwise noted)

APPLICATIONS


Output Stage

IF/RF Amplification


Surface Mount Assembly


Symbol	Chanadada	Typical	Guaranteed Specifications			
Symbol	Characteristic	T _c = 25°C	$T_c = 0^\circ$ to 50°C	T _c = -55° to +85°C	Unit	
BW	Frequency Range	5-500	5-500	5-500	MHz	
GP	Small Signal Gain (Min.)	14.3	13.0	12.0	dB	
-	Gain Flatness (Max.)	±0.5	±0.7	±1.0	dB	
NF	Noise Figure (Max.)	4.5	5.5	6.0	dB	
P.a	Power Output @ +1 dB Compression (Min.)	+22.3	+20.0	+20.0	dBm	
-	Input VSWR (Max.)	<1.4:1	2.0:1	2.0:1	-	
-	Output VSWR (Max.)	<1.6:1	2.0:1	2.0:1	-	
IP,	Two Tone 3rd Order Intercept Point	+35.0	+30.0	+29.0	dBm	
IP,	Two Tone 2nd Order Intercept Point	+45.0	-	_	dBm	
HP ₂	One Tone 2nd Harmonic Intercept Point	+47.0	-	_	dBm	
lo l	DC Current	90		-	mA	
-	Phase Noise @ 500 MHz; 1KHz Offset	-170	-	-	dBc/H	

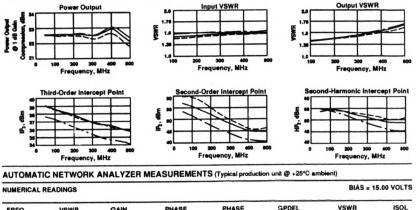
TYPICAL PERFORMANCE OVER TEMPERATURE

Areates, Inc. . 481 Cottonwood Drive, Milpitas, CA 95035 . Contact your local representative, distributor or field sales office for turber information. Listings are in the back of this Data Book. 3-50

FREQ MHz	VSWR	GAIN dB	PHASE DEG	PHASE	GPDEL	VSWR	ISOL dB
100.0	1.11	14.69	167.83	21	.00	1.06	18.73
150.0	1.12	14.70	161.60	38	.82	1.11	18.68
200.0	1.14	14.61	156.20	.32	.85	1.14	18.59
250.0	1,16	14.54	140.99	.19	-94	1.16	18.67
300.0	1.17	14.40	143.81	.00	-34	1.20	18.64
350.0	1.19	14.38	137.89	.25	.30 36 36	1.24	18.61
400.0	1.19	14.32	131.76	.20	-36	1.29	18.61
450.0	1.20	14.24	125.23	24	.36	1.34	18.58
500.0	1.21	14.22	119.13	- 25	,34	1.40	18.54
550.0	1.23	14.27	112.01	-	.56	1.46	18.40
600.0	1.24	14.23	106.42	-	.34 .56 .38	3.89	18.34
650.0	1.29	14.21	100.01		46.	1.58	18.31
700.0	1.37	14.17	92.65	-	.43	1.66	18.25
		14.12	84.40	-	-86 -86 -88	1.74	18.27
750.0	1.49	14.04	75.54	-	.89	1.60	18.32
800.0	1.64		65.84	200	.88	1.84	18.38
850.0	1.86	14.12	55.59	705	.60	1.63	18.75
900.0	2.27	14.02	44.41		33	1.75	19.15
950.0	2.96	13.73	31.03		26	1.63	20.02
000.0	4.04	13.12	19.02	-	38 70 .04	1.49	21.02
050.0	5.65	12.10	7.85	-	.64	1.35	22.26
100.0	7.83	10.69			.44 1	1.20	23.57
150.0	10.64	8.92	-1.24	200	.31	1,21	24.30
200.0	12.36	7.07	-8.08		.41	1.21	25.47
250.0	12.36	5.29	-12.57		13	1.23	26.15
300.0	12.31	3.62	-15.74	nes.	-19	1.26	26.85
350.0	13.42	2.10	-17.32	-	.06	1.30	27.78
400.0	13.75	.67	-18.71	~	.04	1.30	28.30
450.0	13.02	76	-20.10	~	.04	1.35	28.50
500.0	12.66	-2.03	-20.17		.00	1.35	28.52

LINEARIZATION RANGE: 100.0 to 500.0 MHz

BIAS = 15.00 VOLTS


FREQ	1	511	S		S	12		52
MHz	Mag	Ang	dB	Ang	dB	Ang	Mag	Ang
100.00	.053	-152.1	14.644	166.7	-18.644	-2.1	.044	-160.3
200.00	.065	-162.4	14.574	153.6	-18.711	-6.8	.064	-133.6
300.00	.078	-179.6	14.473	140.2	-18.704	-11.8	.091	-128.1
400.00	.087	159.4	14.295	126.8	-18.637	-17.4	.126	-128.4
500.00	.097	130.4	14.181	113.1	-18.580	-24.2	.163	-132.0
600.00	.111	98.6	14.192	99.4	-18.428	-31.7	.205	-138.9
700.00	.161	72.4	14.129	84.4	-18.270	-40.1	.246	-148.6
800.00	.242	48.4	14.047	66.0	-18.330	-60.3	.282	-162.5
900.00	.389	26.2	14.033	44.4	-18.731	-63.0	.293	179.5
1000.00	.608	-1.0	13.111	19.0	-19.939	-78.4	.239	157.2
1100.00	.776	-29.1	10.641	-6.7	-22.229	-88.3	.151	143.6
1200.00	.855	-61.6	7.060	-22.9	-24.374	-88.9	.098	158.
1300.00	.857	-68.2	3.547	-31.6	-26.234	-88.4	.104	176.0
1400.00	.867	-79.3	.613	-35.6	-27.653	-00.8	.131	173.3
1500.00	.868	-47.1	-2.105	-38.2	-28.563	-90.7	.153	164.
1600.00	.865	-02.8	-4.330	-40.6	-29.732	-03.3	.179	152.4
1700.00	.875	-97.4	-6.341	-41.4	-30.476	-94.3	.199	142.0
1800.00	.864	-101.4	-8.131	-43.6	-31.627	-92.8	.231	133.0
1900.00	.900	-105.7	-9.563	-43.8	-32.251	-93.6	.257	127.0
2000.00	.884	-108.7	-11.263	-43.7	-32.793	-94.3	.284	124.3

tor or field sales office for further information. Listings are in the back of this Data Book. Aventels, Inc. - 481 Cottonwood Drive, Mitpline, CA 95035 . Contact your local re

3-51

UTO/UTC/PPA 509 Series Thin-Film Cascadable Amplifier

TYPICAL PERFORMANCE OVER TEM	MPERATURE (continued)	
Power Output	Input VSWR	
		**[

WJ-A18-1/SMA18-1

10 to 1000 MHz **TO-8 CASCADABLE AMPLIFIER**

- ♦ AVAILABLE IN SURFACE MOUNT
- ♦ HIGH DYNAMIC RANGE
- ◆ HIGH OUTPUT POWER: +16 dBm (TYP.)
- ♦ HIGH THIRD ORDER I.P.: +30 dBm (TYP.)
- ◆ LOW NOISE: 3.8 dB (TYP.)

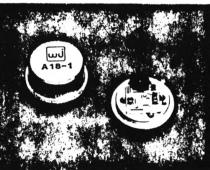
Specifications*

Characteristics	Typical	Guara	Guaranteed		
		0° to 50°C	- 54° to +85°C	0 185 ± 0.0 (4 70 ± 0 3	
Frequency (Min.)	5-1100 MHz	10-1000 MHz	10-1000 MHz	0 300 ± (7 12 ; DiA	
Small Signal Gain (Min.)	14.7 dB	14 dB	13.5 dB	SO-OHM INPUT	
Gain Flatness (Max.)	< ±0.3 dB	±0.5 dB	±1.0 dB		
Noise Figure (Max.) Power Output	3.8 dB	5.0 dB	5.5 dB	• DC VO	
at 1 dB Compression (Min.)	+16 dBm	+15 dBm	+14.5 dBm		
VSWR (Max.) Input/Output	< 1.5:1	1.8:1	2.0:1		
DC Current (Max.) at 15 Volts	44 mA	46 mA	48 mA	SMA18-1	

*Measured in a 50-ohm system at +15 Vdc Nomina

Notes 1 WJ-CA18 is a standard WJ-A18 installed in a miniature SMA connector hous

over 0 C to 50 C temperature range.


Typical Intermodulation Performance at 25°C

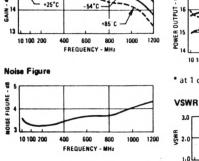
Second Order Harmonic Intercept Point	+45 dBm (Typ.)
Second Order Two Tone Intercept Point	+42 dBm (Typ.)
Third Order Two Tone Intercept Point	+30 dBm (Typ.)

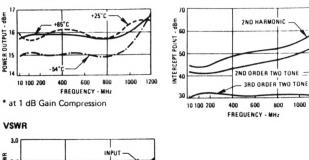
Absolute Maximum Ratings

Storage Temperature	-62°C to +125°C	CA18-
Maximum Case Temperature		See note 1
Maximum DC Voltage	+17 Volts	
Maximum Continuous RF Input Power	+13 dBm	0 500 (12 70)
Maximum Short Term RF Input Power		(12 70)
Maximum Peak Power		1 te
"S" Series Burn-in Temperature (Case)		0 310 (7 87)

Weight approximately 2.0 grams (0.07 oz.) max.

A18-1


MOUNTR


0 200

0 185 ± 0.015 (4 70 ± 0 38)

0 300 ± 0 010 (7 62 ± 0 25) Dia B C SO-OHM NPUT . DC VOLTAG

Typical Automatic Test Data

Frequency MHz	VSWR	VSWR	GAIN
1.0	1.2	1.2	14 8
2.0	1.1	1.2	14.8
5.0	1.1	1.1	14.9
10.0	1.0	1.0	14 9
50.0	1.0	1.0	14 8
100.0	1.1	1.0	14.7
200.0	1.1	1.0	14.6
300.0	1.1	1.1	14.6
400.0	1.2	1.1	14.8
500.0	1.2	1.2	15.0
600.0	1.2	1.2	15.1
700.0	1.2	1.3	15.2
800.0	1.1	1.3	15.3
900.0	1.1	1.4	15.4
1000.0	1.2	1.5	15.4
1100.0	1.6	1.6	15.0

Linear S-Para

Frequency	S	11	5	21	S	12	S	22
MHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANC
1.0	.078	-65	5.517	-174	107	8	078	110
2.0	.068	-64	5.511	-175	107	7	071	110
5.0	.038	-61	5.543	-179	109	3	.046	100
10.0	.016	-44	5.529	175	.110	-1	.022	73
50.0	.022	9	5.513	167	.111	-4	.015	42
100.0	.028	9	5.443	159	.111	-7	.014	12
200.0	.040	-5	5.377	147	112	-11	020	-28
300.0	.055	-28	5.361	132	.113	-18	.037	-74
400.0	.077	-51	5.495	116	117	-25	.066	-113
500.0	.075	-76	5.610	100	119	33	.089	-147
600.0	.075	-92	5.711	81	.121	-41	.101	-175
700.0	.077	-110	5.758	63	124	-49	.117	158
800.0	.066	-141	5.836	44	.127	-58	.139	127
900.0	.035	143	5.916	24	.131	-68	166	93
1000.0	.078	39	5.890	1	134	-79	.196	55
1100.0	.216	-8	5.651	-24	134	-93	223	12

Frequency MHz	VSWR	VSWR	GAIN
1.0	1.4	13	13.2
2.0	1.4	1.3	13.2
50	13	13	132
10.0	13	13	13.3
50 0	13	1.3	13.2
100.0	1.3	13	13.1
200 0	1.3	13	13.0
300 0	13	13	13.0
400 0	14	1.4	13.1
500.0	13	1.5	13.2
600.0	1.3	1.5	13.3
700 0	13	1.5	13 4
800 0	13	16	13 3
900 0	1.4	1.6	132
1000.0	1.7	1.6	12.8
1100.0	2.2	1.6	12.0

1200

inear	S-Par	ame	lers

Frequency	S	S11 S21		S12		S22		
MHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANC
1.0	158	-24	4 554	-174	.120	8	.122	50
20	153	-23	4 581	-175	.121	7	118	45
50	139	-18	4 587	-179	.122	3	.115	26
10 0	127	-18	4.607	174	.123	-1	.119	2
50.0	133	-21	4.582	166	.123	-4	120	-14
100.0	.134	-35	4 537	158	.123	-7	120	-28
200 0	.140	-54	4.478	145	.124	-11	127	-46
300 0	145	-79	4.446	129	.126	-18	143	-73
400 0	150	-106	4 539	112	131	24	169	- 103
500.0	146	-137	4.582	95	135	-32	188	-132
600.0	137	-168	4.632	75	.139	-41	.201	-161
700.0	.128	157	4 651	56	.144	-50	211	172
800 0	.128	112	4 624	35	.148	-60	224	141
900 0	170	63	4 557	14	.153	-71	233	107
1000 0	251	17	4.345	-9	152	-84	236	70
1100.0	.371	-22	3.970	-33	151	-96	225	29

Thermal Data: Vcc = 15 Vdc

Thermal Resistance θic	45°C/W
Transistor Power Dissipation Pd	0.407 W
Junction Temperature Rise Above Case Tic	18°C

Outline Drawings 0.450 DM.

DIMENSIONS ARE IN INCHES (MILLIMETERS) 1.005 (13) UNLESS OTHERWISE SPECIFIED

DIMENSIONS ARE IN INCHES (MILLIMETERS) 1 010 (25) UNLESS OTHERWISE SPECIFIED

Gain

Typical Performance at 25°C

Power Output*

10 100 200

1.1

10 100 200

OUTPUT

400 600 800 1000

FREQUENCY - MHz

1000 120

WJ-A19/SMA19

10 TO 1000 MHZ **TO-8 CASCADABLE AMPLIFIER**

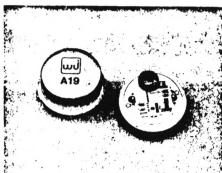
- ♦ AVAILABLE IN SURFACE MOUNT
- ♦ HIGH OUTPUT POWER: +21 dBm (TYP.)
- ♦ HIGH THIRD ORDER I.P.: +34 dBm (TYP.)

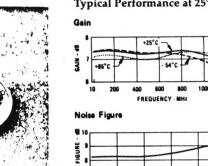
Specifications*

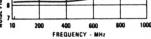
Characteristics	Typical	Guar	anteed
		0° to 50°C	-54° to +85°C
Frequency (Min.)	5-1050 MHz	10-1000 MHz	10-1000 MHz
Small Signal Gain (Min.)	7.5 dB	6.0 dB	5.5 dB
Gain Flatness (Max.)	< ±0.3 dB	±1.0 dB	±1.3 dB
Noise Figure (Max.)	9.0 dB	10.5 dB	11.0 dB
Power Output			
at 1 dB Compression (Min.)	+21 dBm	+20 dBm	+19 dBm
VSWR (Max.) Input/Output	< 1.8:1	2.2:1	2.2:1
DC Current (Max.) at 15 Volts	100 mA	109 mA	114 mA

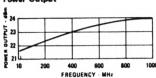
"Measured in a 50-ohm system at +15 Vdc Nomina Notes

1 WJ-CA19 is a standard WJ-A19 inst niature SMA connector housing and quar over 0°C to 50°C temperature range

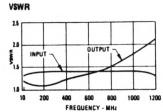

Typical Intermodulation Performance at 25°C


Second Order Harmonic Intercept Point	+45 dBm (Typ.)
Second Order Two-Tone Intercept Point	+40 dBm (Typ.)
Third Order Two-Tone Intercept Point	+34 dBm (Typ.)


Absolute Maximum Ratings


Storage Temperature	-62°C to +125°C
Maximum Case Temperature	
Maximum DC Voltage	
Maximum Continuous RF Input Power	
Maximum Short Term RF Input Power	
Maximum Peak Power	
"S" Series Burn-In Temperature (Case)	

Weight approximately 2.0 grams (0.07 oz.)



* at 1 dB Gain Compression

Vcc = 12.0 V Frequency VSWR GAIN DB VSWR 1.2 1.0 2.0 5.0 10.0 200.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 1000.0 1.4 1.4 1.3 1.4 1.4 1.4 1.4 1.5 1.5 1.5 1.5 1.6 1.5 1.5 1.5 1.1 1.0 1.1 1.2 1.2 1.3 1.4 1.4 1.5 1.6 1.8

MHZ	MAG	ANG	mag	PUTO	Innici			
10	079	-76	2 195	-169	165	3	151	35
20	068	-79	2 198	-170	165	3	.148	32
50	044	- 78	2216	-177	106	2	146	19
10 0	028	-86	2 227	176	168	-0	.151	6
50.0	022	-88	2 226	187	168	-2	154	-2
100.0	035	-10!	2 203	159	168	-4	157	-8
200 0	054	-110	2.181	147	170	-0	.164	-17
300.0	075	-135	2 189	192	174	-10	.179	- 30
400 0	101	-165	2 195	115	180	-14	196	-47
500 0	131	180	2218	99	185	-18	209	-65
600.0	155	150	9 264	93	191	-23	.222	-83
700 0	174	133	2 284	66	199	-28	230	-102
800.0	.194	110	2 298	48	207	-34	.233	- 122
900 0	232	95	2 262	32	220	-39	227	143
1000.0	269	646	2 262	13	.230	-46	217	-167
					No.		200	169
Linear S		A	2 221		245	-53		
1100.0	Param	eters		21	S	12	Si	22
Linear S	Param	eters						22
Linear S	-Param	eters		21	MAG 165	12 ANG 3	S2 MAG 153	22 ANC 33
1100.0 Linear S Frequency MHz 1.0	-Param S MAG	aters	MAG	ANG	MAG 165 .165	12 ANG	53 MAG 153 .150	22 ANO 33 29
1100.0 Linear S Frequency MHz 1.0 2.0	Param S MAG 074	ANG -76	MAG 2 178	21 ANG -169	MAG 165	12 ANG 3 3 1	S3 MAG 153 .150 .149	22 ANC 33 29 18
1100 0 Linear S Frequency MHz 1.0 2.0 5.0	-Param S MAG 074 071 040	-76 -77	MAG 2 178 2 180	-169 -171	MAG 165 .165	12 ANG 3 3	Si MAG 153 .150 .149 .154	22 ANC 33 29 18 4
1100.0 Linear Ś Frequency MHz 1.0 2.0 5.0 10.0	Param S MAG 074 071 .040 026	-76 -77 -78	MAG 2 178 2 180 2 197	-169 -171 -177	S MAG 165 165 166 168 168	12 ANG 3 1 -0 -2	S2 MAG 153 150 149 154 158	22 ANC 33 29 18 4 -3
1100.0 Linear S Frequency MHz 1.0 2.0 5.0 10.0 50.0	-Param S MAG 074 071 040	eters 11 ANG -76 -77 -78 -95	MAG 2 178 2 180 2 197 2 207	-169 -171 -177 -177 176	S MAG 165 165 166 168 168 168	12 ANG 3 1 -0 -2 -4	53 MAG 153 150 149 154 158 158	22 ANC 33 29 18 4 -3 -10
1100.0 Linear S Frequency MHz 1.0 2.0 5.0 10.0 50.0 100.0	-Param S MAG 074 071 040 026 023 030	-76 -77 -78 -95 -92 -103	MAG 2 178 2 180 2 197 2 207 2 208 2 187	-169 -171 -177 176 167	S MAG 165 165 166 168 168	12 ANG 3 1 -0 -2	S3 MAG 153 150 149 154 158 160 185	22 ANC 33 29 18 4 -3 -10 -19
1100.0 Linear Ś Frequency MHz 1.0 2.0 5.0 10.0 50.0 100.0 200.0	Param S MAG 074 071 040 026 023 030 053	eters 11 ANG -76 -77 -78 -95 -92	MAG 2 178 2 180 2 197 2 207 2 208	21 ANG -169 -171 -177 176 167 159	S MAG 165 165 166 168 168 168	12 ANG 3 1 -0 -2 -4	S3 MAG 153 150 149 154 158 160 165 178	22 ANC 33 29 18 4 -3 -10 -19 -33
1100.0 Linear Ś Frequency MHz 1.0 2.0 5.0 10.0 50.0 10.0 50.0 100.0 200.0 300.0	Param S MAG 074 071 040 028 023 030 053 061	ANG -76 -77 -78 -95 -92 -103 -115 -135	MAG 2 178 2 180 2 197 2 207 2 208 2 187 2 189 2 153	-169 -171 -177 176 167 159 147	S MAG 165 165 166 168 168 169 170	12 ANG 3 1 -0 -2 -4 -6	S3 MAG 153 150 149 154 158 160 185	22 ANC 33 29 18 4 -3 -10 -19 -33 -51
1100.0 Linear Ś Frequency MHz 1.0 2.0 5.0 10.0 50.0 100.0 200.0 300.0 400.0	Param S MAG 074 071 040 026 023 030 053 061 102	eters 111 ANG -76 -77 -78 -95 -92 -103 -115 -135 -155	MAG 2 178 2 180 2 197 2 207 2 208 2 187 2 169	-169 -171 -177 176 167 159 147 131	S MAG 165 165 166 168 168 169 170 175	12 ANG 3 1 -0 -2 -4 -6 -9	Si MAG 153 150 149 154 158 160 165 178 193 205	22 ANC 33 29 18 4 -3 -10 -19 -33 -51 -65
1100 0 Linear Ś Frequency MHz 1.0 2.0 5.0 10.0 5.0 100.0 200.0 300.0 400.0 500.0	Param S MAG 074 071 046 026 023 030 053 061 102 133	eters 111 ANG -76 -77 -78 -95 -92 -103 -115 -135 -155 180	MAG 2 178 2 180 2 197 2 207 2 208 2 187 2 169 2 153 2 190 2 203	-169 -171 -177 176 167 159 147 131 115	S MAG 165 165 166 168 168 169 170 175 181	12 ANG 3 1 -0 -2 -4 -6 -9 -13	53 MAG 153 150 154 154 158 160 165 178 193	22 ANC 33 29 18 4 -10 -19 -33 -51 -65 -87
1100 0 Linear S Frequency MHz 1 0 2 0 5 0 10 0 5 0 10 0 5 0 10 0 2 0 0 0 2 00 0 3 00 0 4 00 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0	Param S MAG 074 071 071 026 023 030 053 061 102 133 158	eters 11 ANG -76 -77 -78 -95 -95 -95 -95 -103 -115 -135 -155 180 155	MAG 2 178 2 180 2 197 2 207 2 208 2 187 2 169 2 153 2 190 2 203 2 246	21 -169 -171 -177 176 167 159 147 131 115 99	S MAG 165 165 165 168 169 170 175 181 187	12 ANG 3 1 -0 -2 -4 -6 -9 -13 -18	53 MAG 153 150 149 154 158 160 165 178 193 205 214 219	22 AN(33 29 18 4 -3 -10 -33 -51 -65 -87 -107
1100.0 Frequency MHz 1.0 2.0 5.0 10.0 200.0 300.0 400.0 500.0 600.0 500.0	Param MAG 074 071 040 023 030 053 081 102 133 158 179	eters 11 ANG -76 -77 -78 -95 -92 -103 -115 -135 -135 -155 180 155 133	MAG 2 178 2 180 2 197 2 207 2 208 2 187 2 169 2 153 2 190 2 203 2 246 2 276	- 169 - 169 - 171 - 177 176 167 159 147 131 115 99 82	MAG 165 165 166 168 169 170 175 181 187 194	12 ANG 3 1 -0 -2 -4 -6 -9 -13 -18 -22	53 153 150 149 154 158 165 178 193 205 214 219 219	22 ANC 33 29 18 4 -3 -10 -19 -33 -51 -69 -87 -107 -127
1100.0 Frequency MHz 1.0 2.0 5.0 10.0 50.0 100.0 50.0 300.0 400.0 500.0 600.0 700.0	Param MAG 074 071 040 023 030 053 061 102 133 158 179 204	eters 11 ANG -76 -77 -78 -95 -95 -95 -95 -103 -115 -135 -155 180 155	MAG 2 178 2 180 2 197 2 207 2 208 2 187 2 169 2 153 2 190 2 203 2 246	-169 -171 -177 176 167 159 147 131 115 99 82 65	MAG 165 165 166 168 168 168 168 170 175 181 187 194 203	12 ANG 3 1 -0 -2 -4 -6 -9 -13 -18 -22 -27	52 MAG 153 150 154 158 160 165 178 193 205 214 219 219 219 212	22 ANC 33 29 18 4 -3 -10 -19 -33 -51 -69 -69 -67 -107 -127 -150
1100 0 Linear S Frequency MHz 1 0 2 0 5 0 10.0 200 0 300 0 400 0 500	Param MAG 074 071 040 023 030 053 081 102 133 158 179	eters 11 ANG -76 -77 -78 -92 -103 -115 -135 -155 180 155 133 109	MAG 2 178 2 180 2 197 2 208 2 187 2 169 2 153 2 190 2 203 2 246 2 277	-169 -171 -177 176 167 159 147 131 115 99 82 65 47	S MAG 165 165 166 168 168 169 170 175 181 187 194 203 213	12 3 3 1 -0 -2 -4 -6 -9 -13 -18 -22 -27 -33	53 153 150 149 154 158 165 178 193 205 214 219 219	

Thermal Data: Vcc = 15 Vdc

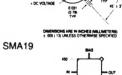
Thermal Resistance θjc	45°C/W
Transistor Power Dissipation Pd	0.944 W
Junction Temperature Rise Above Case Tic	42°C

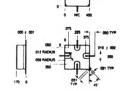
Typical Performance at 25°C

Intercept Point

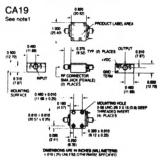
Frequency MHz	VSWR	OUT	GAIN
1.0	1.2	14	6.8
20	1.1	13	6.8
5.0	1.1	13	6.9
10.0	1.1	14	7.0
50.0	1.0	1.4	7.0
100.0	1.1	14	6.9
200.0	1.1	14	6.8
300.0	12	1.4	6.7
400.0	1.2	1.5	6.8
500.0	1.3	1.5	6.9
600.0	1.4	16	7.1
700.0	1.4	16	7.2
800 0	15	16	72
900.0	1.6	1.6	7.2
1000 0	17	1.6	72
1100.0	1.9	15	6 9

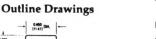
Frequency	S	11	\$	21	9	12	S	
	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANC
10	079	-76	2 195	-169	165	3	151	35
2.0	068	-79	2 198	-170	165	3	.148	32
50	044	- 78	2216	-177	166	2	146	19
10 0	028	-86	2 227	176	108	-0	.151	6
50.0	022	-88	2 226	187	168	-2	154	-2
100.0	035	-101	2 203	159	168	-4	157	-8
200.0	054	-110	2.181	147	170	-8	.164	-17
300.0	075	-135	2 189	192	174	-10	.179	- 30
400 0	101	-165	2 199	115	180	-14	196	-47
500 0	131	180	2218	99	185	-18	209	-65
600.0	155	160	2 26A	93	191	-23	222	-83
700 0	174	133	2 284	66	199	-28	230	- 102
800.0	.194	110	2 296	48	207	-34	.233	- 122
900.0	232	95	2 289	32	220	-39	227	143
	269	66	2 262	13	230	-46	217	-167
1000.0	301	30	2 221	-2	242	-53	200	169


1000

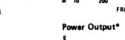

0 300 + 0 010		DMA	
(7 62 + 0 25) DIA 8 C	•		-
	X	1	ONONO
SO-CHWINPUT	1.	*	2 30-0HM
	0	1	N/ 1

A19


0 200


0 185 ± 0 015 (4 70 ± 0 38)

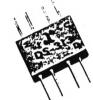
ONS ARE IN INCHES MILLINETERIN



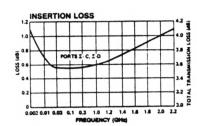
Linear S-Parar		
 Frequency MHz	MAG	
10	079	
2.0	065	
50	044	
10 0	028	
50.0	022	
 100.0	035	
200.0	054	
300.0	075	

OUTPUT	10 0
	50.0
	100.0
	200.0
	300.0
	400 0
	500 0
600 800 1000 1200	600.0
EQUENCY - MHz	700 0
	800.0
	900 0
	1000.0
	1100.0

6.8	1.0	074	-76	2 178	-169	165	3
6.8	2.0	071	-77	2 180	-171	.165	3
6.8	5.0	.040	-78	2 197	-177	166	1
6.9	10.0	026	-95	2 207	176	168	-0
6.9	50.0	023	-92	2 208	167	168	-2
6.8	100.0	.030	-103	2.187	159	.169	-4
6.7	200.0	053	-115	2 169	147	170	-6
6.7	300 0	.081	-135	2 153	131	175	-9
6.8	400.0	102	-155	2 190	115	181	-13
6.9	500.0	133	180	2 203	99	187	-18
7.0	600 0	158	155	2 246	82	194	-22
7.1	700.0	179	133	2 276	65	203	-27
7.1	800 0	204	109	2 277	47	.213	-33
7.1	900.0	243	84	2 263	31	227	-39
7.0	1000.0	278	57	2 246	12	.237	-46
6.8	1100.0	309	30	2.179	-6	249	- 53



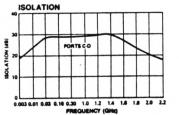
0.6 dB Typical Midband Loss 28 dB Typical Midband Isolation 1.2:1 Typical Midband VSWR

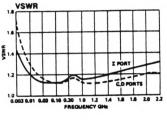

Guaranteed Specifications*

(From - 55°C to + 85°C)

Frequency Range		10-2000 MHz
Insertion Loss	20-1000 MHz	1.1 dB Max
(Less coupling)	10-1500 MHz	1.3 dB Max
(,	1500-2000 MHz	1.8 dB Max
Isolation	20-1000 MHz	23 dB Min
	10-1500 MHz	18 dB Min
	1500-2000 MHz	12 dB Min
Amplitude Balance	20-1000 MHz	0.3 dB Max
	10-1500 MHz	0.4 dB Max
	1500-2000 MHz	0.6 dB Max
Phase Balance	20-1000 MHz	4° Max
	10-1500 MHz	6° Max
	1500-2000 MHz	8° Max
VSWR (All Ports)	20-1000 MHz	1.5 Max
	10-1500 MHz	1.6 Max
	1500-2000 MHz	1.8 Max

Typical Performance




Operating Characteristics

250 mW Max
50 mW Max
Flatpack (FP-2)
physical dimensions.)

These units are designed to meet the environmental and screen requirements of Table 1A, page 496 of the Adams-Russell cata					
Pin Configuration	z; P1, Output 'C'; P4.				
	Output 'D'; P8				
	Case and all other pins ground.				

*All specifications apply with 50 ohm source and load impedance

Ordering Information

ordening intermation			FREQUENCY GHE		
Model No.	Part No.	Connectors	Unit Price (5-9 Units)		
DS-313 Delivery is from slock.	8559	' Pin	\$ 67		
ANZ	AC	Make	the Connect	ion	Adams Russell
ANZAC —		80 Cambridge Str	eet, Burlington, MA 0180	3 Fax (617) 273-1921	COMPONENTS GROUP

For Technical Information, Call (617) 273-3333

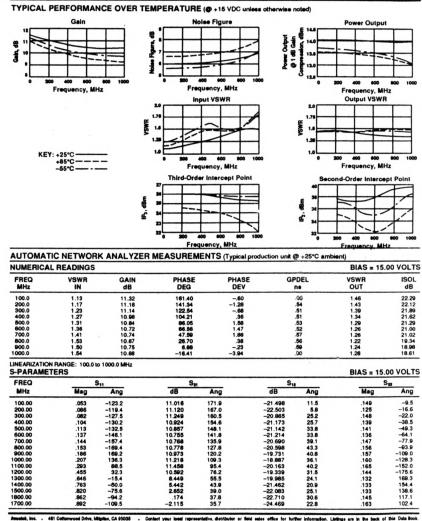
For Ordering Information, Call (617) 273-3333

50 KHz to 1.2 GHz

Mini-Circuits ULTRA-REL" MIXERS

S.VP CHADANTEE

LEVEL 17S(+17 dBm LO, up to + 14 dBm RF)


		FREQ	UENCY IHz	C	ONV	dB	NLOSS	LC	D-RF	ISC	LAT	ION, d	dB	LC)-IF	ISOL	ATH	ON,	dB	PRICE \$	F	BUTOR
	MODEL NO.	LO/RF	F	M X	id-Bo m o	Max.	Total Range Max.		L. Min.		Min.	U Typ.		Typ	L. Min.		Min.	Typ.	j Min.	Qty. (1-9)	ACTORY	-004-
o⊟ RMS-H .ase 11-100	RMS-1H RMS-1WH RMS-2H RMS-2UH RMS-5H	2-500 5-750 5-1000 10-1000 10-1500	DC-500 DC-750 DC-900 10-750 DC-900	6 25 7 00 6 98 7 10 6 36	034 11 054 083 05	70 85 85 85 80	85 88 93 96 98	55 55 55 50 65	44 40 40 40 40	44 43 39 38 38	22 22 30	28 33 30	20 20 20 23 15	50 52 52 50 50	30 30 30	38	25 22 22 25 18	30	20	10.95 11.95 11.95 14.45 17.95	:	:
ାଧ RMS-H case ଭ ର ଭ-130	LRMS-1H LRMS-1WH LRMS-2H LRMS-2UH LRMS-5H	2-500 5-750 5-1000 10-1000 10-1500	DC-500 DC-750 DC-900 10-750 DC-900	6 25 7 00 6 98 7 10 6 36	034 11 054 083 05	70 85 85 85 80	85 88 93 96 98	55 55 55 50 65	44 40 40 40	44 43 39 38 36		28 33 30	20 20 20 23 15	50 52 52 50 50	30 30 30	38 45 40	25 22 22 25 18		20 17	10.95 11.95 11.95 14.45 17.95	:	:
TFM-H case B02		2-500 5-1000 1-250	DC-500 DC-1000 DC-250	6.14 6.12 4.58	11 12 11	75 70 7.0	8 5 10 8.5	50 50 50	45 45 45	40 40 40	30 30 30	30	20 20 23	45	40 40 40		25 25 25		20 17 20	25 95 36 95 25.95	:	:
case B13	TFM-4H	5-1200	DC-1200	5.24	05	80	90	50	40	35	25	30	20	50	40	35	20	30	20	39.45	•	•
TAK-H case A05		2-500 5-750 05-300	DC-500 DC-750 DC-300	5 93 5 71 4 82	08 08 09	7.5 7.5 7.0	85 90 85	50 50 55	40 40 45	40 40 40	30 30 30	30	25 25 25	45 45 50		35	25 25 25	30	20 20 20	21.45 25.95 23.45	:	:
ZFM-H case K18		05-300	DC-500 DC-1000 DC-300 DC-1200	6 14 6 12 5 18 4 97	11 12 11 11	75 70 70 80	8.5 10 8.5 9.0	50 50 55 50	45 40 45 40	40 40 40 35	30 30 30 25	30 30	25 20 25 20	45 45 50 50	40 40	35 35	25 25 25 20	25	17	64.95 71.95 64.95 73.95	:	
ZLW–SH case M21	ZLW-1SH ZLW-1WSH ZLW-3SH	2-500 5-750 05-300	DC-500 DC-750 DC-300	5 93 5 83 4 65	08 07 09	75 75 70	8.5 90 85	50 50 55	40 45 45	40 40 40	30 30 30		25 20 25	45 45 50	40		25 25 25	30	20 20 20	62 95 66 95 64 95	:	
ZAD-SH case M22		2-500 5-750 05-300	DC-500 DC-750 DC-300	5 98 5 64 5 08	08 08 09	75 75 70	8.5 90 8.5		40 45 45	40 40 40	30 30 30	30	25 20 25		35 40 40		25 25 25		20 20 20	54.95 56.95 55.95	:	
DTUF-H cose B02	TUF-1H TUF-2H TUF-3H TUF-5H TUF-11AH TUF-860H	2-600 50-1000 0 15-400 20-1500 1400-1900 800-1050	DC-400 DC-1000	5.9 62 50 75 73 68	18 22 33 17 28 31	70 75 70 85 90 83	8 0 9 0 8 0 9 0 9 0 8 3	58 60	50 40 50 55 -	50 47 50 50 35 38	30 30 35 40 25 25	42 40 38	25 25 30 25 	60	35	44 45 29 30	30 25 25 18 15 18		22 18 20 8 	9 25 10 20 11 10 14 45 21 95 14 45		:
L=	low rang	ge (f, t	o 10 f.)			M=	mid rar	nge	(10) f _L	to f	fu/2)			I	J=1	J pp	oer	ran	ge (f	/2 to	o f _u)
						m=	mid ba	nd	(2f	to	fu/	2)										

pin and coaxial connections see case style outline drawing

Series	TUF-H TFM-H	TAN	к-н	ZFM-H	ZLW-H ZLW-SH	ZAD-H ZAD-SH	RMS-H LRMS-H			SRA			GRA.H	SIMA-H	SYM-H
Models	all models	- 1H - 3H	- 1WH	all models	ali models	ali models	al models	- 1H - 3H - 6H	– 1WH – 2H	- 1 1H	- 1 Configura 1	73H Ition 2	all models	- 5H	a l models
10	4	8	8	1	1	1	1	8	8	8	3.4*	8	1	8	2
RF	1	1	1	2	3	3	4	1	1	1	1	1	6	1	1
F	2	3.4	3.4	3	2	2	5	3.4*	3.4*	3	8	3.4"	4	3	3
GND	3	2.5.6.7	2.5.6.7			-	2.3.6	2.5.6.7	2.5.6.7	2.5.6.7	2.5.6.7	2.5.6.7	2.3.5	4	4.5.6
CASE GND	3	2	2.5.6.7		- 1	-	-	2	2.5.6.7	2.5.6.7	2.5.6.7	2.5.6.7	-	2.5.6.7	-
NOT USED		ed extern	ally \$ G	round ex	ternally A	I measur	ements m	ade with	GND pin	4 (s) grou	nded exte	maily A	Pin 2 is n	ot case (rounde

AVANTEK

GPD-1003/1063 Thin-Film Cascadable Amplifier Module 5 to 1000 MHz

office for further information. Listings are in the back of this

3.3 T103, 1.5 GHz CONVERTER MODULE

T103 Band Coverage and LO Frequencies

This section describes the T103 frequency converter that converts the L-Band Front-End signal to the standard 500 to 1000 MHz IF band. Since RF bandpass filters are installed in the Front-End, they are not included in the T103 RF circuitry; these filters have a 1550 MHz center frequency, 560 MHz bandwidth at the -3 dB points, and the band edges are 1.27 and 1.83 GHz, respectively.

Two LO frequencies, 2.1 and 2.4 GHz, each convert a portion of the Front-End spectrum to two standard 500 to 1000 MHz IF frequency bands. When the 2.1 GHz LO is mixed with the 1.27 to 1.83 GHz Front-End RF input, the mixer IF port spectrum is 270 to 830 MHz. The K&L 6B120-750/X550 IF filter passes the standard 500 to 1000 MHz portion and attenuates frequencies outside this passband. The converted portion of the Front-End RF spectrum is 1.27 to 1.6 GHz and the 1.6 to 1.83 GHz portion is attenuated by the IF filter.

When the 2.4 GHz LO is mixed with the 1.27 to 1.83 GHz Front-End input, the mixer IF port spectrum is 570 to 1130 MHz. The K&L 6B120-750/X550 IF filter passes the standard 500 to 1000 MHz portion and attenuates frequencies outside this passband. The converted portion of the Front-End RF spectrum is 1.6 to 1.83 GHz and the 1.27 to 1.4 and 1.83 to 1.9 GHz portions are attenuated by the IF filter.

Since the LO frequencies are higher than the RF frequencies, the IF signal spectrum is reversed relative to the RF band; the high end of the RF band is converted to the low end of the IF band, and vice versa. When testing the T103 it is important to remember this effect.

T103 Size and Location

T103 is a double-width module installed in Rack B, Bin C, Slots 8-9.

T103 Drawings and Data Sheets

The following T103 functional and assembly drawings are found at the end of this section.

C53500K001, Rev D	- T103 1.5 GHz Converter Module Block Diagram
D53500A002, Rev C	- T103 1.5 GHz Converter Module Assembly
A53500B001, Rev B	- T103 1.5 GHz Converter Module Assembly BOM
A53500A012, Rev A	- T103 1.5 GHz Converter Module LO Amplifier/Detector Assembly
A53500A008, Rev B	- T103 1.5 GHz Converter Module LO Amp/Det PCB Assembly

Data sheets for the WJ M2-TC mixer, Avantek UTO-2013 and Avantek UTO-2321 amplifiers follow the drawings. A data sheet for the Virtech VF-1525 is not available. Data sheets for the KDI-Triangle D307M power divider and Narda 4772-X attenuator are included in the Appendix, Section 6.

T103 Differences from the General Converter Block Diagram

The differences between T103 Block Diagram and the general converter block diagram of Section 2.1 are the omission of the RF and LO bandpass filters and the use of an LO drive amplifier that contains an LO drive power detector. The LO Amp/Detector A53500A012 differs from the other converter's LO amplifiers in that it is an NRAO design rather than a commercial amplifier package.

T103 Specifications

Nominal Gain, dB	15	Gain Flatness, ± dB	2	LCP-RCP Path Isol, dB	65
Nom Output Pwr a Std Syst Temp, dBm	-40	Min Out Pwr @ 1% Compression, dBm	4.9	Nom Output Pwr Density, dBm/MHz	-67
Avg Noise Temp, K	10,000	Noise Temp for 1% added Syst Noise, K	25,000	Nom LO Pwr input, dBm	2
Avg Noise Figure, dB	15.5	Noise Figure for 1% added Syst Noise, dB	19.4		
15 Volt Power Req't, mA	600	added syst horse, up			

Unwanted Sideband and Image Band Attenuation

Unwanted sidebands are attenuated by the K&L 6B120-750/X550 IF bandpass filter described in Section 2.5. When the 2.1 GHz LO frequency is used, the unwanted sideband is 3.37 to 3.93 GHz. Refer to Figure 5; the attenuation of the unwanted sideband lower edge frequency (3.37 GHz) is off the bottom of the plot, greatly in excess of 70 dB.

When the 2.4 GHz LO frequency is used, the unwanted sideband is 3.67 to 4.23 GHz. Again referring to Figure 5, the attenuation of this unwanted sideband lower edge frequency is off the bottom of the plot and is greatly in excess of 70 dB attenuation.

Image response bands are attenuated by the 1.5 GHz Front-End's 1550/X570 Bandpass filter which has a -3 dB passband of 1.27 to 1.83 GHz. Image response bands for the 2.1 and 2.4 GHz LO frequencies are 2.6 to 3.1 GHz and 2.9 to 3.4 GHz, respectively. The worst case image frequency is 2.6 GHz which is attenuated by this Bandpass filter.

Noise Temperature

The T103 noise temperature is a composite value that is a function of the noise temperatures of the mixer, Amp/Attenuator and Amp/Divider. The average of the measured noise temperatures of the LCP and RCP channels is 10,000 K. A T103 noise temperature of 25,000 K would add 1 K to the system temperature.

Mixer

The WJ M2TC mixer is an important component; a data sheet follows the drawings at the rear of this section. This mixer is designed for LO and RF frequencies of 10 to 2400 MHz, IF frequencies of 10 to 1000 MHz and a nominal LO drive of +13 dBm. In the 1.5 GHz frequency band, the typical conversion loss is 7.0 dB and the typical noise figure is 7.0 dB.

RCP-LCP Path Isolation

The RCP-LCP isolation is a function of the isolation properties of two shunt paths - the isolation between the two mixer LO ports and the transfer switch leakage. As shown in the table above, the module's specified RCP-LCP path isolation is 65 dB.

Since LO isolation filters are not used, the RCP-LCP path isolation is the 21 dB provided by the KDI-Engleman D307M power divider and the 40 dB (typical) between the mixer's LO ports and the RF-IF ports. The isolation of this shunt path is thus 100 dB.

The typical RCP-LCP path isolation of the RLC SRC-TC-R-d transfer switch at 1.5 GHz is about 90 dB.

VSWR's

The input VSWR, about 1.3:1, is the composite of the VSWR's of the transfer switch (1.1:1) and isolator (estimated to be 1.3:1). The output VSWR is the composite VSWR of the Amp/Divider, which is 1.5:1.

RF Input Circuitry

The losses in the RF input path are the insertion losses of the transfer switch 0.1 dB and the isolator 0.4 dB.

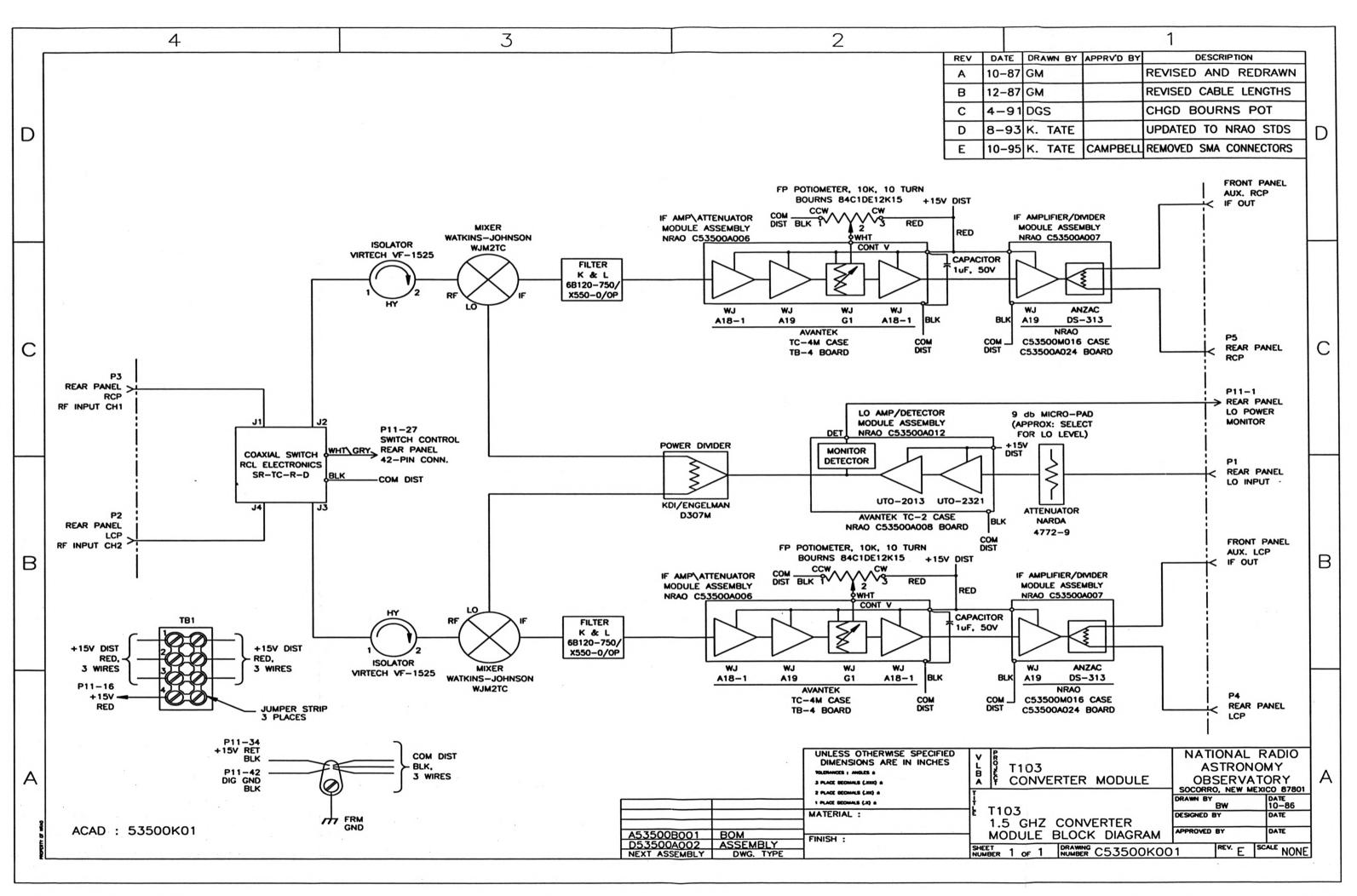
IF Circuitry

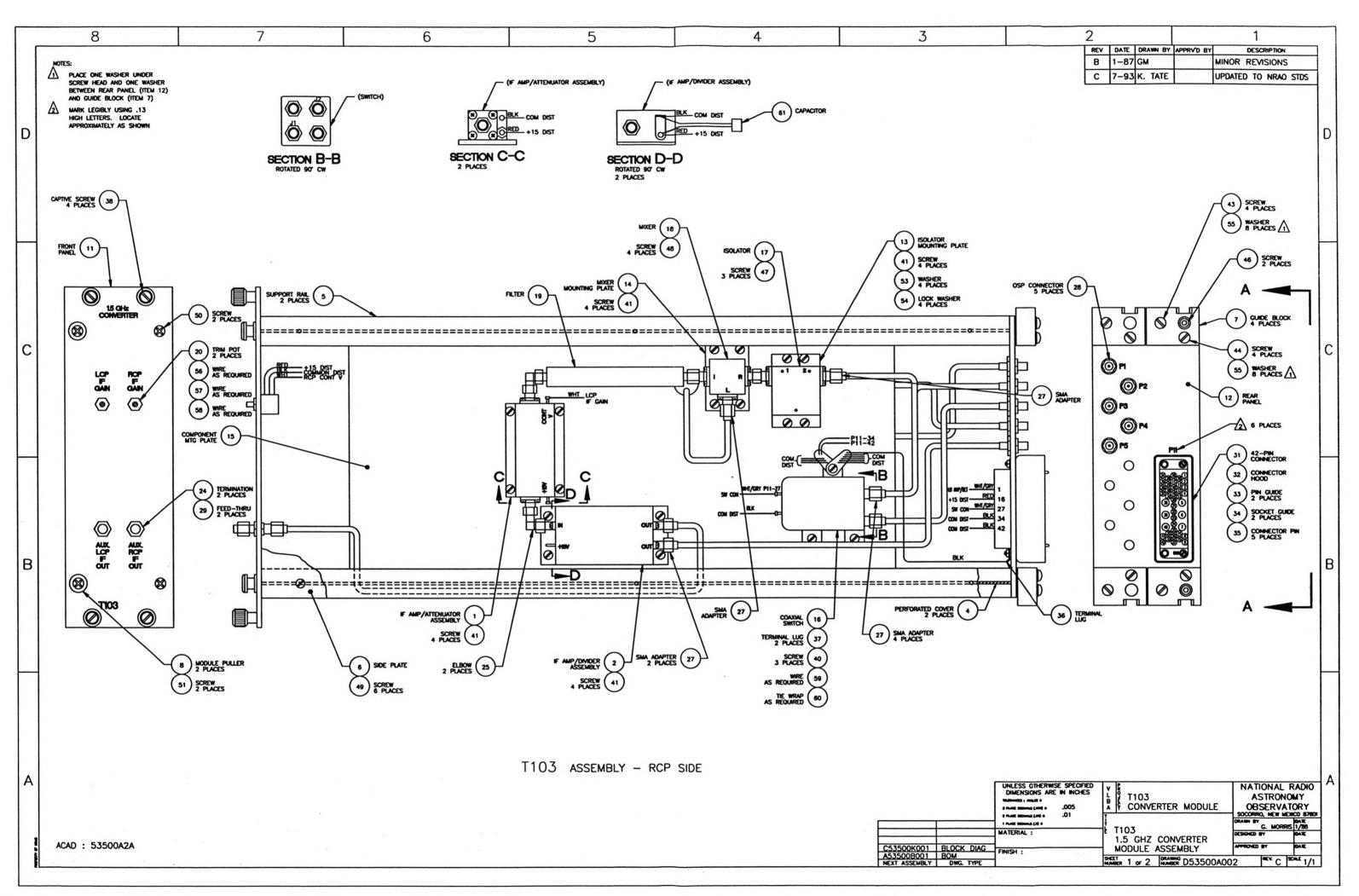
The IF path Amp/Attenuator, Amp/Divider and 6B120-750/X550 If bandpass filter were described in Section 2.5. IF gain adjustment is described in Test I, Section 2.7.

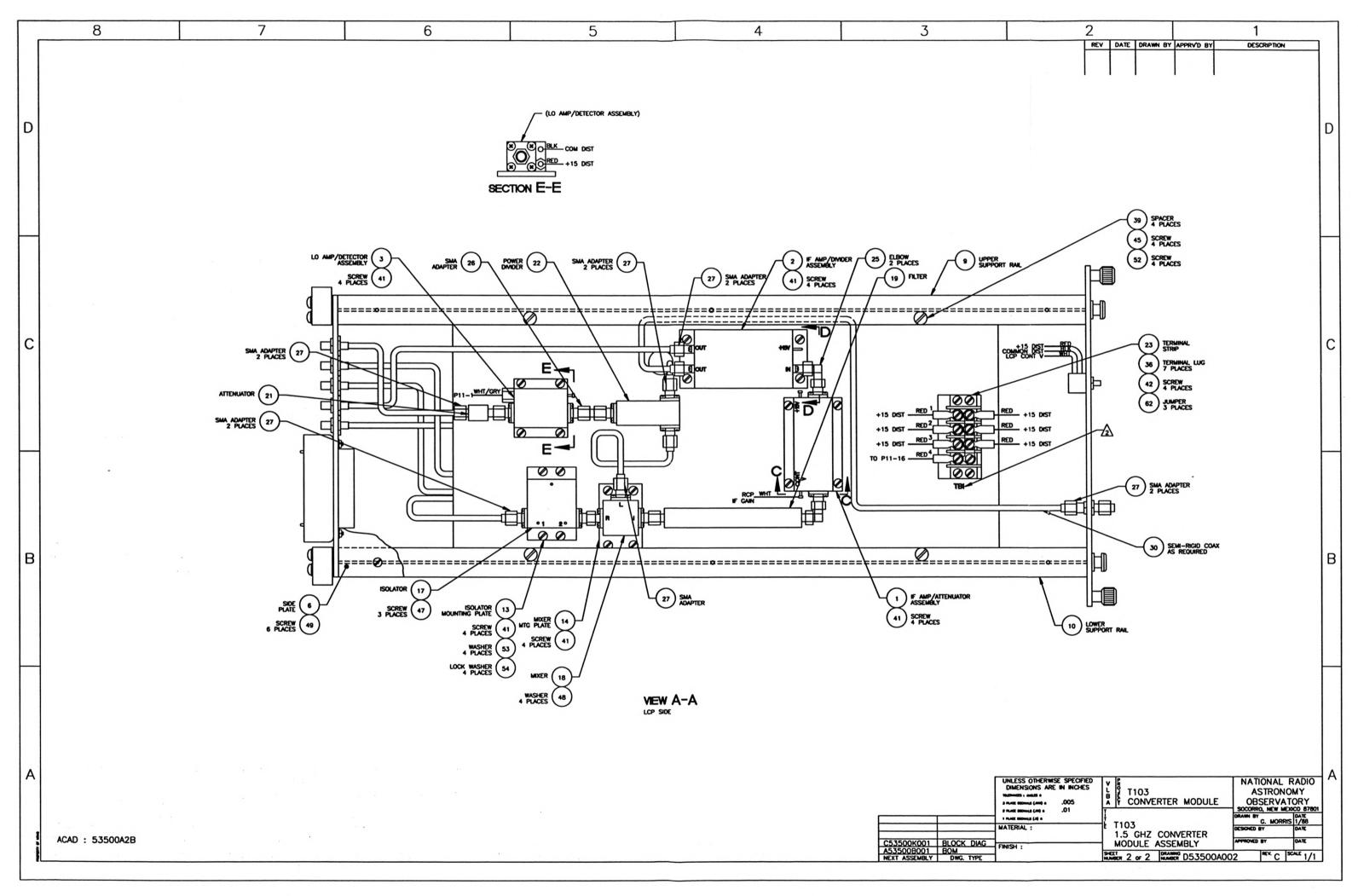
LO Drive Circuitry

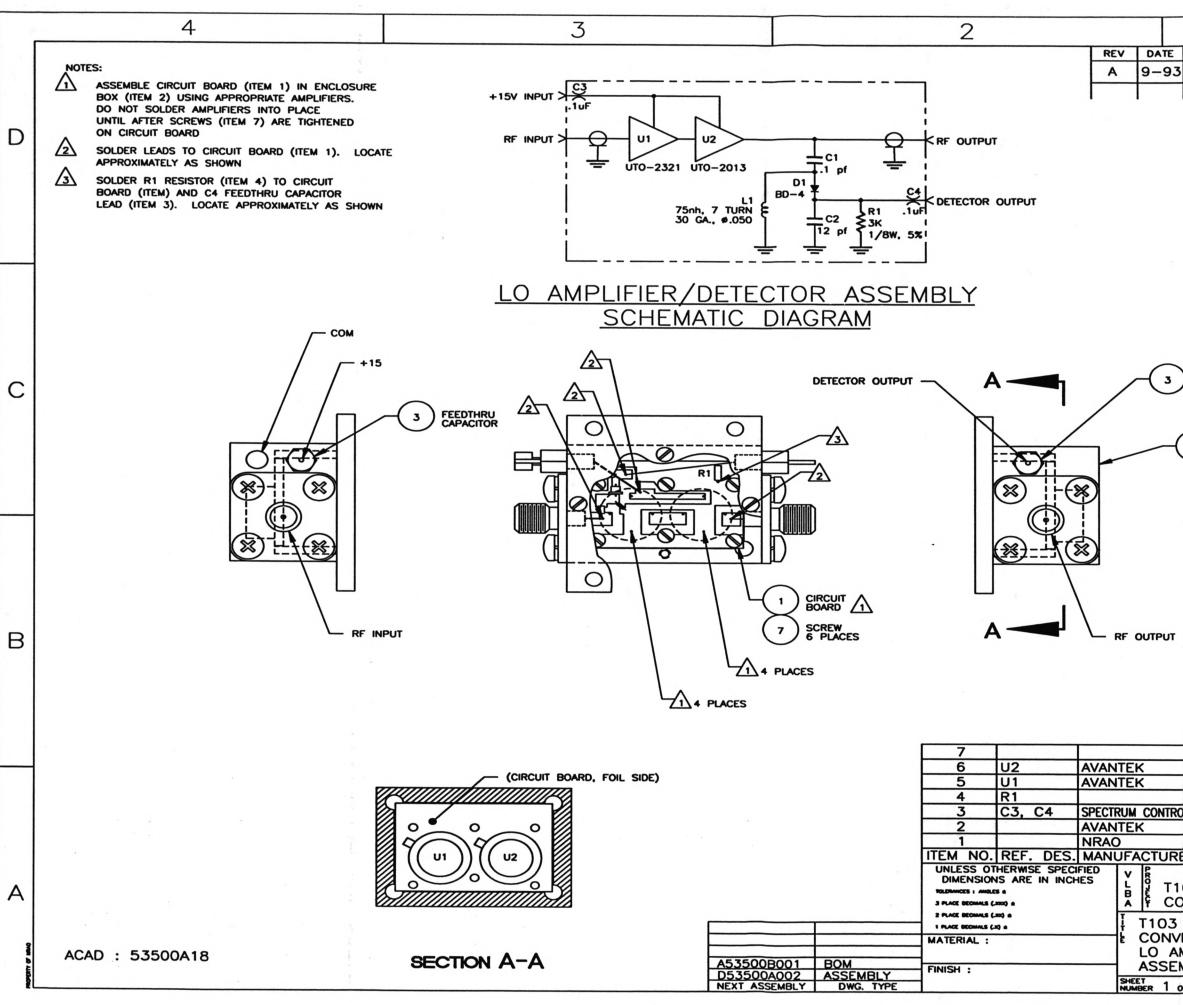
Refer to schematic diagram A53500S001 at the rear of this section. The amplifier consists of a cascade connection of Avantek UTO 2321 and Avantek UTO 2013 amplifiers and a diode power detector circuit. Both amplifiers have AC-coupled inputs and outputs. The input amplifier is a UTO 2321 that has a typical gain of 15 dB and a noise figure of 7. The input and output VSWR's are about 1.3 and 1.75, respectively, at the two LO frequencies. The UTO 2013 is the power stage with a typical gain of 15 and a noise figure of 7 dB. The input and output VSWR's are about 1.5 and 1.75, respectively. The power output is +12 dB at the 1 dB compression point. The LO amplifier gain is determined by the selection of the input attenuator, Narda series 4772-X. The appropriate attenuator value is determined in Test I, Adjustment of LO power and Converter Gain/Flatness. This test is described in Test I, Section 2.7.

The power detector circuit in the LO Amp/Detector subassembly is a square-law detector which has an output voltage that is proportional to the square of the diode current. The 0.1 pF capacitor AC-couples a portion of the amplifier output to the 75 nH shunt inductor and Back Diode, BD-4. The series resonant frequency of the LC combination is about 180 MHz. The inductor provides a DC return path for the diode output and has an impedance of about 1000 Ohms at the LO frequencies. The 12 pF capacitor and 3 K Ohm resistor are an RC filter for the half-wave diode output voltage. The Back Diode, BD-4, is a tunnel diode used in the nontunneling direction where it has a zero forward voltage drop.¹ The power detector output is connected via P11-1 to an analog multiplexer input in the B-Rack Interface, M102. The multiplexer address is 09H and the normal signal level is + 0.23 volts.

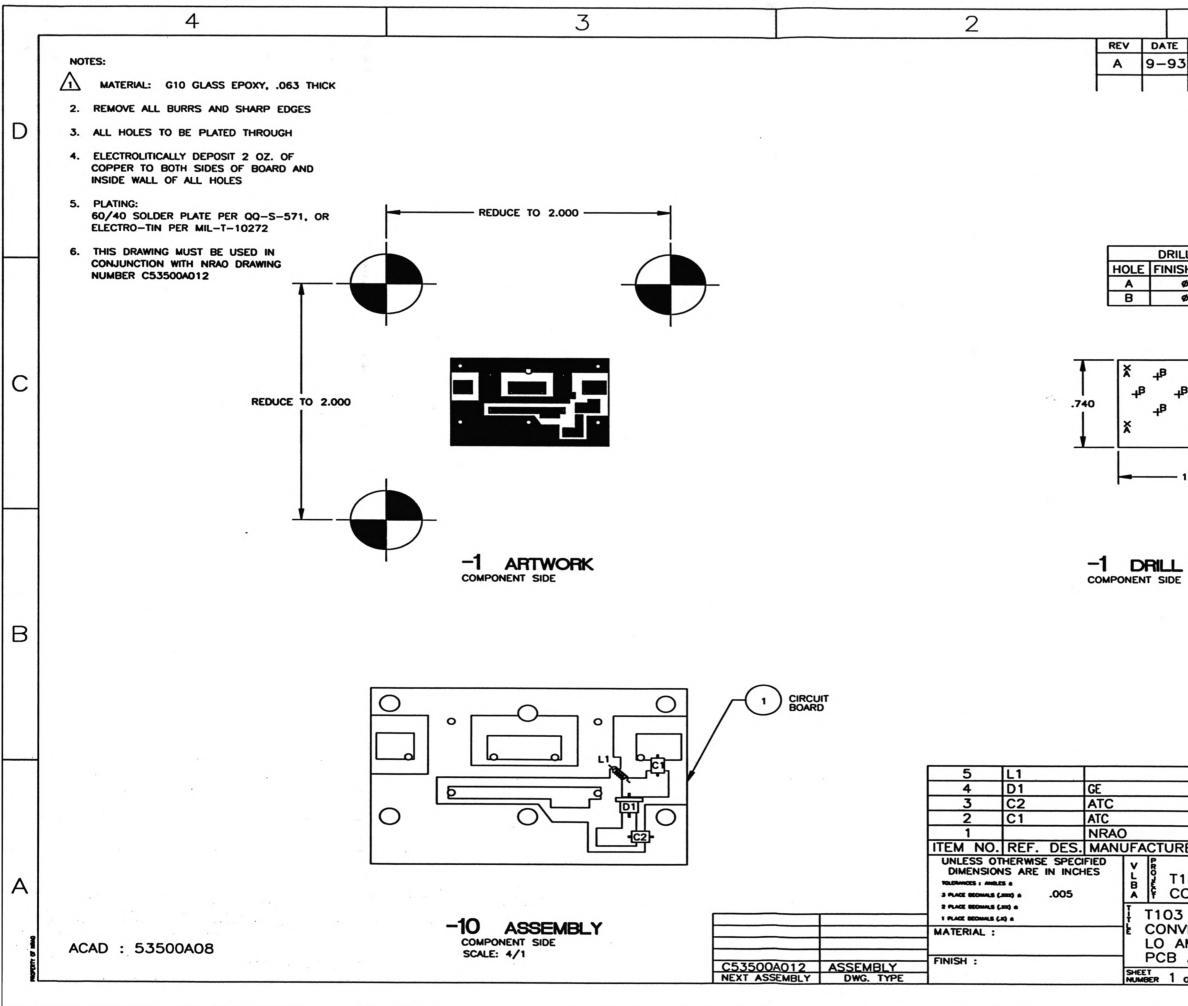

RF Switching


The T103 transfer switch S103A is an RLC SR-TC-R-D transfer switch; some T103's may use the Transco 710C70100 as an alternate unit. The transfer switch is driven by M102, address 12H, bit 0.


T103 Power Circuitry


All T103 active components are powered by +15 volts. +15 volts from P11-16 is connected to TB1 (terminal strip 1) terminals 1-4 where it is distributed to the amplifiers. The common returns for these devices are connected to a frame ground lug that is connected to P11-34 and P11-42. This ground is also the ground return for the +28 volt drive to the transfer switch. The Amp/Attenuator has a 1.0 uF bypass capacitor connected across the amplifier's power terminals.

¹ The Art of Electronics, Horowitz and Hill, page 891.



						24		
					1			
:	DR	AWN BY	APPRVD BY			SCRIPTION		
3	к.	TATE	D.WEBER	REC	RAWN	ON AC	CAD	
								1
1								
)) FE	EDTHRU APACITOR						
								C
1	-		SURF					
7	2	BOX	JOINE					
r								
								B
-			r	SCREW	PANH	EAD, SS,	6	-
-		UTO-2	2013		IFIER		- 0	
		UTO-2	2321	AMPL	IFIER		1	
	_					5K,1/8W		
RO	L					DTHRU .1		_
-		TC-2N C5350		BOAF	RD, CI		1	-
RE	R		NUMBER	2011	DESCR	IPTION	QT	$\overline{\mathbf{Y}}$
					NAT	IONAL	RADIO	
	03			_		STRON		
-	NN	ERIER	MODUL	E		SERVA	TORY	
3					DRAWN BY		DATE 10-93	
			ODULE /DETECTO	R	DESIGNED		DATE	-
EN	ABI		DETECT		APPROVED	BY SCHI FCH	DATE	
-	F 1		¢ C53500)A()1	2	REV. A	SCALE 2/1	-
	-	THOMOE					2/1	
_	1.04							

1	_
	-
3 K. TATE D.WEBER REDRAWN ON ACAD	D
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С
DRAWING A	B
INDUCTOR, 75nh, 7 TURN 1 BD-4 BACK DIODE, DETECTOR 1 100-A-120-M-P-15X CAPACITOR, CHIP, 12pf 1 100-A-0RI-B-P-150X CAPACITOR, CHIP, 1pf 1 -1 BOARD, CIRCUIT 1 RER PART NUMBER DESCRIPTION QT 103 ONVERTER MODULE NATIONAL RADIO 3 1.5 GHZ VERTER MODULE DRAWN BY DATE AMP/DETECTOR APPROVED BY DATE ASSEMBLY APPROVED BY DATE OF 1 DERAWING C53500A008 REV. B	

				REVISIONS			
REV	DATE	DRAWN BY	APPRVD BY			DESCRIPTION	
В	7–93	K. TATE		UPDATED	TO NRA	O STANDARDS	
	<u> </u>						<u></u>
	1		1	Į			
	. TATE		сыте 7—93				
yanna ea K Iesigned ea	. TATE					С53500К001	BLOCK DIAG
K			7-93			D53500A002	ASSEMBLY
K Esched By			7-93 Date			· · · · · · · · · · · · · · · · · · ·	
K Esched By			7-93 Date			D53500A002	ASSEMBLY
K Residied by			7-93 Date			D53500A002	ASSEMBLY
K Residied by			7-93 Date			D53500A002 NEXT ASSY	ASSEMBLY USED ON
K Hesolhed By Hephoved By			7-93 Date Date	V PROJECT	1105 0	D53500A002 NEXT ASSY	ASSEMBLY USED ON
K ESSEMED BY PPROVED BY NA	TIONAL R OBS		7-93 DATE	V L B	T103	D53500A002 NEXT ASSY	ASSEMBLY USED ON

X ELECTRICAL X MECHANICAL	BOM # A53500B001	REVB DATE7-19	<u>-93</u> PAGE <u>2</u> OF <u>5</u>
MODULE NAME GHZ_CONVERTER	DWG#	SUB ASSY	DWG#
SCHEM. DWG#S53500K001LOCATION	QUA/SYS.	PREPRD BY <u>K. TATE</u>	APPRVD BY WEBER

ITEM 🖸	REF DES	MANUFACTURER	PART NUMBER	DESCRIPTION	TOTAL QTY.
1		NRAO	C53500A006	ASSY, IF AMP/ATTENUATOR	2
2		NRAO	C53500A007	ASSY, IF AMP/DIVIDER	2
3		NRAO	C53500A012	ASSY, LO AMP/DETECTOR	1
4		NRAO	C53306M014-1	COVER, PERFORATED	2
5		NRAO	C53306M016	RAIL, SUPPORT	2
6		NRAO	C53306M017	PLATE, SIDE	2
7		NRAO	B53306M018	BLOCK, GUIDE	4
8	· · · · · · · · · · · · · · · · · · ·	NRAO	A53306M035	PULLER, MODULE	2
9		NRAO	B53500M001	RAIL, UPPER	1
10		NRAO	B53500M002	RAIL, LOWER	1
11		NRAO	B53500M003	PANEL, FRONT	1
12		NRAO	B53500M004-1	PANEL, REAR	1
13		NRAO	A53500M008-1	PLATE, ISOLATOR MOUNTING	2
14		NRAO	A53500M011-1	PLATE, MIXER MOUNTING	2
15		NRAO	D53500M023	PLATE, COMPONENT MOUNTING	1
16		RLC ELECTRONICS	SR-TC-R-D	SWITCH, COAXIAL	1
17		DITOM	DF-1170	ISOLATOR	2
18		WATKINS-JOHNSON	WJM2TC	MIXER	2
19		K&L	6B120-750/X550-0/OP	FILTER	2
20		BOURNS	84C1DE12K15	TRIM POT, 10K PANEL	2

X	ELECTRIC	AL X MECHANICAL BOM	# <u>A53500B001</u> REV	BDATE7-19-93PAGE3	OF <u>5</u>
ITEM #	REF DES	MANUFACTURER	PART NUMBER	DESCRIPTION	TOTAL QTY.
21		NARDA	4772-9	ATTENUATOR	1
22		KDI/ENGLEMAN	D307M	DIVIDER, POWER	1
23	TB1	TRW CINCH	4-140	STRIP, TERMINAL	1
24		SOLITRON	8018-6005	TERMINATION, 500	2
25		SOLITRON	2993-6005	ELBOW, SMA MALE/MALE	4
26		SOLITRON	2993-6001	ADAPTER, SMA MALE/MALE	1
27		SOLITRON	2902-6001	ADAPTER, SMA MALE/.141 TUBE	17
28	P1 - P5	OMNI-SPECTRA	4503-7941-00	CONNECTOR, OSP .141 MALE	5
29		OMNI-SPECTRA	2084-0000-00	FEED-THRU, SMA	2
30		PRECISION TUBE	AA50141	COAX, .141. SEMI-RIGID	AR
31	P11	AMP	204186-5	CONNECTOR BLOCK, 42-PIN	1
32		AMP	202394-2	CONNECTOR HOOD, 42-PIN	1
33	·····	AMP	200833-2	PIN, GUIDE	2
34		AMP	203964-5	SOCKET, GUIDE	2
35		AMP	201578-1	PIN, 16 GA. CONNECTOR	5
36		ETC/MOLEX	AA-832-06	LUG, TERMINAL	8
37				LUG, TERMINAL	2
38		SOUTHCO	47-11-204-10	SCREW, CAPTIVE	4
39		H.H. SMITH	9244	SPACER, 8-32UNC-2B x .44	4
40				SCREW, PAN HEAD, SS, 4-40UNC-2A x .19	3
41				SCREW, PAN HEAD, SS, 4-40UNC-2A x .25	36

<u> </u>	ELECTRICAL	X MECHANICAL BOM	#A53500B001 REV	BDATE7-19-93PAGE4	_0F <u>5</u>
ITEM #	REF DES	MANUFACTURER	PART NUMBER	DESCRIPTION	TOTAL QTY.
42				SCREW, PAN HEAD, SS, 4-40UNC-2A x .38	4
43				SCREW, PAN HEAD, SS, 6-32UNC-2A x .75	4
44				SCREW, PAN HEAD, SS, 6-32UNC-2A x .88	4
45				SCREW, PAN HEAD, SS, 8-32UNC-2A x .63	4
46				SCREW, SOCKET HEAD, SS, 6-32UNC-2A x .38	2
47				SCREW, FLAT HEAD, SS, 2-56UNC-2A x .25	6
48				SCREW, FLAT HEAD, SS, 2-56UNC-2A x .38	8
49				SCREW, FLAT HEAD, SS, 4-40UNC-2A x .25	12
50				SCREW, FLAT HEAD, SS, HP GREY, 6-32UNC-2A x .38	2
51				SCREW, FLAT HEAD, SS, 6-32UNC-2A x .75	2
52				SCREW, FLAT HEAD, SS, 8-32UNC-2A x .63	4
53				WASHER, FLAT #4	8
54				WASHER, LOCK #4	8
55				WASHER, EXT. TOOTH #6	16
56	A	LPHA	7055	WIRE, WHT #22	AR
57	A	LPHA	7055	WIRE, BLK #22	AR

<u> </u>	ELECTRIO	CAL X MECHANICAL	BOM # A53500B001 REV	<u> </u>	<u>5_0F_5_</u>
ITEM #	REF DES	MANUFACTURER	PART NUMBER	DESCRIPTION	TOTAL QTY.
58		ALPHA	7055	WIRE, RED #22	AR
59		ALPHA	7055	WIRE, BLK/GRY #22	AR
60				WRAP, TIE	AR
61		SPRAGUE	2C20Z50105M050B	CAPACITOR, MONOLITHIC CERAMIC, 1µf, 50V	2
62	TB1	TRW-CINCH	140J-1	STRIP, JUMPER	3
63					
64					
65					
66					
67					
68					
69					
70					
71					
72					
73	<u> </u>				
74					
75					
76					
77					
78					

UTO/UTC/PPA 2013 Series Thin-Film Cascadable Amplifier 500 to 2000 MHz

FEATURES

- . Frequency Range: 500 to 2000 MHz
- High Dynamic Range . High Output Power:
- +21.0 dBm (Typ)
- GaAs FET Technology
- Temperature Compensated
- Surface Mount Option

DESCRIPTION

The 2013 Series is a thin-film high power GaAs FET RF amplifier using active bias and resistive feedback for stability over temperature and bias voltage variations. Input/output blocking capacitors couple RF through the amplifier, while a low VSWR is maintained through inductive tuning. The 2013 Series amplifiers are available in three packages: the surface mount Planar-Pak PP-38 (.375 in. x .375 in.) case, the TO-8 hermetic case and the connectorized TC-1 case.

+18.0

2.0:1

2.0:1

-

_

_

PPA-PP-38, p. 16-36

16-42

Unit

MHz

dB

d8 d8m − −

dBm

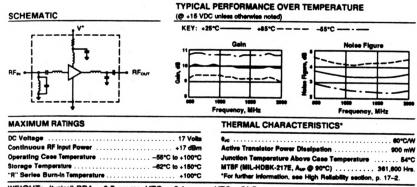
dBm dBm mA

UTO-TO-8U, p. 16-48

UTC-TC-1, P.

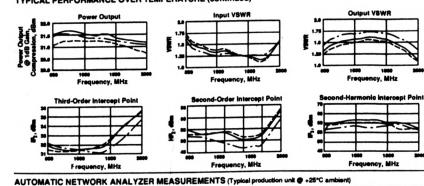
ELECTRICAL SPECIFICATIONS¹ (Measured in a 50-ohm system @ +15 VDC nominal unless otherwise noted) **Guaranteed Specifications** Typical Symbol Characteristic Te = 25°C Te = 0" to 50"C To = -55" to +85"C Frequency Range Small Signal Gain (Min.) 500-2000 BW 500-2000 500-2000 GP 10.0 9.0 Min 8.5 Min. Gain Flatness (Max.) ±0.5 ±1.0 ±1.0 8.0

APPLICATIONS


· Output Stage

System Front End

Surface Mount Assembly


NF Noise Figure (Max.) 4.5 6.5 Power Output @ +1 dB Compression (Min.) input VSWR (Max.) +21.0 +19.0 P... <1.7:1 2.0:1 Output VSWR (Max.) _ <1.6:1 2.0:1 IP, Two Tone 3rd Order Intercept Point +33.0 -Two Tone 2nd Order Intercept Point IP. 450 _ HP. One Tone 2nd Harmonic Intercept Point +50.0 -DC Current 100 _

NOTE: RF input pin is at DC ground --- no input blocking capac

WEIGHT: (typical) PPA-0.5 grams; UTO-2.1 grams; UTC-21.5 grams

Aventek, Inc. - 481 Collamonad Drive, Milpilas, CA 95036 - Contact your local rec , detributer or field cales office for further information. Livilings are in the back of this Data Back 3-162

BIAS = 15.00 VOLTS

FREQ MHz	VSWR	GAIN dB	PHASE DEG	PHASE DEV	GPDEL	OUT	ISOL dB
400.0	1.50	9.54	-160.92	<u>.</u>	.92	1.39	15.90
500.0	1.20	9.91	170.88	10.08	.00	1.36	16.01
600.0	1.15	10.02	148.57	3.28	.57	1.36	16.14
700.0	1.08	10.03	128.97	80	.52	1.42	16.35
800.0	1.09	10.04	111.27	-2.97	.47	1.44	16.53
900.0	1.11	10.13	94.80	-3.92	.43	1.46	16.68
1000.0	1.11	10.20	80.00	-3.11	40	1.44	16.90
1100.0	1.07	10.20	65.40	-2.18	.42	1.39	17.03
1200.0	1.06	10.18	50.46	-1.70	.41	1.34	17.07
1300.0	1.07	10.15	36.66	-1.08	.42	1.32	17.01
400.0	1.07	10.19	20.43	68	.41	1.32	17.02
		10.19	5.46	13	.43	1.30	17.00
1 500.0 1 600.0	1.04		-0.46	.45	.30	1.61	17.06
	1.06	10.30	-23.97	1.46	.42	1.65	17.16
700.0	1.14		-38.70	2.24	.43	1.74	17.32
800.0	1.24	10.16	-85.02	1.45	.45	1.72	17.35
900.0	1.32	10.12		.61	.46	1.66	17.43
2000.0	1.40	10.21	-71.40	.01	.52	1.66	17.28
2100.0	1.44	10.29	-66.82	-			17.6

LINEARIZATION RANGE: 500.0 to 2000.0 MHz

S-PARAMETERS

BIAS = 15.00 VOLTS

FREQ	EQ 5,,		8	Sm			S		
MHz	Mag	Ang	dB	Ang	dB	Arig	Mag	Ang	
500.00	.199	32.7	10.097	178.2	-17.058	-14.6	.130	-72.6	
600.00	.125	19.7	10.257	154.3	-16.560	-29.8	.111	-108.7	
700.00	.000	-14.2	10.299	135.3	-16.848	-48.7	.094	-154.8	
800.00	.053	-09.5	10.266	117.2	-17.316		.093	166.5	
900.00	.078	-111.6	10.305	100.5	-17.040	-77.9	.120	145.9	
1000.00	.089	-111.9	10.375	86.4	-17.402	-01.4	.114	139.3	
1100.00	.103	-109.0	10.296	71.4	-18.034	-105.3	.094	146.7	
1200.00	.115	-116.0	10,205	56.0	-17.977	-119.2	.071	146.7	
1300.00	.116	-120.1	10.078	40.9	-17.625	-131.8	.048	172.7	
1400.00	.111	-135.0	10.045	26.8	-17.854	-143.2	.040	-171.3	
1500.00	.008	-144.1	10.015	12.8	-18.129	-156.0	.025	-170.5	
1600.00	.071	179.8	10.169	1	-17.931	-170.3	.018	115.7	
1700.00	.068	134.5	10.142	-14.9	-17.947	177.3	.019	64.0	
1800.00	.072	93.3	10.156	-30.8	-18.386	158.1	.013	-38.3	
1900.00	.095	66.8	10.001	-47.6	-18.220	145.4	.032	-64.2	
2000.00	.110	46.5	8.907	-63.4	-18.194	132.1	.088	-88.7	

neroed Drive, Milpilae, GA 88036 . Contact your local rep tative, debilister or field rates office for hother information. Listings are in the hask of this Data Beak

3-163

UTO/UTC/PPA 2013 Series Thin-Film Cascadable Amplifier

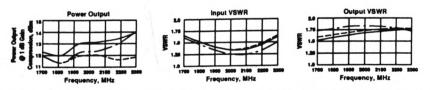
TYPICAL PERFORMANCE OVER TEMPERATURE (continued)

· Frequency Range: 1700 to

Medium Output Power:

+12.0 dBm (Typ)

Medium Gain: 15.0 dB (Typ)


• Temperature Compensated

UTO/UTC 2321 Series Thin-Film Cascadable Amplifier 1700 to 2300 MHz

UTO/UTC 2321 Series Thin-Film Cascadable Amplifier

•

TYPICAL PERFORMANCE OVER TEMPERATURE (continued)

FREQ	VSWR	GAIN	PHASE	PHASE DEV	G	PDEL	OUT	ISOL dB
500.0	2.53	14.27	54.15	-		1.01	3.66	42.19
600.0	2.05	15.40	20.93	-		.85	3.00	40.12
700.0	2.01	15.93	-7.33	-		.73	2.46	39.51
800.0	2.08	16.27	-31.37	-		.62	2.06	38.85
900.0	2.21	16.21	-62.07	-		.64	1.76	38.36 38.49
1000.0	2.27	16.06	-69.93	=			1.35	36.20
1100.0	2.30	15.76	-06.55	_		40	1.24	37.76
1200.0	2.29	15.60	-101.64 -115.02	_		.37	1.18	37.00
1300.0	2.19 2.13	15.32	-128.55	-		.40 .37 .37	1.19	38.03
500.0	2.00	14.80	-141.86	-		.30 .37	1.25	37.94
600.0	1.86	14.76	-155.69	-		.37	1.34	\$7.77
700.0	1.72	14.80	-168.27	-1.95		.34	1.43	37.71
800.0	1.50	14.52	179.58	.04		.35	1.67	36.65
900.0	1.49	15.00	166.56	1.17		.37	1.56	38.68
2000.0	1.40	15.05	152.69	1.46		.39	1.64	38.57
2100.0	1.41	14.98	138.50	1.43		.42	1.67	38.64
2200.0	1.56	15.10	122.45	45		.44	1.67	38.95
2300.0	1.82	15.12	107.05	-1.70		.47	1.66	39.53 39.45
2400.0	2.21	14.67	88.70	-		.52	1.55	39.45
2500.0	2.66	13.97	69.28	-		.48	1.48	40.23
0.008	3.09	13.37	52.57	-		.48	1.43	40.52
2700.0	3.56	12.22	34.59			.46	1.43	40.94
0.008	4.06	10.99	1.18	_		44	1.49	40.95
INEARIZATION	4.70 5.33 N RANGE: 1700 1 ERS	9.30 7.77 o 2300 MHz	-13.79			.00	1.60 BIAS = 1	40.96
INEARIZATION	5.33 N RANGE: 1700 b ERS	7.77 o 2300 MHz	-13.70				BIAS = 1	5.00 VOLT
INEARIZATION	5.33 N RANGE: 1700 b ERS	7.77 o 2300 MHz S ₁₁	-13.79	Ang	<u></u>		BIAS = 1	
1000.0 INEARIZATION PARAMETE FREQ MHz	6.33 N RANGE: 1700 b ERS Mag	7.77 o 2300 MHz S ₁₁ Ang	-13.79 		dB -42.019	Ang 134.1	BIAS = 1 Mag .500	5.00 VOLT Sm Ang -72.0
INEARIZATION INEARIZATION INEARIZATION INEARIZATION FREQ MHz 500.00	5.33 N RANGE: 1700 I ERS Mag .437	7.77 o 2300 MHz S ₁₁ Ang -73.5	-13.79 		dB -42.019 -40.348	a Ang 134.1 119.9	BIAS = 1 Meg .560 .490	5.00 VOLT Sm Ang -72.0 -62.5
1000.0 INEARIZATION PARAMETE FREQ MHz	6.33 N RANGE: 1700 b ERS Mag	7.77 o 2300 MHz S ₁₁ Ang	-13.79 -13.79 dB 13.952 15.169 15.699	53.4 21.3 -6.4	dB -42.019 -40.348 -39.169	Ang 134.1 119.9 110.8	BIAS = 1 Mag .580 .490 .410	5.00 VOLT Sm -72.0 -82.5 -91.8
0000.0 INEARIZATION -PARAMETE FREQ MHz 500.00 600.00 700.00 800.00	6.33 N RANGE: 1700 I ERS 	7.77 o 2300 MHz S ₁₁ -73.5 -67.1 -60.8 -57.9	-13.79 -13.79 -13.95 15.969 15.969 15.975 -15.975	53.4 21.3 -6.4 30.5	dB -42.019 -40.348 -39.169 -38.765	Ang 134.1 119.9 110.8 107.2	BIAS = 1 Meg .590 .490 .410 .328	5.00 VOLT Sm Ang -72.0 -82.5 -01.8 -00.8
1000.0 INEARIZATION PARAMETE FREQ MHz 500.00 600.00 700.00 900.00 900.00	6.33 N RANGE: 1700 I ERS Mag .437 .345 .326 .363 .363 .371	7.77 o 2300 MHz Stil -73.5 -47.1 -40.8 -57.9 -69.1	-13.79 -13.952 15.962 15.860 16.675 16.076	53.4 21.3 -6.4 30.5 60.9	dB -42.019 -40.348 -39.169 -38.765 -38.267	Ang 134.1 119.9 110.8 107.2 103.3	BIAS = 1 Meg .560 .490 .410 .326 .246	5.00 VOLT Sm -72.0 -52.5 -01.8 -09.8 -106.8
INEARIZATION INEARIZATION FREQ MHz 500.00 600.00 800.00 900.00 900.00 900.00	6.33 N RANGE: 1700 I ERS Mag 437 .345 .326 .363 .371 .396	7.77 o 2300 MHz S ₁₁ -73.5 -67.1 -60.8 -67.9 -68.1 -67.1	-13.79 -13.79 -13.952 15.169 15.469 16.075 -15.963 -15.963 -15.963 -15.963 -15.963 -15.963 -15.963 -15.963 -15.963 -15.963 -15.965	53.4 21.3 -6.4 30.5 66.9 68.5	dB -42.019 -40.348 -39.169 -38.765 -38.267 -38.026	Ang 134.1 110.9 110.8 107.2 103.3 99.8	BIAS = 1 Meg .560 .490 .410 .328 .246 .179	5.00 VOLT 5.00 VOLT -72.0 -82.5 -91.8 -09.8 -106.8 -112.1
1000.0 INEARIZATION PARAMETE MHz 500.00 600.00 700.00 900.00 900.00 100.00	6.33 N RANGE: 1700 I ERS <u>Mag</u> .437 .345 .326 .363 .571 .3963 .571 .3963 .411	7.77 o 2300 MHz S ₁₁ -73.5 -67.1 -60.8 -67.9 -69.1 -67.1 -71.3	-13.79 -13.992 13.992 15.169 15.669 16.075 -16.064 -15.663 -15.663 -15.663	53.4 21.3 -6.4 30.5 60.9 60.5 65.2	dB -42.019 -40.348 -39.169 -38.765 -38.267 -38.026 -38.026	Ang 134.1 110.9 110.8 107.2 103.3 90.8 90.3	BIAS = 1 Meg .560 .490 .410 .328 .246 .179 .123	5.00 VOLT Sm -72.0 -82.5 -91.8 -90.8 -106.8 -106.8 -112.1 -111.9
INC.0 INEARIZATION PARAMETE FREQ MHz 500.00 600.00 900.00 900.00 900.00 100.00 100.00 100.00	6.33 N RANGE: 1700 I ERS 	7.77 o 2300 MHz S11 -73.5 -47.1 -40.8 -47.1 -47.1 -47.1 -47.1 -78.6	-13.79 -13.79 -13.852 15.160 16.075 -16.075 -15.863 -15.869 -15.859	53.4 21.3 -6.4 30.5 50.9 66.5 66.2 00.2	dB -42.019 -40.548 -39.169 -38.765 -36.267 -36.026 -36.166 -37.669	Ang 134.1 110.9 110.8 107.2 103.3 99.6 98.3 98.9	BIAS = 1 Meg .560 .490 .326 .246 .179 .123 .060	5.00 VOLT -72.0 -82.5 -91.8 -90.6 -106.8 -112.1 -111.9 -00.9
1000.0 INEARIZATION INEARIZATION FREQ MHz 500.00 600.00 900.00 900.00 900.00 900.00 900.00 900.00 900.00 900.00	6.33 N RANGE: 1700 b ERS	7.77 • 2300 MHz Still -73.6 -77.9 -60.8 -60.1 -67.1 -71.3 -71.3 -78.6 -64.8	-13.79 -13.992 13.992 15.696 15.696 16.675 -16.066 -15.663 -15.569 -1 15.569 -1 15.569 -1	53.4 21.3 -6.4 30.5 66.9 68.5 66.2 00.2 13.8	dB -42.019 -40.348 -39.169 -38.765 -38.026 -36.026 -36.166 -37.659 -37.939	Ang 134.1 119.9 110.8 107.2 103.3 99.6 96.3 96.9 96.9	BIAS = 1 Meg .580 .490 .410 .328 .246 .179 .123 .060 .062	5.00 VOLT <u>San</u> -72.0 -82.5 -91.8 -90.6 -105.8 -112.1 -111.9 -99.9 -68.1
000.0 INEARIZATION PARAMETE FREQ MHz 500.00 600.00 900.00 900.00 900.00 900.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	6.33 N RANGE: 1700 L ERS Meg .437 .345 .328 .363 .376 .411 .400 .376	7.77 o 2300 MHz -73.5 -77.5 -67.1 -60.8 -67.1 -67.9 -69.1 -67.1 -71.3 -71.3 -71.6 -64.8 -41.3	-13.79 -13.952 15.160 16.069 16.076 16.065 -1 15.060 -1 15.060 -1 15.050 -1 -1 15.050 -1 -1 15.050 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	53.4 21.3 -6.4 30.5 60.9 66.5 65.2 00.2 13.8 27.4	dB -42.019 -40.548 -39.169 -38.765 -38.267 -36.028 -36.028 -37.659 -37.659 -37.939 -37.710	Ang 134.1 119.9 110.8 107.2 103.3 99.8 96.9 96.9 95.9 95.9	BIAS = 1 Meg .500 .410 .328 .246 .179 .123 .060 .062 .075	5.00 VOLT -72.0 -72.0 -62.5 -01.8 -106.8 -106.8 -112.1 -111.9 -09.9 -68.1 -40.3
INE ARIZATION INE ARIZATIONI INE ARIZATION INE ARIZATIONA INE ARIZATIONA INTE ARIZI	6.33 N RANGE: 1700 b ERS	7.77 o 2300 MHz Stu -70,6 -70,6 -70,6 -60,1 -60,1 -60,1 -71,3 -70,6 -64,6 -64,8 -64,8	-13.79 -13.992 13.992 15.169 15.696 -16.066 -15.663 -15.569 -1 15.569 -1 15.569 -1 15.569 -1 15.569 -1 15.569 -1 15.569 -1 15.569 -1 15.569 -1 15.569 -1 15.665 -1 -1 15.665 -1 15.665 -1 15.665 -1 15.665 -1 15.665 -1 15.665 -1 15.665 -1 15.665 -1 -1 15.665 -1 15.665 -1 15.665 -1 -1 -1 15.665 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	53.4 21.3 -6.4 30.5 50.9 66.5 65.2 00.2 13.8 27.4 41.0	dB -42.019 -40.348 -30.169 -38.765 -36.267 -38.267 -36.265 -37.699 -37.699 -37.039 -37.039 -37.056	Ang 134.1 110.9 110.8 107.2 103.3 96.3 96.3 96.9 96.9 96.8 96.8 96.6	BIAS = 1 Meg .560 .490 .228 .246 .179 .123 .060 .062 .075 .103	5.00 VOLT 5.00 VOLT -72.0 -82.5 -01.8 -99.8 -112.1 -111.9 -99.9 -68.1 -40.3 -32.4
1000.0 INEARIZATION PARAMETE FREQ MHz 500.00 600.00 700.00 900.00 900.00 900.00 900.00 900.00 900.00 900.00 900.00 900.00 900.00 900.00 900.00	6.33 N RANGE: 1700 L ERS Meg 	7.77 o 2300 MHz S ₁₁ Ang -73.5 -67.1 -60.8 -67.9 -67.9 -67.9 -67.1 -67.9 -67.1 -67.9 -67.1 -67.9 -67.1 -67.1 -67.9 -67.1 -67.1 -67.9 -67.1 -67.9 -67.1 -67.9 -67.1 -67.9 -67.1 -67.9 -67.1 -67.9 -67.1 -67.9 -67.1 -67.9 -67.1 -67.9 -67.1 -67.9 -67.1 -67.9 -67.1 -67.9 -67.1 -67.9 -67.1 -67.9 -67.1 -67.9 -67.1 -67.9 -67.1 -67.9 -67.1 -67.9 -67.1 -67.9 -67.9 -67.1 -67.9 -67.1 -67.9 -67.1 -67.9 -77.9	-13.79 -13.79 -13.852 15.169 16.695 -16.695 -16.695 -15.863 -15.863 -15.863 -15.863 -15.863 -15.863 -15.863 -15.864	53.4 21.3 -6.4 30.5 60.9 66.5 66.2 00.2 13.8 27.4 41.0 54.9	dB -42.019 -40.348 -39.169 -36.765 -38.287 -38.026 -38.186 -37.839 -37.839 -37.939 -37.955 -37.930	Ang 134.1 110.8 110.8 107.2 103.3 99.8 98.9 96.9 96.8 95.9 96.6 95.9 96.6 97.0	BIAS = 1 580 490 410 328 246 179 123 060 062 075 103 138	5.00 VOLT Sa Ang -72.0 -82.5 -01.8 -106.8 -106.8 -111.9 -09.9 -68.1 -111.9 -69.3 -32.4 -31.2
1000.0 INEARIZATIONI INEARIZATIONI INEARI INEARIZATIONI INEARIZATIONI INEARIZATIONI INEARI	6.33 N RANGE: 1700 L ERS	7.77 o 2300 MHz Stn Ang -70,5 -70,5 -70,5 -60,1 -60,1 -71,3 -78,6 -68,8 -68,8 -106,7 -115,0	-13.79 -13.79 -13.992 15.169 16.075 16.075 16.075 16.075 16.076 15.069 -1 15.569 -1 -1 15.569 -1 -1 15.569 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	53.4 21.3 -6.4 90.5 60.9 66.5 66.9 66.2 00.2 13.6 87.4 41.0 64.9 67.8	dB -42.019 -40.348 -39.169 -38.765 -36.225 -36.025 -37.859 -37.939 -37.939 -37.930 -37.930 -37.930 -37.930	Ang 134.1 110.9 110.8 107.2 103.3 96.3 96.3 96.9 96.9 96.8 96.8 96.6	BIAS = 1 	5.00 VOLT 5.00 VOLT -72.0 -91.8 -90.6 -106.6 -106.6 -112.1 -111.9 -90.9 -96.9 -96.8 -106.4 -31.2 -33.2 -33.2
0000.0 INEARIZATION PARAMETE FREC MHz 500.00 600.00 900.00 900.00 900.00 900.00 900.00 900.00 900.00 900.00 900.00 900.00 900.00 900.00 900.00 900.00	6.33 N PANGE: 1700 I ERS Mag 437 .345 .363 .363 .363 .363 .363 .363 .363 .36	7.77 o 2300 MHz Ang -73.5 -67.1 -60.6 -67.9 -67.1 -77.3 -78.6 -67.1 -78.6 -67.1 -78.6 -67.1 -78.5 -67.1 -78.5 -67.1 -78.5 -67.1 -60.6 -67.1 -60.6 -67.1 -60.6 -67.1 -60.6 -67.1 -60.6 -67.1 -60.6 -67.1 -60.6 -67.1 -60.6 -67.1 -78.5 -67.1 -60.6 -67.1 -78.5 -67.5 -67.1 -78.5 -67.5 -78.5 -67.5 -78.5 -67.5 -78.5 -78.5 -67.5 -78.5 -78.5 -78.5 -78.5 -78.5 -71.5 -78.5 -71.5 -71.5 -78.5 -71.5	-13.79 -13.952 15.860 16.075 16.096 16.096 -15.563 -15.569	83.4 21.3 -6.4 30.5 60.9 68.5 66.2 00.2 27.4 41.0 54.9 67.8 77.9	dB -42.019 -40.348 -39.169 -36.765 -38.287 -38.026 -38.186 -37.839 -37.839 -37.939 -37.955 -37.930	Ang 134.1 118.9 110.8 107.2 103.3 99.8 96.9 96.9 96.9 96.9 96.9 96.6 97.0 97.1	BIAS = 1 580 490 410 328 246 179 123 060 062 075 103 138	5.00 VOLT Sa Ang -72.0 -82.5 -01.8 -106.8 -106.8 -111.9 -09.9 -68.1 -111.9 -69.3 -32.4 -31.2
1000.0 INEARLATION PARAMETI FREQ MHz 500.00	6.33 N PANGE: 1700 L ERS	7.77 o 2300 MHz Stn Ang -73,5 -47,1 -47,5 -47,6 -47,5 -47,6 -47,5 -47,6 -4	-13.79 -13.79 -13.992 15.992 15.999 16.075 -16.096 -16.096 -15.599 -15.599 -15.599 -1 -1 15.599 -1 -1 15.599 -1 -1 15.599 -1 -1 15.599 -1 -1 15.599 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	83.4 21.3 -6.4 30.5 60.9 68.5 68.5 68.2 27.4 41.0 54.9 67.8 67.9 68.9 62.9 62.9	dB -42.019 -40.348 -39.169 -38.765 -38.267 -38.267 -38.267 -38.265 -37.859 -37.859 -37.855 -37.856 -37.856 -38.856	Ang 134.1 110.8 107.3 107.1 107.3 107.1 10	BIAS = 1 	5.00 VOLT Sm -72.0 -82.5 -91.8 -90.6 -108.8 -108.8 -111.9 -90.9 -86.1 -40.3 -31.2 -33.2 -43.6 -44.0 -60.7
0000.0 INEARIZATION -PARAMETE FREQ MHz 500.00 500.00 700.00 900.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	6.33 N PANGE: 1700 I ERS Mag 437 .345 .363 .363 .363 .363 .363 .363 .363 .36	7.77 o 2300 MHz Ang -73.5 -67.1 -60.6 -67.9 -67.1 -77.3 -78.6 -67.1 -78.6 -67.1 -78.6 -67.1 -78.5 -67.1 -78.5 -67.1 -78.5 -67.1 -60.6 -67.1 -60.6 -67.1 -60.6 -67.1 -60.6 -67.1 -60.6 -67.1 -60.6 -67.1 -60.6 -67.1 -60.6 -67.1 -78.5 -67.1 -60.6 -67.1 -78.5 -67.5 -67.1 -78.5 -67.5 -78.5 -67.5 -78.5 -67.5 -78.5 -78.5 -67.5 -78.5 -78.5 -78.5 -78.5 -78.5 -71.5 -78.5 -71.5 -71.5 -78.5 -71.5	-13.79 -13.79 -13.952 13.952 13.952 15.969 16.965 -15.965 -15.965 -15.965 -15.965 -15.965 -1 15.960 -1 14.937 -1 14.931 -1 15.065 15.065 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	53.4 21.3 	dB -42.019 -40.345 -39.169 -38.765 -38.287 -38.226 -37.699 -37.699 -37.956 -37.956 -37.956 -37.956 -37.830 -37.830 -36.864 -36.966	Ang 134.1 110.9 110.3 107.2 107.2 107.3 99.3 99.9 99.9 99.9 99.9 99.9 99.9 9	BIAS = 1 Meg .560 .400 .410 .328 .246 .179 .123 .060 .062 .075 .103 .105 .225 .226 .105 .105 .227 .227 .227 .228 .229	5.00 VOLT 5.00 VOLT 5.00 VOLT 5.00 VOLT -72.0 -90.8 -102.1 -112.1 -111.9 -90.9 -90.9 -90.9 -90.9 -93.2 -33.2 -33.2 -33.6 -44.0 -80.7 -54.8
1000.0 INE ARIZATION -PARAMETE FREC MHz 500.00 600.00 800.00 800.00 800.00 800.00 800.00 800.00 800.00 800.00 800.00 800.00 800.00 800.00 800.00 800.00 800.00 1	6.33 N PANGE: 1700 I ERS	7.77 o 2300 MHz Ang -73.5 -67.1 -60.6 -67.9 -67.1 -71.3 -76.6 -67.1 -71.3 -78.6 -68.5 -68.5 -68.5 -68.5 -68.5 -68.5 -68.5 -69.1 -69.1 -69.1 -69.1 -69.3 -69.1 -69.3 -69.5 -79.5 -69.5	-13.79 -13.79 -13.992 15.992 15.999 16.075 -16.096 -16.096 -15.999 -16.096 -15.999	53.4 21.3 -6.4 30.5 60.9 64.5 60.9 64.5 13.8 77.4 41.0 64.9 67.8 66.9 87.8 66.9 87.8 77.8 77.8 77.8 77.8 77.8 77.8 77	dB -42.019 -40.348 -30.169 -38.267 -38.225 -38.225 -37.659 -37.659 -37.659 -37.659 -37.650 -37.650 -37.650 -36.664 -36.656 -38.656 -38.656	Ang 134.1 110.8 107.3 99.3 99.3 99.5 99.5 99.5 99.5 99.5 99	BIAS = 1 Msg .490 .490 .328 .246 .246 .246 .246 .060 .06	5.00 VOLT Sa -72.0 -82.5 -91.8 -90.8 -106.8 -106.8 -106.8 -111.9 -90.9 -90.9 -90.9 -90.9 -91.8 -90.9 -91.8 -91.8 -90.9 -90.9 -91.8 -90.9 -91.8 -91.8 -90.9 -90.9 -91.8 -90.9 -90.
1000.0 INEARIZATION -PARAMETI FREQ MHz 500.00 600.00 800.00 800.00 800.00 800.00 100.00 800.00 100.00 800.00 100.00 800.00 100000000	6.33 RANGE: 1700 I ERS Mag 437 .345	7.77 o 2300 MHz Still -73.5 -77.5 -77.5 -77.5 -77.5 -77.6 -77.6 -77.6 -77.6 -77.6 -77.6 -77.7 -77.6 -77.1 -77.5 -77.1 -77.5 -77.6 -77.5 -77.5 -77.6 -77.5 -75.5	-13.79 -13.79 -13.852 15.160 16.605 16.605 15.650 -1 15.650 -1 15.650 -1 15.650 -1 14.450 -1 14.450 -1 14.450 -1 15.055 1 15.055 -1 15.055	51.4 21.3 -6.4 30.5 60.0 64.5 60.0 64.5 27.4 41.0 64.9 77.8 64.9 65.9 65.9 65.9 65.9 77.5	dB -42.019 -40.348 -30.189 -38.287 -38.287 -38.026 -37.839 -37.839 -37.859 -37.956 -37.950 -37.956 -37.950 -37.956 -38.664 -38.566 -38.566 -38.566	Ang 194.1 118.9 110.2 107.	BIAS = 1 	5.00 VOLT 5.00 VOLT
1000.0 INFARIZATION -PARAMETE FREC MHz 500.00 600.00 800.00 800.00 800.00 800.00 800.00 800.00 800.00 800.00 800.00 800.00 800.00 10	6.33 N PANGE: 1700 I ERS Mag Mag 345 345 353 363 371 398 411 400 400 400 378 392 290 207 207 207 207 209 146 166 166 356	7.77 o 2300 MHz Stu -73.5 -77.5 -60.6 -67.1 -60.6 -67.1 -60.6 -67.1 -71.3 -78.6 -68.1 -71.3 -78.6 -69.7 -115.5 -115.5 -115.5 -115.5 -115.6 -15.6 -15.6 -15.6 -15.6 -15.6 -1	-13.79 -13.79 -13.992 13.992 15.090 15.090 15.090 -16.075 -16.066 -15.863 -15.569 -1 15.569 -1 14.857 -1 14.857 -1 14.857 -1 14.857 -1 15.569 -1 14.857 -1 15.569 -1 15.57 -1 15.57 -1 15.77 -	83.4 21.3 -6.4 303.5 000.9 000.9 000.9 000.9 000.9 00.9 00	dB -42.019 -40.348 -39.165 -38.267 -38.267 -38.267 -38.267 -38.268 -37.699 -37.699 -37.930 -37.930 -37.930 -37.935 -37.930 -37.936 -38.664 -38.696 -38.696 -38.6967 -38.194 -38.195	Ang 134.1 134.1 107.2 107.	BIAS = 1 	5.00 VOLT 5.00 VOLT 5.00 VOLT 5.00 400 -72.0 -70.0 -
1000.0 INE ARIZATION -PARAMETI FREC MHz 500.00 600.00 800.00 800.00 800.00 100.00 800.00 100.00 800.00 100.00 800.00 1000	6.33 N PANGE: 1700 I ERS Meg 4.37 .345 .329 .361 .311 .411 .411 .417 .329 .363 .363 .363 .363 .363 .364 .365 .355 .266 .355 .266 .266 .266 .266 .266 .266 .355 .266 .26	7.77 o 2300 MHz S ₁₁ Ang -73.5 -77.5 -77.5 -77.5 -77.5 -77.6 -69.9 -77.6 -69.9 -77.8 -69.9 -77.8 -69.9 -77.5 -69.9 -77.5 -69.1 -69.9 -77.5 -69.9 -77.5 -69.9	-13.79 -13.79 -13.852 15.160 16.075 16.09	51.4 21.3 -5.4 30.5 60.9	45 -42,019 -40,348 -39,169 -39,169 -39,267 -39,267 -37,059 -37,059 -37,059 -37,050 -37,050 -37,050 -57,050 -57,050 -57,050 -58,056 -58,056 -58,059 -38,059 -39,0104 -39,010	Ang 134.1 134.3 107.2 107.	BIAS = 1 	5.00 VOLT 8
PARAMETT FREQ MHz 500,00 600,00 600,00 600,00 600,00 100,000 100,00000000	6.33 N PANGE: 1700 I ERS Mag 345 345 353 363 371 396 411 400 400 400 400 378 392 299 209 209 209 209 209 209 209 209 2	7.77 o 2300 MHz Stu -73.5 -67.1 -60.6 -67.9 -67.1 -60.6 -67.1 -71.3 -78.6 -68.1 -71.3 -78.6 -69.7 -115.5 -15.5 -15.	-13.79 -13.992 13.992 15.169 15.669 16.075 -16.066 -15.669 -15.669 -15.669 -15.669 -15.669 -15.669 -1 16.066 -1 15.569 -1 16.066 -1 16.066 -1 15.569 -1 16.065 -1 16.065 -1 16.065 -1 16.065 -1 16.065 -1 16.065 -1 16.05 -1 16.055 -1	83.4 21.3 -6.4 300.5 500	45 -42.019 -40.348 -38.169 -38.267 -38.267 -38.267 -37.469 -37.469 -37.469 -37.450 -57.4710 -57.4710 -57.476 -57.476 -57.455 -57.476 -38.564 -39.564 -	Ang 134.1 134.1 107.2 107.2 103.3 94.9 94	BIAS = 1 	5.00 VOLT B Ang -72.0 -72.0 -82.9 -05.9 -112.1 -111.9 -06.9 -112.1 -111.9 -06.9 -112.1 -111.9 -06.9 -06.9 -05.7 -33.2 -33.2 -33.2 -33.2 -54.8 -54.8 -56.8 -57.6
1000.0 INE ARIZATION -PARAMETI FREC MHz 500.00 600.00 800.00 800.00 800.00 100.00 800.00 100.00 800.00 100.00 800.00 1000	6.33 I PANGE: 1700 I ERS Meg 437 .345 .328 .361 .378 .363 .378 .363 .378 .378 .378 .363 .378 .378 .363 .378 .363 .378 .363 .378 .363 .378 .365 .378 .365 .378 .365 .378 .365 .378 .365 .378 .365 .3788 .3788 .3788 .3788 .3788 .3788 .3788	7.77 o 2300 MHz S11 Ang -73.5 -73.5 -77.5 -77.5 -77.5 -77.6 -77.6 -77.6 -77.6 -77.6 -77.6 -77.5 -77.6 -77.5 -7	-13.79 -13.79 -13.852 15.160 16.605 -16.055 -16.055 -16.055 -16.055 -16.055 -16.055 -17.055	83.4 21.3 21.3 21.3 21.3 21.3 21.3 21.3 21.3	45 42,019 40,348 -39,169 -38,765 -38,267 -38,267 -37,859 -37,859 -37,859 -37,859 -37,859 -37,870 -37,859 -37,870 -37,859 -37,859 -38,596 -38,596 -38,997 -38,987 -39,915	Ang 134.1 134.3 119.9 110.2 107.	BIAS = 1 560 490 410 328 246 179 123 060 062 075 103 106 166 166 2075 103 127 228 226 226 221 192 162 162 162 164 165 166 166 166 166 166 166 166	5.00 VOLT:
1000.0 INF ARIZATIONPARAMETI FREQ MHz 500.00 600.00 600.00 600.00 600.00 200.00 200.00 200.00 600.00 200.00 600.00 200.00 100.00 200.00 100.00 200.00 100.00 200.00 100.00 200.00 100.00 200	6.33 N PANGE: 1700 I ERS Mag 345 345 353 363 371 396 411 400 400 400 400 378 392 299 209 209 209 209 209 209 209 209 2	7.77 o 2300 MHz Stu -73.5 -67.1 -60.6 -67.9 -67.1 -60.6 -67.1 -71.3 -78.6 -68.1 -71.3 -78.6 -69.7 -115.5 -15.5 -15.	-13.79 -13.852 15.869 16.605 16.605 16.605 16.605 16.605 16.605 16.605 16.605 16.605 16.605 16.605 11.800 11.80	83.4 21.3 -6.4 300.5 500	45 -42.019 -40.348 -38.189 -38.287 -38.287 -38.287 -37.489 -37.489 -37.489 -37.495 -37.495 -37.4710 -37.495 -37.476 -38.584 -38.584 -38.585 -38.595 -38.595 -38.595 -39.194 -39.194	Ang 134.1 134.1 107.2 107.2 103.3 94.9 94	BIAS = 1 	5.00 VOLT B Ang -72.0 -72.0 -82.9 -05.9 -112.1 -111.9 -06.9 -112.1 -111.9 -06.9 -112.1 -111.9 -06.9 -06.9 -05.7 -33.2 -33.2 -33.2 -33.2 -54.8 -54.8 -56.8 -57.6

UTC-TC-1, p. 18-42

UTO-TO-8U, p. 16-48

DESCRIPTION

FEATURES

2300 MHz

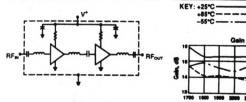
The 2321 Series is a two-stage thin-film bipolar RF amplifier using resistive feedback and active bias for temperature compensation and increased immunity to bias voltage variations. input/output blocking

capacitors couple RF through the amplifier, while a low VSWR is maintained through inductive tuning. The 2321 Series amplifiers are available in either the TO-8 hermetic case or connectored TC-1 package.

ELECTRICAL SPECIFICATIONS (Measured in a 50-ohm system @+15 VDC nominal unless otherwise noted)

APPLICATIONS

• Telemetry


• RF/IF Amplification

Military Communications

Symbol	Characteristic	Typical	Guarantee		
Symbol	Characteristic	To = 25°C	Te = 0° to 50°C	Te = -55" to +85"C	Unit
BW	Frequency Range	1700-2300	1700-2300	1700-2300	MHz
GP	Small Signal Gain (Min.)	15.0	14.0	13.0	dB
-	Gain Flatness (Max.)	±0.5	±1.0	±1.0	dB
NF	Noise Figure (Max.)	7.0	8.0	8.5	dB
Pia	Power Output @ +1 dB Compression (Min.)	+12.0	+10.0	+9.0	dBm
-	Input VSWR (Max.)	<1.8:1	2.0:1	2.0:1	0.011
-	Output VSWR (Mex.)	<1.6:1	2.0:1	2.0:1	_
IP,	Two Tone 3rd Order Intercept Point	+20.0	_		dBm
IP,	Two Tone 2nd Order Intercept Point	+35.0		_	dBm
HP,	One Tone 2nd Harmonic Intercept Point	+41.0	_	_	dBm
6	DC Current	70	-		mA

(@ +15 VDC unless otherwise noted)

SCHEMATIC

MAXIMUM RATINGS

DC Voltage	 								+17	Volt
Continuous RF Input Power	 								+18	dBm
Operating Case Temperature	 					-6	5.0	. 10	+1	15-0
Storage Temperature										
"R" Series Burn-In Temperature										

1999 3000 2100 Frequency, MHz Frequency, MHz THERMAL CHARACTERISTICS Junction Temperature Above Case Temperature 19/34°C MTBF (MIL-HDBK-217E, Aur @ 90°C) 366,000 Hrs. *For further information, see High Reliability section, p. 17-2.

TYPICAL PERFORMANCE OVER TEMPERATURE

WEIGHT: (typical) UTO-2.1 grams; UTC-21.5 grams

Avantab Inc . 481 Caltanurood Drive, Mitpline, CA 95036 . Cantact your local repr er er field sales office for further information. Listinge are in the bash of this Data Book

-14.1 Aventek, Inc. - 481 Cottomwood Drive, Milphae, CA 95035 - Contact your local I utor or field agles office for further information. Livilinge are in the back of this Data Book

3-195

WJ-M2T/M2TC

TRIPLE-BALANCED MIXER

- LO DRIVE +13 dBm (nominal)
- HIGH INTERCEPT +22 dBm (TYP.)
- ♦ HIGH ISOLATION 40 dB (TYP.)

*MIL-M-28837 Screening Available (See "QPL Mixers" Section)

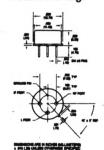
Guaranteed Specifications^{1,2}

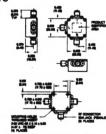
Characteristics	Min.	Тур.	Max.	Test Conditions	
SSB Conversion Loss				IR & IL 10 to 2400 MHz	
		7.5 dB	9.5 dB	f ₁ = 50 to 1000 MHz	
and		9.0 dB	10.0 dB	f _l =10 to 1000 MHz	
SSB Noise Figure		7.0 dB	8.5 dB	f _R & f _L 500 to 1500 MHz f _I =10 to 1000 MHz	
Isolation					
fL at R	35 dB	40 dB		fL 10 to 1200 MHz	M2TC
fLati	35 dB	40 dB		-	MZIC
fL at R	30 dB	40 dB		f 1200 to 2400 MHz	
f_ at I	30 dB	40 dB		-	
Conversion Compression		1.0 dB		f _R Level = +11 dBm f _L Level = +13 dBm	
Third Order Intercept Point		+22 dBm		f _L Level = +16 dBm f _{R1} , f _{R2} Level = 0 dBm	

n with nominal LO drive and d se for M2TC are 0.5 dB worse than val d over O"C to SO"C

Absolute Maximum Ratings

Operating Temperature	-54°C to +100°C
Storage Temperature	-65°C to +100°C
Peak Input Power	+25 dBm at +25°C, derate at +4 dBm/°C
Peak Input Current at +25°C	


Weight M2T: 2 grams (0.07 oz.) max.

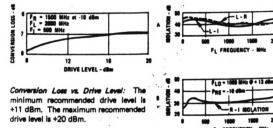

M2TC: 22 grams (0.78 oz.) max.

Outline Drawings

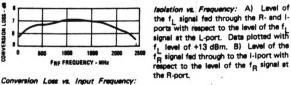
M2T

Typical Performance at 25°C

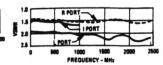
Conversion Loss


1000 1500 200

Conversion loss of the mixer when used in an SSB system. The frequency ordi-


nate refers to the R-port (f_R) with f_I equal to 100 MHz. Data plotted with

f, level of +13 dBm.


FRF FREQUENCY - MH

Isolation

2000 250 FR FREQUENCY . MHz the $f_{\rm L}$ signal fed through the R- and I-ports with respect to the level of the $f_{\rm L}$ signal at the L-port. Data plotted with level of +13 dBm. B) Level of the

PRF = PIF = -10 dBm PLO = +13 dBm fLO = 500 MHz

VSWR

VSWR vs. Frequency: VSWR of the L-I- and R-ports in a 50-ohm system with f, at +13 dBm. Some variation in the R-port VSWR wil occur as a function of the L-port frequency. Both R-port and I-port VSWR are plotted for f, at 500 MHz. Also shown is the L-port VSWR.

Two-Tone Intermodulation Performance

fRF1 = 1100 MHz fRF2 = 1110 MHz PRFI = PRF2 = 0 dBm fLO = 1600 MHz PLO = +16 dBm f1 = 500 MHz @ 10 dB/div

Two-Tone Intermodulation Performance: The photo displays typical relative suppresion of 3rd order two-tone measurement, with P_{FR}1 equal to PFR2 at 0 dBm.

3.4 T104, 2.3 GHz CONVERTER MODULE

T104 Band Coverage and LO Frequencies

This section describes the T104 frequency converter that converts the S-Band 2.3 GHz (13 cm) Front-End signal to the standard 500 to 1000 MHz IF band. Since RF bandpass filters are installed in the Front-End, they are not included in the T104 RF circuitry; these filters have a 2400 MHz center frequency, 800 MHz bandwidth at the -3 dB points, and the band edges are 2.0 and 2.8 GHz, respectively.

This band uses LO frequencies of 2.9 and 3.1 GHz; 3.4 GHz may also be used although it is not specified in the LO frequency table in Section 6.

When the 2.9 GHz LO is mixed with the 2.0 to 2.8 GHz Front-End RF input, the mixer IF port spectrum is 100 to 900 MHz. The K&L 6B120-750/X550 filter passes the standard 500 to 1000 MHz portion and attenuates frequencies outside this passband. The converted portion of the Front-End RF spectrum is 2.0 to 2.4 GHz and the 2.4 to 2.8 GHz portion is attenuated by the IF filter.

When the other LO frequencies are used, the following tabulation shows the mixer IF port spectrum, converted and attenuated bands. The converted band is that passed by the 750/X550 IF Bandpass filter and the attenuated bands are mixer IF port frequencies attenuated by the filter. The Mixer IF port frequencies are in MHz, converted and attenuated in GHz.

LO Freq	Mixer IF Port	Converted	Attenuated
2.9	100 to 900	2.0 to 2.4	2.4 to 2.8
3.1	300 to 1100	2.1 to 2.6	2.0 to 2.1 2.6 to 2.8
3.4	600 to 1000	2.4 to 2.8	2.0 to 2.4

Since the LO frequencies are higher than the RF frequencies, the IF signal spectrum is reversed relative to the RF band; the high end of the RF band is converted to the low end of the IF band, and vice versa. When testing the T104 it is important to remember this effect.

T104 Size and Location

T104 is a double-width module installed in Rack B, Bin C, Slots 1-2.

T104 Drawings and Data Sheets

The following T104 functional and assembly drawings are found at the end of this section.

C53500K008, Rev D	- T104 2.3 GHz Converter Module Block Diagram
D53500A016, Rev B	- T104 2.3 GHz Converter Module Assembly
A53500B010, Rev B	- T104 2.3 GHz Converter Module Assembly BOM

Data sheets for the VARIL DBM-1150H mixer, and Miteq AMF-2B-2830-18P amplifier follow the drawings. Data sheets for the Ditom D31-2040, KD1-Triangle D307M power divider and Narda 4772-X attenuator are included in the Appendix, Section 6.

T104 Difference from the General Converter Block Diagram

The difference between the T104 Block Diagram and the general converter block diagram of Section 2.1 is the omission of the RF bandpass filters.

T104 Specifications

Nominal Gain, dB	14	Gain Flatness, ± dB	2	LCP-RCP Path Isol, dB	65
Nom Output Pwr a Std Syst Temp, dBm	-40	Min Out Pwr @ 1% Compression, dBm	+4	Nom Output Pwr Density, dBm/MHz	-67
Avg Noise Temp, K	10,000	Noise Temp for 1% added Syst Noise, K	20,000	Nom LO Pwr input, dBm	+2
Avg Noise Figure, dB	15.2	Noise Figure for 1% added Syst Noise, dB	18.4		
15 Volt Power Req't, mA	650				

Unwanted Sideband and Image Band Attenuation

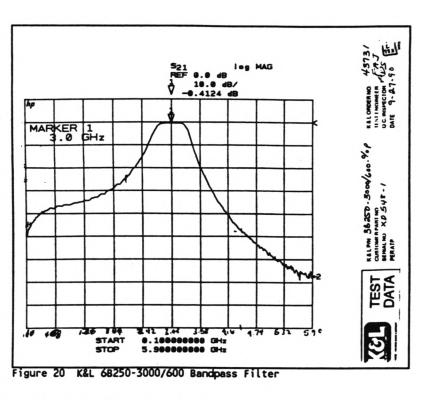
Unwanted sidebands are attenuated by the K&L 6B120-750/X550 IF bandpass filter described in Section 2.5. Image response bands are attenuated by the 2.3 GHz Front-End's 2400/800 Bandpass filter, which has -3 dB frequencies of 2.0 and 2.8 GHz. The following tabulation shows the LO frequency, unwanted (UWSB) and image sidebands in GHz and the attenuation of these bands in dB.

LO Freq	UWSB	UWSB Attn	lmage
2.9	4.9 to 5.7	»70	3.4 to 3.9
3.1	5.1 to 5.9	»70	3.6 to 4.1
3.4	5.4 to 6.2	»70	3.9 to 4.4

The worst case image frequency for these three LO's is 3.4 GHz, which is attenuated by the Front-End's 2400/800 Bandpass filter.

Noise Temperature

The T104 noise temperature is a composite value that is a function of the noise temperatures of the mixer, Amp/Attenuator and Amp/Divider. The average of the measured noise temperatures of the LCP and RCP channels is 10,000 K. A T104 noise temperature of 20,000 K would add 1 K to the system temperature.


Mixer

The VARI-L DBM 1150H mixer is an important component; a data sheet follows the drawings at the rear of this section. This mixer is designed for LO and RF frequencies of 1.6 to 3.2 GHz, IF frequencies of DC to 1000 MHz and a nominal LO drive of +13 dBm. In the 2.3 GHz frequency band, the typical conversion loss is 7.0 dB and the typical noise figure is 7.0 dB.

RCP-LCP Isolation

The RCP-LCP isolation is a function of the isolation properties of two shunt paths - the isolation between the two mixer LO ports and the transfer switch leakage. A K&L 3B250-3000/600 bandpass filter (next page) in the LO drive path provides additional out-of-band isolation to the mixer LO port paths. As shown in the table above, the module's RCP-LCP path isolation specification is 65 dB.

The VARI-L **DBM-1150H** mixer LO to RF isolation is 30 dB and the LO to IF isolation is 15 dB. The KDI/Englemen D307M power divider port-to-port isolation is 21 dB. At the 3.1 GHz LO frequency, the isolation of this shunt path is the sum of the two mixer LO port's to RF port isolation and the divider's isolation; this is 72 dB. Outside the 600 MHz filter bandpass, the isolation is increased by the filter's attenuation. At the lowest RF frequency (2.0 GHz) the filter attenuation is about 35 dB and at the highest RF frequency (2.8 GHz), the attenuation is about 10 dB. The resultant mixer LO port to mixer LO port isolation for RF frequencies is roughly 90 dB. For frequencies in the 500 to 1000 MHz IF band, the filter's attenuation is about 36 dB; the resultant mixer LO port to mixer LO port isolation is about 100 dB.

isolation of the RLC SRC-TC-R-D transfer switch at 2.3 GHz is about 85 dB.

The typical RCP-LCP path

VSWR's

The input VSWR, about 1.3:1 is the composite of the VSWR's of the transfer switch (1.15:1) and isolator (1.25:1). The output VSWR is the composite VSWR of the Amp/Divider which is 1.5:1.

RF Input Circuitry Losses

The losses in the RF input path are the insertion losses of the transfer switch (0.1 dB) and the isolator (0.4 dB).

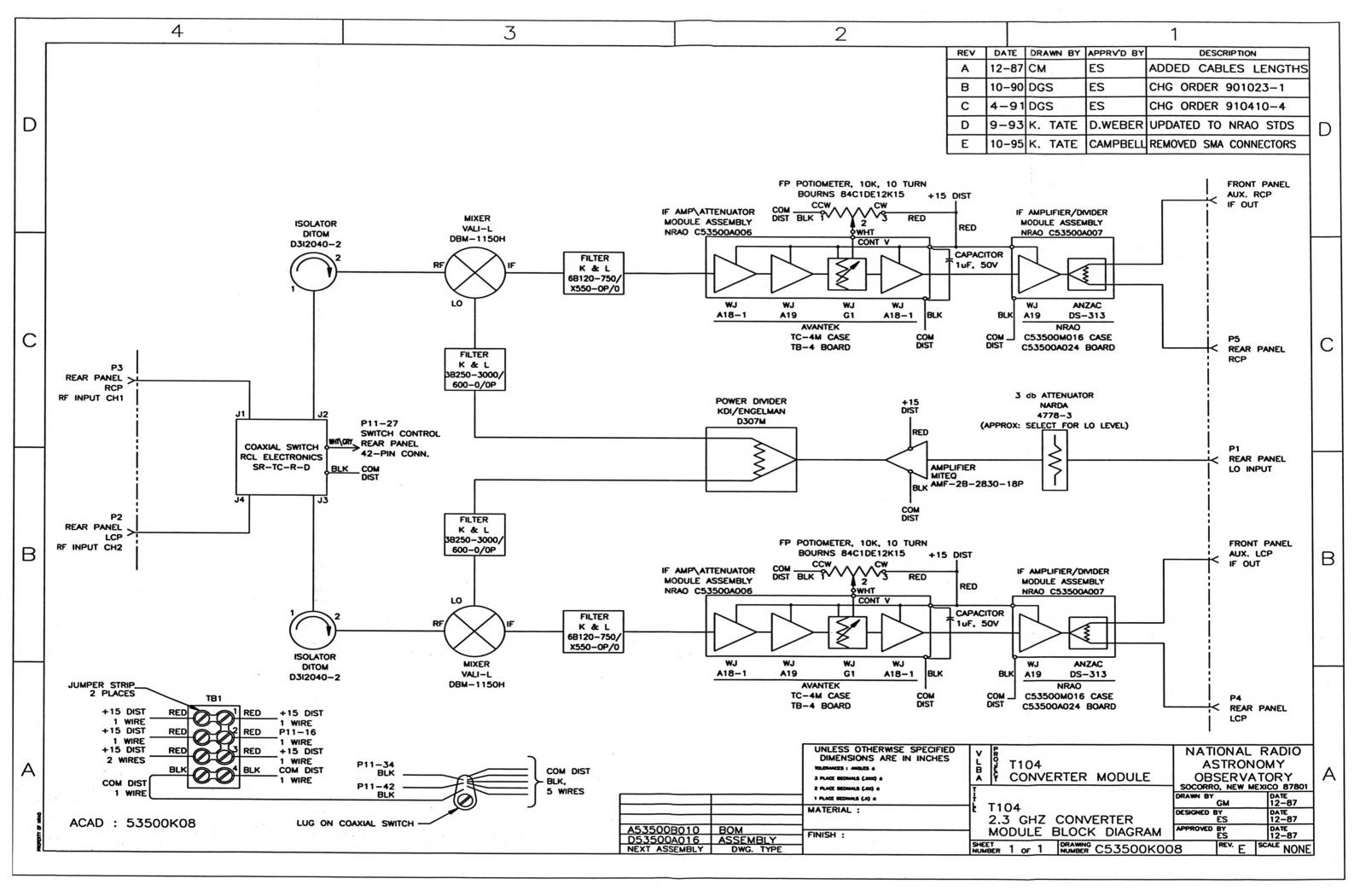
IF Circuitry

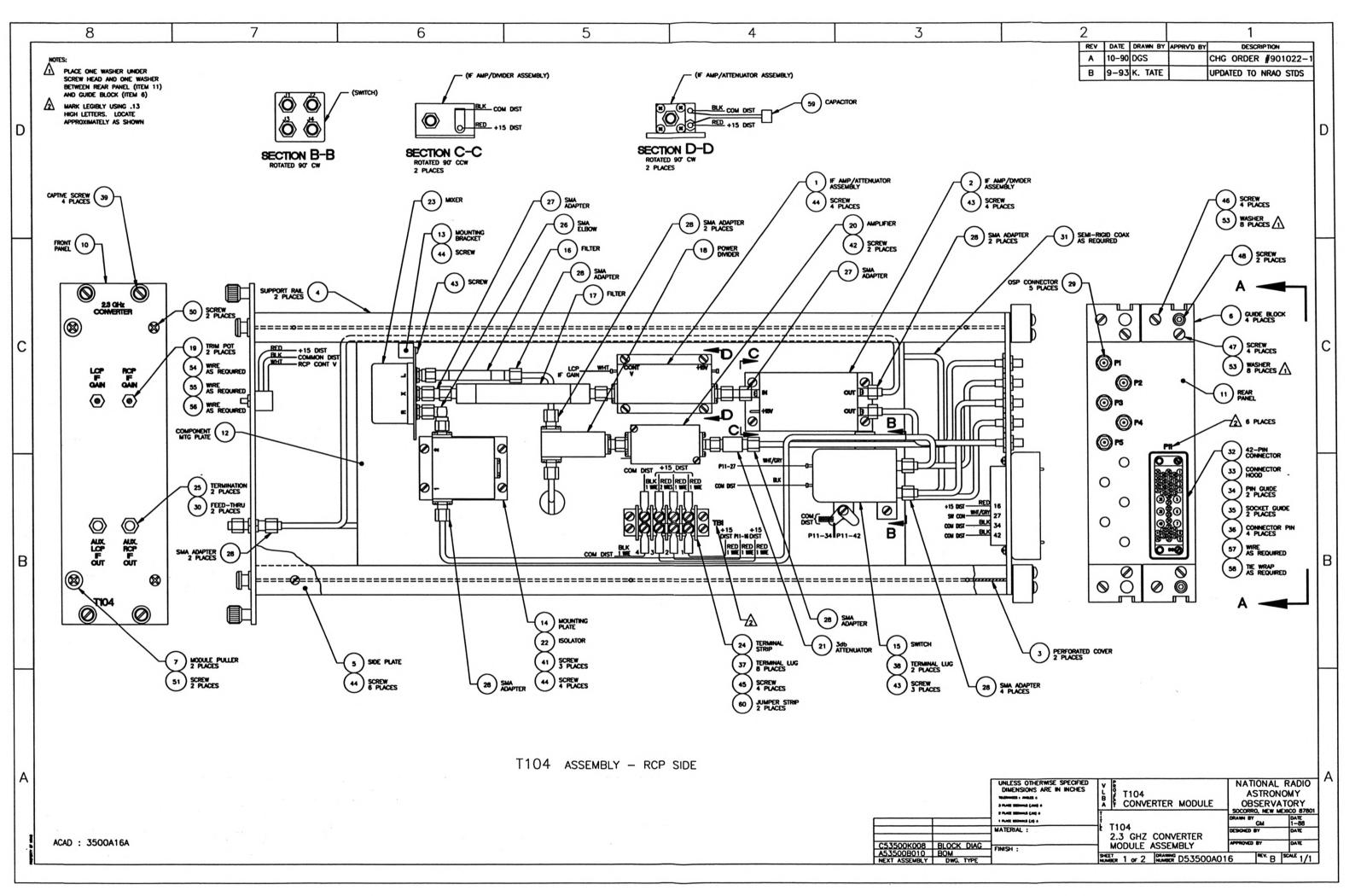
The IF path Amp/Attenuator, Amp/Divider and 6B120-750/X550 IF bandpass filter were described in Section 2.5. IF gain adjustment is described in Test I, Section 2.7.

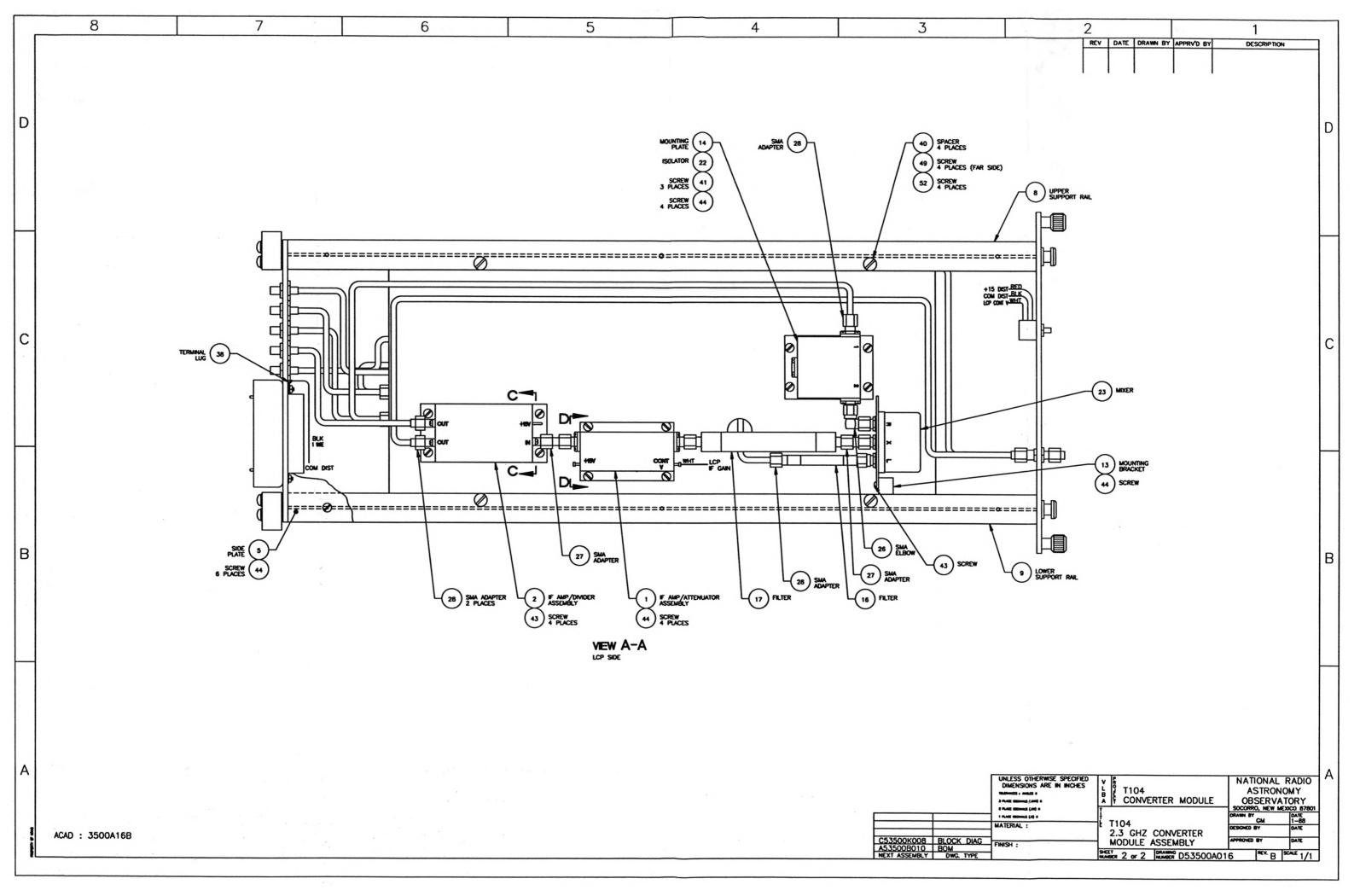
LO Drive Circuitry

The LO drive amplifier is a MITEQ AMF-2B-2830-18P amplifier that is a special order adaption of the AMF-2B amplifier series for NRAO. The amplifier is characterized over the T104 2.8 to 3.0 Ghz LO frequency range. The gain is 15 dB and is flat over this band within \pm 0.5 dB; the noise figure is about 3.3; maximum input and output VSWR is 1.9 and the 1 dB compression point is about 18.5 dB. During module alignment, the amplifier gain is adjusted to produce a +13 dBm drive to the DBM-1150H mixers. The gain is determined by the selection of the appropriate NARDA 4772-X pad. The LO amplifier gain adjustment procedure is described in Test I, LO Powr, Gain and Flatness, Section 2.7.

The LO isolation filter is a K&L 3B250-3000/600; the attenuation plot is shown in Figure 20.


RF Switching


The T104 transfer switch, S104A is an an RLC SR-TC-R-D transfer switch; some T104's may use the Transco 710C70100 as an alternate unit. The transfer switch is driven by M102, address 13H, bit 0.


T104 Power Circuitry

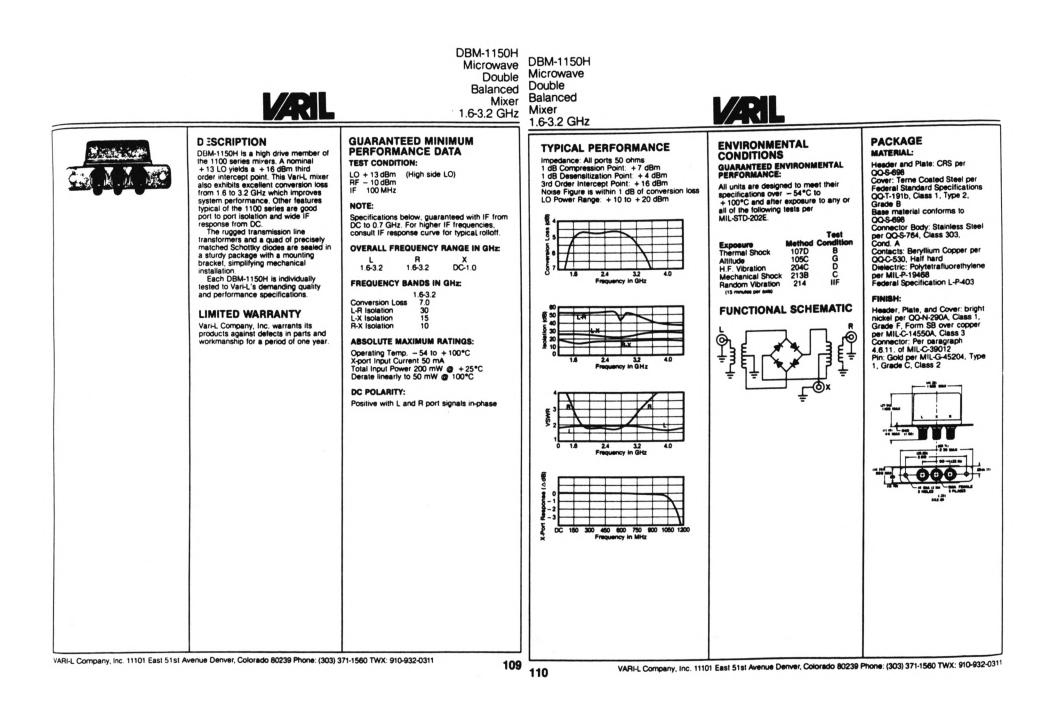
All T104 active components are powered by +15 volts. +15 volts from P11-16 is connected to TB1 (terminal strip 1) terminals 1-4 where it is distributed to the amplifiers. The common returns for these devices are connected to a frame ground lug that is connected to P11-34 and P11-42. This ground is also the ground return for the +28 volt drive to the transfer switch.

The Amp/Attenuator has a 1.0 uF bypass capacitor connected across the amplifier's power terminals.

		·······		REVISIONS				· · · · · · · · ·
REV	DATE	DRAINN BY	APPRVD BY				DESCRIPTION	
В	9-93	K. TATE		UPDATED	то	NRAO	STANDARDS	
·····								
		i						
		1						
	1							
DAMN BY			DATE				1	
K	. TATE		9-93 Date				C53500K008	BLOCK DIAG
APPROVED BY							D53500A016	ASSEMBLY
			DATE				NEXT ASSY	USED ON
							· · · · · · · · · · · · · · · · · · ·	·····
				PRO IPT				
NA		ADIO ASTRO	MOMY				NVERTER MODU	
		ERVATORY			T1()4 2.	3 GHZ CONVERT Y BOM	ER MODULE
	BOCORRO, N	EW MEXICO 878	101	B A owe No.	_	SEMBL	· · · · · · · · · · · · · · · · · · ·	Ξ= 1 or 5
				I INO	<u> </u>	NUDU	10	<u> </u>

X	ELECTRICAL	X MECHANICAL	BOM #	REVB	DATE 9-14-93 PAGE 2 OF 5
MODULE		2.3 GHZ CONVERTER	DWG#	SUB ASSY	
SCHEM. DW	G#	LOCATION	QUA/SYS.	PREPRD BY <u>K</u> .	TATE APPRVD BY D. WEBER

ITEM #	REF DES	MANUFACTURER	PART NUMBER	DESCRIPTION	TOTAL QTY.
1		NRAO	C53500A006	ASSY, IF AMP/ATTENUATOR	2
2		NRAO	C53500A007	ASSY, IF AMP/DIVIDER	2
3		NRAO	C53306M014-1	COVER, PERFORATED	2
4		NRAO	C53306M016	RAIL, SUPPORT	2
5		NRAO	C53306M017	PLATE, SIDE	2
6		NRAO	B53306M018	BLOCK, GUIDE	4
7		NRAO	A53306M038	PULLER, MODULE	2
8		NRAO	B53500M001	RAIL, UPPER	1
9		NRAO	B53500M002	RAIL, LOWER	1
10		NRAO	B53500M003	PANEL, FRONT	1
11		NRAO	B53500M004-1	PANEL, REAR	1
12		NRAO	D53500M034	PLATE, COMPONENT MOUNTING	1
13		NRAO	B53500M035	BRACKET, MIXER MOUNTING	2
14		NRAO	B53500M036	PLATE, ISOLATOR MOUNTING	2
15		RLC ELECTRONICS	SR-TC-R-D	SWITCH, COAXIAL	1
16		K&L	38250-3000/600-0-0P	FILTER	2
17		K&L	6B120-750/X550-0-0P	FILTER	2
18		KDI/ENGELMAN	D307M	DIVIDER, POWER	1
19		BOURNS	84C1DE12K15	TRIM POT, 10K PANEL	2
20		MITEQ	AMF-28-2830-18P	AMPLIFIER	1


X ELECTRICAL X MECHANICAL BOM # A53500B010 REV B DATE 9-14-93 PAGE 3 OF 5						
ITEM #	REF DES	MANUFACTURER	PART NUMBER	DESCRIPTION	TOTAL QTY.	
21		NARDA	4778-3	ATTENUATOR, 3db	1	
22		DITOM	D312040-2	ISOLATOR	2	
23		VARI-L	DBM1150H	MIXER	2	
24	TB1	TRW CINCH	4-140	STRIP, TERMINAL	1	
25		SOLITRON	8018-6005	TERMINATION, 500	2	
26		SOLITRON	2993-6005	ELBOW, SMA MALE/MALE	2	
27		SOLITRON	2993-6001	ADAPTER, SMA MALE/MALE	4	
28		SOLITRON	2902-6001	ADAFTER, SMA MALE/.141 TUBE	16	
29	P1 - P5	OMNI-SPECTRA	4503-7941-00	CONNECTOR, OSP .141 MALE	5	
30		OMNI-SPECTRA	2084-0000-00	FEED-THRU, SMA	2	
31		PRECISION TUBE	AA50141	COAX, .141. SEMI-RIGID	AR	
32	P11	АМР	204186-5	CONNECTOR BLOCK, 42-PIN	1	
33		АМР	202394-2	CONNECTOR HOOD, 42-PIN	1	
34		AMP	200833-2	PIN, GUIDE	2	
35		AMP	203964-5	SOCKET, GUIDE	2	
36		АМР	201578-1	PIN, 16 GA. CONNECTOR	4	
37		ETC/MOLEX	AA-832-06	LUG, TERMINAL	8	
38				LUG, TERMINAL	3	
39		SOUTHCO	47-11-204-10	SCREW, CAPTIVE	4	

BILL OF MATERIAL ACTOMICALLY ADOCEDIATODY

		NATIONAL	RADIO ASTRONOMY OBSERVATORY		
X	ELECTRIC		#A53500B010REV		OF <u>5</u>
ITEM #	REF DES	MANUFACTURER	PART NUMBER	DESCRIPTION	TOTAL QTY.
40		H.H. SMITH	9244	SPACER, 8-32UNC-2B x .44 BOTH ENDS	4
41				SCREW, FLAT HEAD, SS, 2-56UNC-2A x .25	6
10					

ITEM #	REF DES	MANUFACTURER	PART NUMBER	DESCRIPTION	QTY.
40		H.H. SMITH	9244	SPACER, 8-32UNC-2B x .44 BOTH ENDS	4
41				SCREW, FLAT HEAD, SS, 2-56UNC-2A x .25	6
42				SCREW, PAN HEAD, SS, 2-56UNC-2A x .50	2
43				SCREW, PAN HEAD, SS, 4-40UNC-2A x .19	13
44				SCREW, PAN HEAD, SS, 4-40UNC-2A x .25	30
45				SCREW, PAN HEAD, SS, 4-40UNC-2A x .38	4
46				SCREW, PAN HEAD, SS, 6-32UNC-2A x .75	4
47				SCREW, PAN HEAD, SS, 6-32UNC-2A x .88	4
48				SCREW, SOCKET HEAD, SS, 6-32UNC-2A x .38	2
49				SCREW, PAN HEAD, SS, 8-32UNC-2A x .25	4
50				SCREW, FLAT HEAD, SS, HP GREY, 6-32UNC-2A x .38	2
51				SCREW, FLAT HEAD, SS, 6-32UNC-2A x .75	2
52				SCREW, FLAT HEAD, SS, 8-32UNC-2A x .63	4
53				WASHER, EXT. TOOTH #6	16

<u> </u>	ELECTRIC	AL X MECHANICAL BOM	#A53500B010 REV	DATE 9-14-93 PAGE 5	_0F <u>5</u> _
ITEM #	REF DES	MANUFACTURER	PART NUMBER	DESCRIPTION	TOTAL QTY.
54		АГЪНА	7055	WIRE, WHT #22	AR
55		ALPHA	7055	WIRE, BLK #22	AR
56		Alpha	7055	WIRE, RED #22	AR
57	·····	АLРНА	7055	WIRE, BLK/GRY #22	AR
58				WRAP, TIE	AR
59		SPRAGUE	2C20Z50105M050B	CAPACITOR, 1µf, 50V	2
60	TB1	TRW CINCH	140J-1	STRIP, JUMPER	2
61					
62					
63					
64					
65	·····				
66					
67	·····				
68					
69					
70	·				
71					
72					
73					
74					
75					

Wideband Medium Power Amplifiers

Model Number	Freq. (GHz)	Gain (Min.) (dB)	Gain Var. (Max.) (±dB)	Noise Figure (Max.) (dB)	(SWR	Dynamic Range I dB Gain Comp. Output (Min., dBm)	Nom. DC	Outline
				Standard H	lousing	5			
				2-4 G	Hz				
AMF-18-2040-17P	2-4	10	1.0	5.0	2:1	2:1	+17	90	8
AMF-2B-2040-17P	2-4	20	1.0	4.0	2:1	2:1	+17	140	9
AMF-3B-2040-17P	2-4	30	1.0	3.5	2:1	2:1	+17	180	10
AMF-48-2040-17P	2-4	40	1.5	3.5	2:1	2:1	+17	220	п
AMF-18-2040-20P	2-4	10	1.0	6.0	2:1	2:1	+20	130	8
AMF-2B-2040-20P	2-4	20	1.0	5.0	2:1	2:1	+20	210	9
AMF-3B-2040-20P	2-4	30	1.0	4.0	2:1	2:1	+20	260	10
AMF-4B-2040-20P	2-4	40	1.5	4.0	2:1	2:1	+20	300	п
AMF-18-2040-23P	2-4	10	1.0	8.0	2:1	2:1	+23	190	96
AMF-2B-2040-23P	2-4	20	1.0	8.0	2:1	2:1	+23	310	97
AMF-3B-2040-23P	2-4	30	1.5	6.0	2:1	2:1	+23	390	98
AMF-48-2040-23P	2-4	40	1.5	6.0	2:1	2:1	+23	440	99
AMF-18-2040-25P	2-4	8	1.0	8.0	2:1	2:1	+25	300	96
AMF-2B-2040-25P	2-4	17	1.0	8.0	2:1	2:1	+25	480	97
AMF-3B-2040-25P	2-4	27	1.5	6.0	2:1	2:1	+25	600	98
AMF-48-2040-25P	2-4	37	1.5	6.0	2:1	2:1	+25	680	99
AMF-18-2040-27P	2-4	7	1.0	8.0	2:1	2:1	+27	600 ~	96
AMF-28-2040-27P	2-4	15	1.0	8.0	2:1	2:1	+27	900	97
AMF-3B-2040-27P	2-4	24	1.5	6.0	2:1	2:1	+27	1080	98
AMF-48-2040-27P	2-4	33	1.5	6.0	2:1	2:1	+27	1200	99
				4-8 0	GHz				
AMF-2B-4080-17P	4-8	16	1.0	6.0	2:1	2:1	+17	90	14
AMF-3B-4080-17P	4-8	24	1.0	5.0	2:1	2:1	+17	140	15
AMF-48-4080-17P	-4-8	32	1.5	5.0	2:1	2:1	+17	180	16
AMF-58-4080-17P	4-8	40	1.5	5.0	2:1	2:1	+17	220	17
AMF-2B-4080-20P	4-8	15	1.0	7.0	2:1	2:1	+20	130	14
AMF-3B-4080-20P	4-8	23	1.0	6.0	2:1	2:1	+20	210	15
AMF-48-4080-20P	4-8	31	1.5	6.0	2:1	2:1	+20	260	16
AMF-5B-4080-20P	4-8	39	1.5	6.0	2:1	2:1	+20	300	17

•

3.5 T105, 4.8 GHz CONVERTER MODULE

T105 Band Coverage and LO Frequencies

This section describes the T105 frequency converter that converts the C-Band Front-End signal to the standard 500 to 1000 MHz IF band. Since RF bandpass filters are installed in the Front-End, they are not included in the T105 RF circuitry. These filters have a 4850 MHz center frequency, 700 MHz bandwidth at the -3 dB points, and the band edges are 4.5 and 5.2 GHz, respectively.

T105 uses LO frequencies of 3.9, 4.1, 5.6 and 5.9 GHz. The following tabulation shows the mixer IF port spectrum, converted and attenuated bands. The converted band is that passed by the 750/X550 IF Bandpass filter and the attenuated bands are mixer IF port frequencies attenuated by the filter. The IF port frequencies are in MHz, the others in GHz.

LO Freq	Mixer IF Port	Converted	Attenuated
3.9	600 to 1300	4.5 to 4.9	4.4 to 4.5 4.9 to 5.2
4.1	400 to 1100	4.6 to 5.1	4.5 to 5.1 5.1 to 5.2
5.6	600 to 1100	4.6 to 5.2	4.5 to 5.0 5.1 to 5.2
5.9	700 to 1400	5.0 to 5.2	4.5 to 5.0

Since the 5.6 and 5.9 GHz LO frequencies are higher than the RF frequencies, the IF signal spectrum is reversed relative to the RF band. The high end of the RF band is converted to the low end of the IF band, and vice versa. It is important to remember this effect when testing the T105 with this LO frequency.

T105 Size and Location

T105 is a double-width module installed in Rack B, Bin C, Slots 4-5.

T105 Drawings and Data Sheets

The following T105 functional and assembly drawings are found at the end of this section.

C\$3500K002, Rev D	- T105 4.8 Converter Module Block Diagram
D53500A003, Rev C	- T105 4.8 GHz Converter Module Assembly
A53500B002, Rev B	- T105 4.8 GHz Converter Module Assembly BOM

Data sheets for the Avantek DBX-72M mixer and Miteq AMF-2B-4156 amplifier follow the drawings. Data sheets for the KDI-Triangle power divider, Ditom D3I-4080 isolator and Narda 4772-X attenuator are included in the Appendix, Section 6.

T105 Differences from the General Converter Block Diagram

There are no differences between the T105 Block Diagram and the general converter block diagram of Section 2.1.

T105 Specifications

Nominal Gain, dB	14	Gain Flatness, ± dB	2	LCP-RCP Path Isol, dB	65
Nom Output Pwr Ə Std Syst Temp, dBm	-40	Min Out Pwr @ 1% Compression, dBm	+3.9	Nom Output Pwr Density, dBm/MHz	-67
Avg Noise Temp, K	9,000	Noise Temp for 1% added Syst Noise, K	25,000	Nom LO Pwr input, dBm	+1
Avg Noise Figure, dB	15.2	Noise Figure for 1% added Syst Noise, dB	19.4		
15 Volt Power Req't, mA	680				

Unwanted Sideband and Image Band Attenuation

Unwanted sidebands are attenuated by the K&L 6B120-750/X550 IF bandpass filter described in Section 2.5. Image response bands are attenuated by the 4.8 GHz Front-End's 4850/700 bandpass filter, which has a -3 dB passband of 4.5 to 5.2 GHz. The following tabulation shows the LO frequency, unwanted (UWSB) and image sidebands in GHz.

LO Freq	UWSB	UWSB Attn	Image
3.9	8.4 to 9.1	»70	2.9 to 3.3
4.1	8.6 to 9.3	»70	3.1 to 3.6
5.6	10.1 to 10.8	»70	6.1 to 6.6
5.9	10.4 to 11.1	»70	6.4 to 6.9

The worst case image frequency for these three LO's is 4.1 GHz which is attenuated by the Front-End's 4850/700 Bandpass filter.

Noise Temperature

The T105 noise temperature is a composite value that is a function of the noise temperatures of the mixer, Amp/Attenuator and Amp/Divider. The average of the measured noise temperatures of the LCP and RCP channels is 9,000 K. A T105 noise temperature of 25,000 K would add 1 K to the system temperature.

Mixer

The AVANTEK DBX-72M-1 is an important component; a data sheet follows the drawings at the rear of this section. This mixer is designed for LO and RF frequencies of 2.0 to 7.0 GHz, IF frequencies of DC to 1500 MHz and a nominal LO drive of +10 dBm. In the 4.8 GHz frequency band, the typical conversion loss is 6.5 dB and the typical noise figure is 6.5 dB. Typical mixer port isolations are: LO-IF, 25 dB; LO-RF, 35 dB and RF-IF, 20 dB.

LCP-RCP Isolation

The RCP-LCP isolation is a function of the isolation properties of two shunt paths: the isolation between the two mixer LO ports and the transfer switch leakage. A K&L 3B250-4100/1300 bandpass filter (next page) in the LO path provides additional out-of-band isolation to the mixer LO port paths. As shown in the table above, the module's RCP-LCP path isolation specification is 65 dB.

The AVANTEK DBX-72M-1 mixer LO to RF isolation is 35 dB and the LO to IF isolation is also 35 dB. The KDI/Englemen D307M power divider port-to-port isolation is 21 dB. At the 4.1 and 5.6 GHz LO frequencies, the isolation of this shunt path is the sum of the two mixer LO port's to RF port isolation and the divider's isolation; this is 91 dB. The filter's attenuation is about 0.25 dB for frequencies in the 1300 MHz passband; the isolation is increased by the filter's attenuation. At the lowest Front-End frequency of 4.5 GHz, the filter attenuation is negligible and at the highest Front-End frequency of 5.2 GHz, the attenuation is about 12 dB. The resultant mixer LO port to mixer LO port isolation for RF frequencies outside the Front-End band is roughly 110 dB.

The typical RCP-LCP path isolation of the RLC SRC-TC-R-D transfer switch at 4.8 GHz is about 83 dB.

VSWR's

The input VSWR, about 1.25:1, is the composite of the VSWR's of the transfer switch (1.25:1) and isolator (1.18:1) The output VSWR is the composite VSWR of the Amp/Divider which is about 1.5:1.

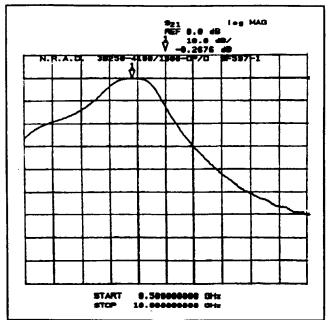


Figure 21 K&L 38250-4100/1300 Bandpass Filter

RF Path Losses

The losses in the RF input path are the insertion losses of the transfer switch, 0.1 dB and the isolator 0.4 dB.

IF Circuitry

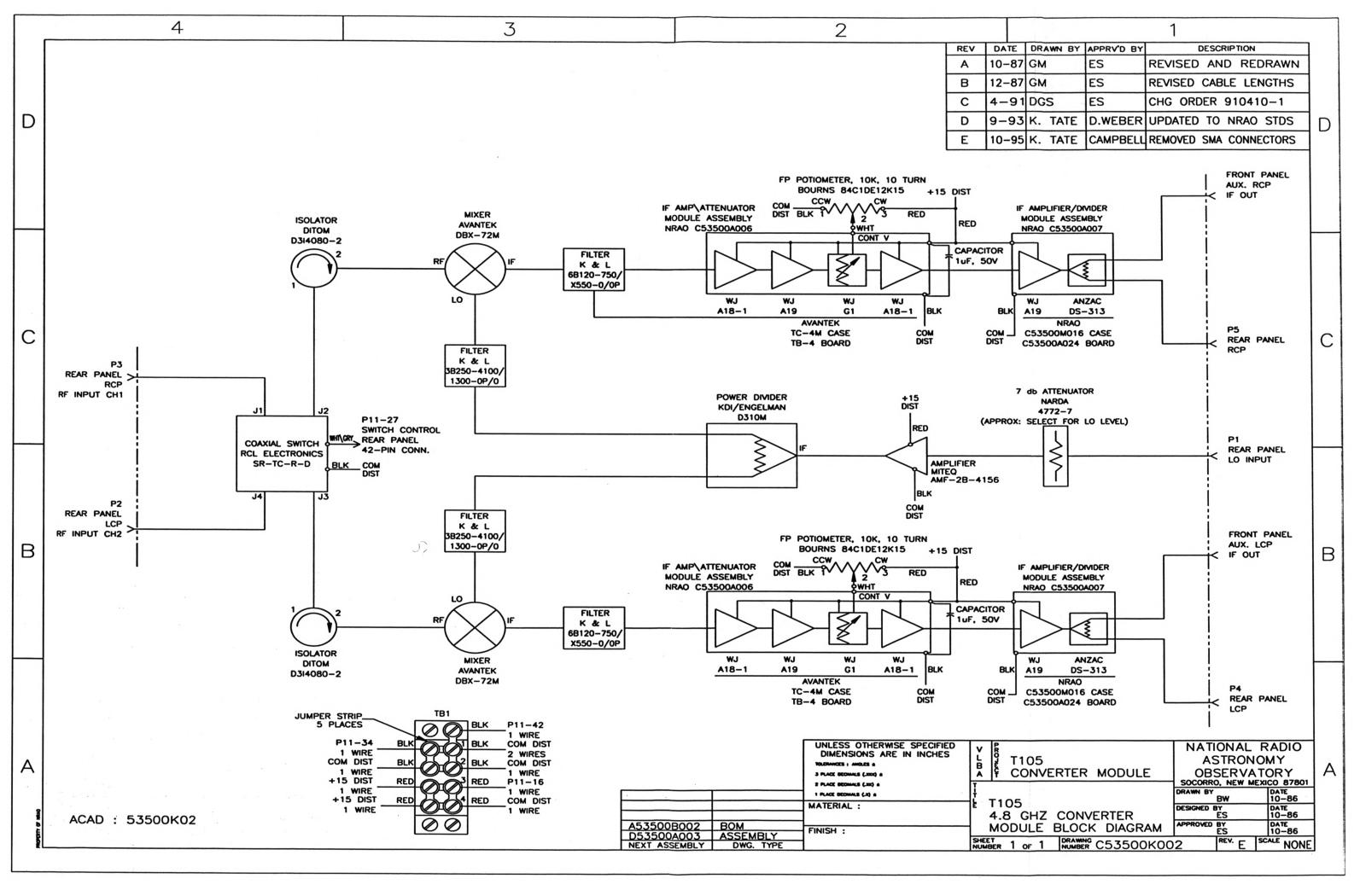
The IF path Amp/Attenuator, Amp/Divider and 6B120-750/X550 If bandpass filter were described in Section 2.5. IF gain adjustment is described in Test I, Section 2.7.

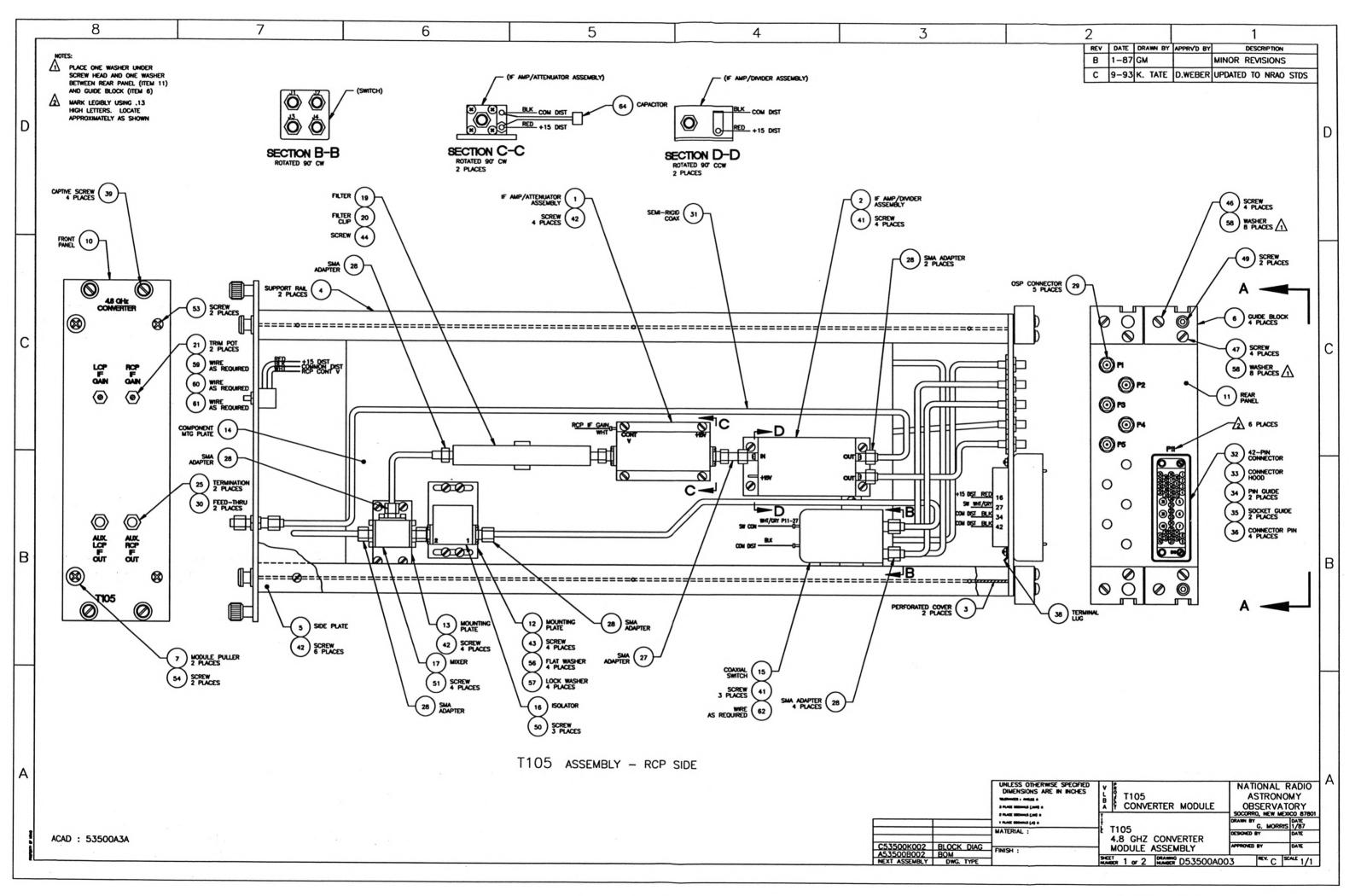
LO Drive Circuitry

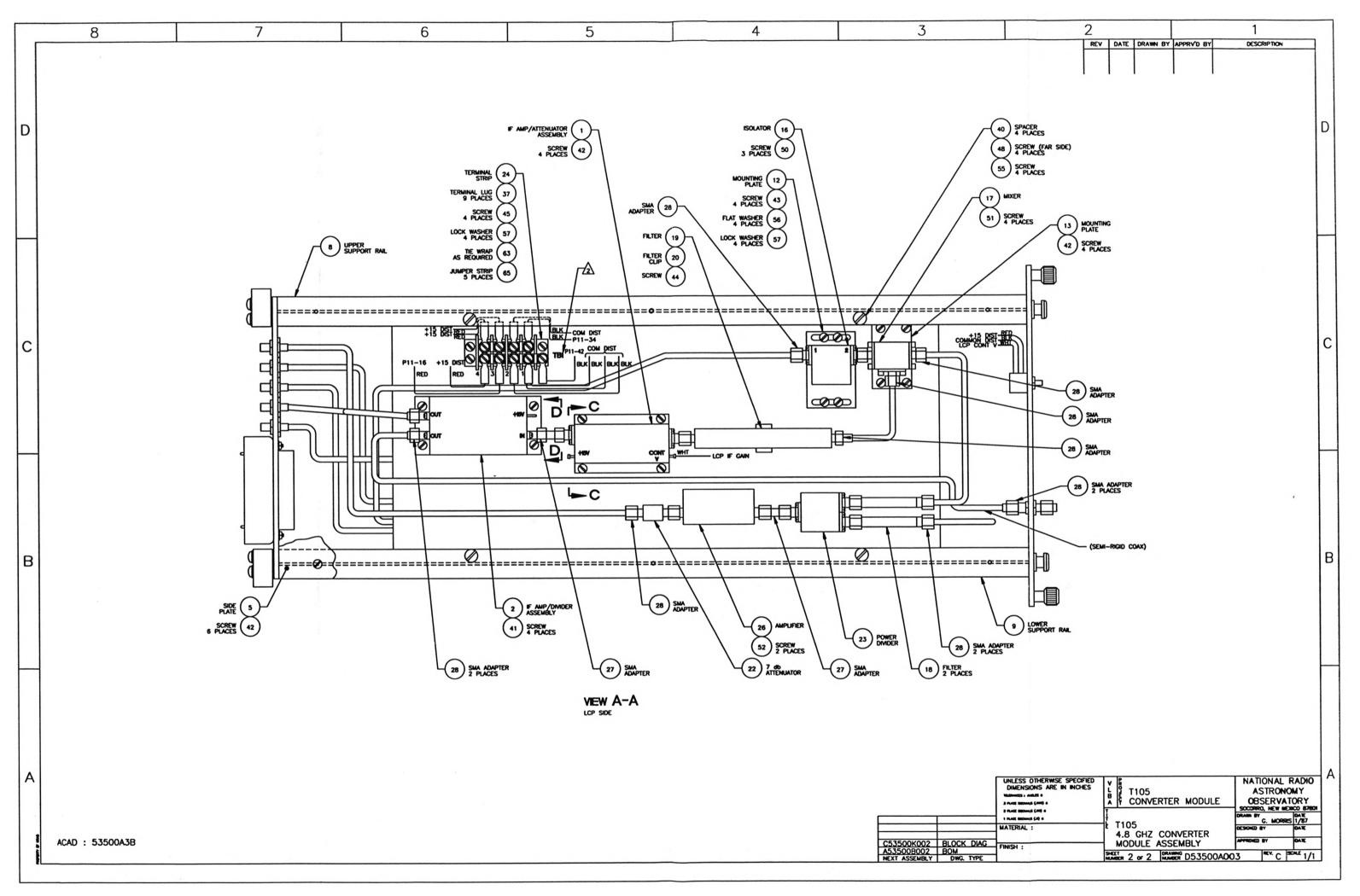
The LO Drive Amplifier is a MITEQ AMF-2B-4156-18P amplifier that is a special-order adaption of the AMF-2B amplifier series for NRAO; the amplifier is characterized over the T105 4.1 to 5.6 Ghz LO frequency range. The gain is 15 dB and is flat over this band within \pm 0.5 dB; the noise figure is about 3.3; maximum input and output VSWR is 1.9:1 and the 1 dB compression point is about 18.5 dB. During module alignment, the amplifier gain is adjusted to produce a +10 dBm drive to the AVANTEK DBX-72M-1 mixers. The gain is determined by the selection of the appropriate NARDA 4772-X pad. The LO amplifier gain procedure is described in Test I, LO Powr, Gain and Flatness, Section 2.7.

The LO isolation filter is a K&L 3B250-4100/1300; the attenuation curve is shown in Figure 21.

RF Switching


The T105 transfer switch S105A is an RLC SR-TC-R-D transfer switch; some T105's may use the Transco 710C70100 as an alternate unit. The transfer switch is driven by M102, address 14H, bit 0.


T105 Power Circuitry


All T105 active components are powered by +15 volts. +15 volts from P11-16 is connected to TB1 (terminal strip 1) terminals 1-4 where it is distributed to the amplifiers. The common returns for these devices are connected to a frame ground lug connected to P11-34 and P11-42. This ground is also the ground return for the +28 volt drive to the transfer switch.

The Amp/Attenuator has a 1.0 uF bypass capacitor connected across the amplifier's power terminals.

					REVISIONS					
REV	DATE	DRAWN BY	APPRYD BY	1				DESCRIPTION	<u> </u>	
В	9-93	K. TATE	D.WEBER	UPD	ATED	то	NRAO	STANDARDS	<u>-</u>	
				+						· · · · · · · · · · · · · · · · · · ·
1										
			ONTE					r		
Daann by K. Desgned by	TATE		DATE 9-93 DATE					C53500K002	BLC	
K.	TATE		9-93 DATE					C53500K002 D53500A003		DCK DIAG
K.	TATE		9-93					C53500K002 D53500A003 NEXT ASSY	ASS	OCK DIAG SEMBLY USED ON
K.	TATE		9-93 DATE					D53500A003	ASS	EMBLY
K.	TATE		9-93 DATE					D53500A003	ASS	EMBLY
K.	TATE		9-93 DATE					D53500A003	ASS	EMBLY
K.	TATE		9-93 DATE		PROJECT			D53500A003 NEXT ASSY	ASS	EMBLY
K. Designed by	TONAL R/	ADIO ASTRO	9-93 DATE DATE	V	PROJECT			D53500A003 NEXT ASSY	ULE	EMBLY USED ON
K. Designed by Approved by NAT	TONAL R/ OBS		9-93 DATE DATE DATE	V		T1(05 4.8	D53500A003 NEXT ASSY	ULE	EMBLY USED ON

X	ELECTRICAL	X MECHANICAL	BOM #A53500B002	REV <u>B</u> DATE <u>9-20</u>	<u>-93</u> PAGE <u>2</u> OF <u>5</u>
MODULE	<u>r105</u> NAME <u>4</u>	8 GHZ CONVERTER	DWG#	SUB ASSY	DWG#
SCHEM. DW	G# <u>C53500K002</u>	LOCATION	QUA/SYS.	PREPRD BY <u>K. TATE</u>	APPRVD BY <u>D. WEBER</u>

ITEM #	REF DES	MANUFACTURER	PART NUMBER	DESCRIPTION	TOTAL QTY.
1		NRAO	C53500A006	ASSY, IF AMP/ATTENUATOR	2
2		NRAO	C53500A007	ASSY, IF AMP/DIVIDER	2
3		NRAO	C53306M014-1	COVER, PERFORATED	2
4		NRAO	C53306M016	RAIL, SUPPORT	2
5		NRAO	C53306M017	PLATE, SIDE	2
6		NRAO	B53306M018	BLOCK, GUIDE	4
7		NRAO	A53306M038	PULLER, MODULE	2
8		NRAO	B53500M001	RAIL, UPPER	1
9		NRAO	B53500M002	RAIL, LOWER	1
10		NRAO	B53500M003	PANEL, FRONT	1
11		NRAO	B53500M004-1	PANEL, REAR	1
12		NRAO	A53500M008-2	PLATE, ISOLATOR MOUNTING	2
13		NRAO	A53500M009	PLATE, MIXER MOUNTING	2
14		NRAO	D53500M024	PLATE, COMPONENT MOUNTING	1
15		RLC ELECTRONICS	SR-TC-R-D	SWITCH, COAXIAL	1
16		DITOM	DI4080-2	ISOLATOR	2
17		AVANTEK	DBX-72M	MIXER	2
18		K&L	3B250-4100/1300-00/0	FILTER	2
19		K&L	6B120-750/X550-0/0P	FILTER	2
20		K&L	M12-A	CLIP, FILTER	2

X	ELECTRIC	AL X MECHANICAL BOM	#A53500B002	BDATE9-20-93PAGE3	OF <u>5</u>
ITEM #	REF DES	MANUFACTURER	PART NUMBER	DESCRIPTION	TOTAL QTY.
21		BOURNS	84C1DE12K15	TRIM POT, 10K PANEL	2
22		NARDA	4772-7	ATTENUATOR, 7 db	1
23		KDI/ENGLEMAN	D310M	DIVIDER, POWER	1
24	TB1	TRW CINCH	4-140	STRIP, TERMINAL	1
25		SOLITRON	8018-6005	TERMINATION, 50Ω	2
26		MITEQ	AMF-2B-4156	AMPLIFIER	1
27		SOLITRON	2993-6001	ADAPTER, SMA MALE/MALE	3
28		SOLITRON	2902-6001	ADAPTER, SMA MALE/.141 TUBE	21
29	P1 - P5	OMNI - SPECTRA	4503-7941-00	CONNECTOR, OSP .141 MALE	5
30		OMNI - SPECTRA	2084-0000-00	FEED-THRU, SMA	2
31		PRECISION TUBE	AA50141	COAX, .141. SEMI-RIGID	AR
32	P11	AMP	204186-5	CONNECTOR BLOCK, 42-PIN	1
33		AMP	202394-2	CONNECTOR HOOD, 42-PIN	1
34		AMP	200833-2	PIN, GUIDE	2
35		AMP	203964-5	SOCKET, GUIDE	2
36		AMP	201578-1	PIN, 16 GA. CONNECTOR	4
37		ETC/MOLEX	AA-832-06	LUG, TERMINAL	9
38				LUG, TERMINAL	1
39		Southco	47-11-204-10	SCREW, CAPTIVE	4
40		H.H. SMITH	9244	SPACER, 8-32UNC-2B x .44	4
41				SCREW, PAN HEAD, SS, 4-40UNC-2A x .19	11

<u> </u>	ELECTRICAL	X MECHANICAL BOM	A53500B002 REV	<u>B</u> DATE <u>9-20-93</u> PAGE <u>4</u>	_0F5
ITEM #	REF DES	MANUFACTURER	PART NUMBER	DESCRIPTION	TOTAL QTY.
42				SCREW, PAN HEAD, SS, 4-40UNC-2A x .25	28
43				SCREW, PAN HEAD, SS, 4-40UNC-2A x .31	8
44				SCREW, PAN HEAD, SS, 6-32UNC-2A x .25	2
45				SCREW, PAN HEAD, SS, 6-32UNC-2A x .38	4
46	·····			SCREW, PAN HEAD, SS, 6-32UNC-2A x .75	4
47			······································	SCREW, PAN HEAD, SS, 6-32UNC-2A x .88	4
48				SCREW, PAN HEAD, SS, 8-32UNC-2A x .63	4
49				SCREW, SOCKET HEAD, SS, 6-32UNC-2A x .38	2
50				SCREW, FLAT HEAD, SS, 2-56UNC-2A x .25	6
51				SCREW, FLAT HEAD, SS, 2-56UNC-2A x .38	8
52			·	SCREW, FLAT HEAD, SS, 4-40UNC-2A x .25	2
53				SCREW, FLAT HEAD, SS, HP GREY, 6-32UNC-2A x .38	2
54				SCREW, FLAT HEAD, SS, 6-32UNC-2A x .75	2
55				SCREW, FLAT HEAD, SS, 8-32UNC-2A x .63	4

<u> </u>	ELECTRIC	CAL X MECHANICAL BOM	#A53500B002REV]	BDATE_9-20-93PAGE5	_OF
ITEM #	REF DES	MANUFACTURER	PART NUMBER	DESCRIPTION	TOTAL QTY.
56				WASHER, FIAT #4	8
57				WASHER, LOCK #4	12
58				WASHER, EXT. TOOTH #6	16
59		ALPHA	7055	WIRE, WHT #22	AR
60		ALPHA	7055	WIRE, BLK #22	AR
61		ALPHA	7055	WIRE, RED #22	AR
62		ALPHA	7055	WIRE, BLK/GRY #22	AR
63				WRAP, TIE	AR
64		SPRAGUE	2C20Z50105M050B	CAPACITOR, MONOLITHIC CERAMIC, $1\mu f$, 50V	2
65	TB1	TRW-CINCH	140J-1	STRIP, JUMPER	5
66					
67					
68					
69					
70					
71					
72					
73					
74					
75					
76					

AVANTEK

DBX-72L/M/H DBY-72L/M/H Durold Mixer 2 to 7 GHz Double Balanced

FEATURES

- Single Schottky Diode Quad
- 5.5 dB Conversion Loss
- · 35 dB isolation
- . Low VSWR

DESCRIPTION

The DBX/DBY Series uses precisely matched Schottky-barrier diodes and a "quasi-planar" physical construction for excellent overall symmetry. Construction techniques result in high LO to RF isolation, extremely low single tone intermodulation distortion and very good amplitude and phase match characteristics.

• Ideal for 2 to 6 GHz and 3.7 to

4.2 GHz Downconversion

Threat Warning Systems

Self Protection Jammers

Wideband Heterodyned

APPLICATIONS

Receivers

ELECTRICAL SPECIFICATIONS (Measured in a 50-ohm system)

				rating Free	quencles	Power Level			Specifications		
	Characteristic			GHz		LO Port	Model	RF Port	Typical	Guerenteed	1
Symbol			luo	Inr	6	dBm (typ)	Suffix	dBm	Tc = 25°C	Tc = -55° to +100°C	Un
BW	Operating Frequency	Range	2.0-7.0	2.0-7.0	DC-1.5						Gł
a	SSB Conversion Loss		2 0-7 0 2 0-7 0 2 0-7 0 2 0-7.0	2.0-70 20-7.0 2.0-7.0	DC-0.5 DC-1.2 DC-1.5				5.5 6.5 7.5	7.5 8.6 9.5	di
NF	SSB Noise Figure		2.0-7.0 2.0-7.0 2.0-7.0	2.0-7.0 2.0-7.0 2.0-7.0	0 03-0 5 0 03-1 2 0 03-1 5				5.5 6.5 7.5	7.5 8.5 9.5	đ
ISOL	Isolation Port-to-Port	L-R L-R R-L R-L L-I	20-30 30-70 	2.0-7.0 2.0-7.0					25 35 35 20 25	20 25 	ď
-	VSWR (50 ohm)		2.0-7.0 4.0-7.0 2.0-3.0 3.0-4.0		- - - \$1.5				1.7.1 1.5:1 3.0:1 2.0:1 1.5:1		m
cc	Conversion Compression Point (1	dB)	2.0-7.0 2.0-7.0 2.0-7.0	2.0-7.0 2.0-7.0 2.0-7.0	≤1.5 ≤1.5 ≤1.5	2+ 7 2+10 2+17	LMH		+ 2 + 6 +12		48 17
IP,	Third-Order Two-Tone Intercept Point		20-70 20-70 20-70 20-70 20-70	2.0-7.0 2.0-7.0 2.0-7.0 2.0-7.0	≤1.5 ≤1.5 ≤1.5 ≤1.5	≥+ 7 ≥+10 ≥+17 ≥+20	LLMH	1111	+ 9 +10 +12 +22		đĐ
-	LO Port Drive Level (typical)		2.0-7.0 2.0-7.0 2.0-7.0	2.0-7.0 2.0-7.0 2.0-7.0	DC-1.5 DC-1.5 DC-1.5	+ 7-+13 +10-+17 +17-+24	LMH				đB

NOTE Specifications guaranteed at LO Power of +7 dBm for model, +10 dBm for "M" model, and +17 dBm for "H" model

MAXIMUM RATINGS	
Peak Input Current @ 25°C	100 mA DC
Pin Temperature	26000 100 100 00000
Operating Case Temperature	-55% 10 . 100%
Storage temperature	0500 1- 10000
Continuous RF Input Power	200 mW @ +25°C
	100

WEIGHT: (typical) DBX — 22 grams; DBY — 16 grams (with connectors)

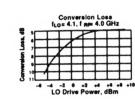
Avantable, Inc . 481 Contonwood Drive, Millonae, CA 95035 . Contact your local representative, divitibular or fluid adves office for humber information. Listings are in the back of this Data Book

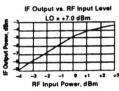
TYPICAL PERFORMANCE AT 25° C

Typical Single Tone Intermodulation Harmonic Suppression at 25°C (dB below desired output) >70 >70 >70 Typical Harmonic Intermodulation Suppression for mixer generated harmonics of the input signals. Suppression numbers are for a f_{ev} signal level at -10 dBm and f_{so} signal

1---

300 MHz

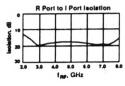

900 MHz

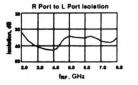

level of:

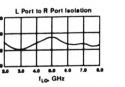
4	>70	>70	>70	>70
3	65	>70	55	>70
2	50	55	50	58
1	0	25	18	40
	1	2	3	4

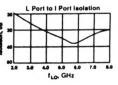
Harmonics of fue

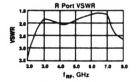
20 30

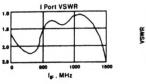


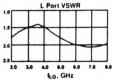


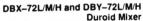

Conversion Loss


f MF, GHz


40 80 80 7.0 8.0







Annahol, Inc. 481 Cottonwood Drive, Milpitan, CA 95036 . Contect your local representative, distributor or field adea office for further information. Listings are in the back of this Data Book 7-29

L Suffix +7 dBm

M Suffix+10 dBm

H Suffix+17 dBm

Wideband Medium Power Amplifiers

.

MITEG Gain Noise Dynamic Range Gain Model Var. Figure VSWR 1 dB Gain Nom. DC (Max.) Number Freq. (Min.) (Max.) (Max.) Outline Comp. Output . Power (GHz) (dB) Input 'Output (Min., dBm) (+15V, mA) (±dB) (dB) **Standard Housings** 2-4 GHz AMF-18-2040-17P 24 10 1.0 5.0 2:1 2:1 +17 90 8 AMF-2B-2040-17P +17 140 2-4 20 1.0 4.0 2:1 2:1 9 AMF-3B-2040-17P 2-4 30 2:1 2:1 +17 180 10 1.0 3.5 AMF-4B-2040-17P 2-4 40 1.5 3.5 2:1 2:1 +17 220 11 AMF-1B-2040-20P 2-4 10 1.0 6.0 2:1 2:1 +20 130 8 AMF-2B-2040-20P 2-4 20 1.0 5.0 2:1 2:1 +20 210 9 AMF-3B-2040-20P 30 1.0 2:1 2:1 +20 260 10 2-4 4.0 AMF-48-2040-20P 40 300 11 2-4 1.5 4.0 2:1 2:1 +20 AMF-18-2040-23P 2-4 10 1.0 8.0 2:1 2:1 +23 190 96 97 AMF-2B-2040-23P 2-4 20 1.0 8.0 2:1 2:1 +23 310 98 AMF-3B-2040-23P 2-4 30 1.5 6.0 2:1 2:1 +23 390 AMF-48-2040-23P 2-4 40 1.5 6.0 2:1 2:1 +23 440 99 +25 300 96 AMF-18-2040-25P 2-4 1.0 8.0 2:1 2:1 8 AMF-2B-2040-25P 2-4 17 1.0 8.0 2:1 2:1 +25 480 97 AMF-3B-2040-25P 2-4 27 2:1 600 1.5 6.0 2:1 +25 98 AMF-4B-2040-25P 2-4 99 37 1.5 6.0 2:1 2:1 +25 680 1.0 +27 600 AMF-18-2040-27P 2-4 7 8.0 2:1 2:1 96 97 AMF-2B-2040-27P 2-4 15 1.0 8.0 2:1 2:1 +27 900 1080 98 AMF-3B-2040-27P 2-4 24 1.5 6.0 2:1 2:1 + 27 99 AMF-4B-2040-27P 2-4 33 +27 1200 1.5 6.0 2:1 2:1 4-8 GHz 16 1.0 6.0 2:1 2:1 +17 90 14 AMF-2B-4080-17P 4-8 AMF-3B-4080-17P 4-8 24 1.0 5.0 2:1 2:1 +17 140 15 AMF-48-4080-17P 4-8 32 5.0 2:1 2:1 +17 180 16 1.5 +17 AMF-5B-4080-17P 4-8 40 5.0 2:1 2:1 220 17 1.5 AMF-2B-4080-20P 4-8 15 1.0 7.0 2:1 2:1 +20 130 14 23 2:1 2:1 15 AMF-3B-4080-20P 4-8 1.0 6.0 +20 210 AMF-48-4080-20P 31 1.5 6.0 2:1 2:1 +20 260 16 4-8 AMF-5B-4080-20P 4-8 39 6.0 2:1 2:1 +20 300 17 1.5

3.6 T106, 8.4/23 GHz CONVERTER MODULE

T106 Modes, LO Frequencies and Band Coverage

This section describes T106, the 8.4/23 GHz converter. T106 is more complicated than most of the other converters because it operates in three modes as a function of the state of four switches and the frequencies of two separate LO signals. The 8.4 GHz and 23 GHz Front-End's output signals are both in the neighborhood of 8 GHz, which permits a single set of conversion circuitry to convert the two Front-End signals to the standard 500 to 1000 MHz IF signals. Although T106's three-mode operation is the reason for the complexity, the modes are implemented with simple RF signal selection circuitry and the frequency conversion function is identical to that of the other converters.

The 8.4 GHz Front-End does not have bandpass filters. This function is incorporated in the 8.4 GHz RF circuitry which has K&L 6FV-8400/X960 bandpass filters with an 8400 MHz center frequency and a 1 dB bandwidth of 960 MHz. As is the case with the other VLBA K&L filters, the X supplemental code indicates that the bandwidth is defined at the -1 dB points. The 8.4 GHz signal spectrum is 7.92 to 8.88 GHz.

The first mode is conversion of the 8.4 GHz Front-End RCP and LCP outputs. A single LO signal is used and the conversion function is identical to the other converters because it produces the standard 500 MHz bandwidth RCP IF and LCP IF signals. This mode uses LO frequencies of 7.4, 7.6, 9.1 and 9.4 GHz. The following tabulation shows the mixer IF port spectrum, converted and attenuated bands. The converted band is that passed by the 750/X550 IF Bandpass filter and the attenuated bands are mixer IF port frequencies attenuated by the filter. The IF port frequencies are in MHz, the others in GHz.

LO Freq	Mixer IF Port	Converted	Attenuated
7.4	520 to 1400	7.92 to 8.4	8.4 to 8.8
7.6	320 to 1200	8.1 to 8.6	7.92 to 8.1 8.6 to 8.8
9.1	300 to 1180	8.1 to 8.6	7.92 to 8.1 8.1 to 8.8
9.4	600 to 1480	8.4 to 8.8	7.92 to 8.4

The IF spectrum is reversed when the 9.1 and 9.4 GHz LO frequencies are used.

The second mode is conversion of the RCP (only) output of the 8.4 GHz Front-End using two separate LO signals. This mode permits simultaneous conversion of the full 1 GHz RCP signal bandwidth from the 8.4 GHz Front-End. This mode produces two standard 500 MHz bandwidth RCP IF signals, one for each half of the RF input spectrum. LO frequencies used in this mode are 7.4 and 9.4 GHz (only). The table above shows the IF port spectrum, converted and attenuated bands for these two LO frequencies.

The third mode is conversion of a first IF signal from the 23 GHz Front-End to the Standard 500 MHz bandwidth RCP and LCP IF signals. Refer to the LO Frequency table in Section 6 which shows the first and second (T106) LO frequencies and the 23 GHz Front-End band coverage. A single T106 LO signal (Synthesizer #1) is used and the conversion function is also identical to the other converters. A mixer in the 23 GHz Front-End converts the 23 GHz signal to a first IF signal that is filtered by a 9750/X900 bandpass filter and output to T106. The first IF spectrum at the -1 dB frequencies is 9.3 to 10.2 GHz. Synthesizer #3 provides the LO signal for this conversion. Since these filters are in the Front-End, T106's RF circuitry does not contain bandpass filters for the first IF signal. Two T106 LO frequencies are used in this mode, 8.9 and 9.1 GHz. In conjunction with the appropriate T106 LO frequencies, Synthesizer #3 is adjusted in 200 and 300 MHz steps to cover the 23 GHz Front-End's output spectrum.

The mode 3 second LO (T106) frequencies, mixer IF port spectrum, converted and attenuated bands are

tabulated below. The converted band is that passed by the 750/X550 IF Bandpass filter and the attenuated bands are mixer IF port frequencies attenuated by the filter. The mixer IF port frequencies are in MHz, the converted and attenuated in GHz.

T106 LO Freq	Mixer IF Port	Converted	Attenuated
8.9	400 to 1300	9.4 to 9.9	9.3 to 9.4 9.9 to 10.2
9.1	200 to 1100	9.6 to 10.1	9.3 to 9.6 9.6 to 10.2

T106 Size and Location

T106 is a double-width module located in Rack B, Bin A, Slots 4-5.

T106 Drawings and Data Sheets

The following T106 functional and assembly drawings are found at the end of this section.

C53500K009, Rev E - T106 8.4/23 GHz Converter Module Block Diagram D53500A010, Rev F - T106 8.4/23 GHz Converter Module Assembly A53500B005, Rev B - T106 8.4/23 GHz Converter Module Assembly BOM

C53500A009, Rev B - T106 8.4/23 GHz Converter Module IF Gain Relay Assembly C53500A023, Rev B - T106 8.4/23 GHz Converter Module IF Gain Relay PCB Assembly

Data sheets for the Wj M77C mixer, Transco 909C70100 selector switch and Miteq AMF-2B-7494-15P amplifier follwo the drawings. Data sheets for the Ditom D3I-7011 isolator, Triangle YL-56 power divider and Narda 4772-X attenuator are included in the Appendix, Section 6.

T106 Specifications

Nominal Gain, dB	14	Gain Flatness, ± dB	2	LCP-RCP Path Isol, dB	65
Nom Output Pwr Ə Std Syst Temp, dBm	-40	Min Out Pwr @ 1% Compression, dBm	+6	Nom Output Pwr Density, dBm/NHz	-67
Avg Noise Temp, K	17,000	Noise Temp for 1% added Syst Noise, K	25,000	Nom LO Pwr input, dBm	+2
Avg Noise Figure, dB	17.7	Noise Figure for 1% added Syst Noise, dB	19.4		
15 Volt Power Req't, mA	750				

T106 Differences From the General Converter Block Diagram

T106 differs from the general converter block diagram of Section 2.1 as follows: 1) Two SPDT selector switches (S106A and S016B) select either the RF output of the 8.4 GHz Front-End or the first IF output of the 23 GHz Front-End. 2) T106 does not have an RCP-LCP transfer switch to interchange the selected RCP and LCP RF inputs for test purposes. 3) A selector switch (S106D) permits selection of the LCP inputs (8.4 GHz or 23 GHz first IF) or the RCP inputs (8.4 GHz or 23 GHz first IF) for conversion by the LCP mixer. 4) A second LO drive circuit is provided to drive the LCP mixer when the RCP-only signals are selected for conversion. The single-dual LO signals are selected by S106E. 5) In conjunction with the opteration of the 8.4 GHz/23 GHz first IF selector switches, a DPDT IF Gain Relay Assembly switches the Amp/Attenuator control voltages between the outputs of two sets of front panel gain potentiometers. 6) 8.4 GHz bandpass filters are not included in the RF circuitry because these filters are installed in the 8.4 GHz Front-End.

Although VLBA Technical Report No. 15 (Rev A) does not mention a possible fourth mode, dual LO, RCP (only) conversion of the 23 GHz Front-End's first IF output is possible. This mode is established by setting the switches to the proper state and providing a second LO signal of the appropriate frequency.

Unwanted Sideband and Image Band Attenuation

Unwanted sidebands are attenuated by the K&L 6B120-750/X550 IF bandpass filter described in Section 2.5. In mode 1, Image bands are attenuated by T106's K&L 6FV-8400/X960 bandpass filters. In mode 3, the image band is attenated by the 23 GHz Front-End's 9750/X900 bandpass filters. The following tabulation shows the LO frequency, unwanted (UWSB) and image sidebands in GHz.

MODES 1 and 2

T106 LO Freq	UWSB	UWSB Attn	Image
7.4	15.32 to 16.2	»70	6.4 to 6.9
7.6	15.52 to 16.4	»7 0	6.6 to 7.1
9.1	17.02 to 17.9	»70	9.6 to 10.1
9.4	17.32 to 18.2	»70	9.9 to 10.4
MODE 3			
T106 LO Freq	UWSB	UWSB Attn	Image
8.9	18.2 to 19.1	»70	7.9 to 8.4
9.1	18.4 to 19.3	»70	8.1 to 8.6

In mode 1, the worst case unwanted sidebands result from the use of the 7.4 and 7.9 GHz LO frequencies. Refer to Figure 5; the attenuation of these unwanted sideband frequencies is off the bottom of the plot, greatly in excess of 70 dB.

In mode 2, the unwanted sidebands are the same as mode 1, consequently the unwanted sideband attenuation is identical to Mode 1.

In mode 3 the 23 GHz Front-End's first IF band is 9.4 to 9.9 GHz. The IF filter attenuation for these unwanted sidebands is greatly in excess of 70 dB.

Noise Temperature

The T106 noise temperature is a composite value that is a function of the noise temperatures of the mixer, Amp/Attenuator and Amp/Divider. The average of the measured noise temperatures of the LCP and RCP channels is 17,000 K. A T160 noise temperature of 25,000 K would add 1 K to the system temperature.

Mixer

The WJ M77C is an important component; a data sheet follows the drawings at the rear of this section. This mixer is designed for LO frequencies of 7.0 to 15.0 GHz, RF frequencies of 8.0 to 12.5 GHz, IF frequencies of DC to 2500 MHz and a nominal LO drive of +10 dBm. At the 8.4 GHz conversion frequency, the typical conversion loss is 5.0 dB and the typical noise figure is 7.0 dB.

RCP-LCP Isolation

Despite T106's more complex switching structure, the RCP-LCP isolation is a function of the isolation properties of two shunt paths: the isolation between the two mixer LO ports and the RCP-LCP selector switch

leakage. K&L 2FV-8400/2400 bandpass filters (attenuation curve on page 76) in the LO path provides additional out-of-band isolation to the mixer LO ports. Although there is no RCP-LCP transfer switch, the RCP-LCP selector switch leakage is a shunt leakage path. Both these paths are a bit more complicated than the corresponding paths in the other mixers. From the table above, the module's specified RCP-LCP path isolation is 65 dB.

At 8.4 GHz, the typical RCP-LCP path isolation of the RLC SRC-TC-R-D selector switch is about 78 dB. The Triangle YL-56 power divider adds 19 dB of port-to-port isolation to this shunt path so the resultant isolation is about 97 dB.

The WJ M77C mixer's typical LO to RF isolation is 35 dB and the LO to IF isolation is also 35 dB. The Triangle YL-56 power divider port-to-port isolation is 19 dB. Over the 7.4 to 10.4 GHz range of LO frequencies, the isolation of this shunt path is the sum of the two mixer LO port's to RF port isolation and the divider's isolation; this is 89 dB. The filter's insertion loss is about 0.25 dB for frequencies in the 2500 MHz passband; for frequencies outside the passband, the isolation is increased by the filter's attenuation. At frequencies of 5900 and 10900 (\pm 1 bandwidth from center frequency) the filter's attenuation is 15 dB and 22 dB, respectively. At these two frequencies the isolation increases to 104 and 111 dB, respectively.

Isolation Between the 8.4 Ghz and 23 GHz Front-End Inputs

Two Transco 909C70100 SPDT coaxial selector switches (S106A and S106B)select the outputs of either the 8.4 GHz Front-End or the first IF output of the 23 GHz Front-End for conversion. Since the frequencies of these two signals are similar, switch isolation is an important consideration because the coupling between the unselected signals and selected signals should be very small. At 8 GHz the switch's isolation between inputs is typically 90 dB.

VSWR's

In modes 1 and 2, (8.4 GHz) the input VSWR, about 1.5:1, is the composite of the DITOM D3I-7011 isolator (1.18:1), the K&L 6FV-8400/X960 bandpass filter (1.5:1) and the Transco 909C70100 selector switch (1.1:1).

In mode 3, the (23 GHz mode) the input VSWR, about 1.2:1 is the composite of the DITOM D3I-7011 isolator (1.18:1) and the Transco 909C70100 selector switch (1.1:1).

The output VSWR, about 1.5:1 is the composite VSWR of the Amp/Divider which is 1.5:1. 12/10

RF Input Circuitry

Since T106 has inputs from two Front-Ends that are selected by Transco 909C70100 switches and an RCP-LCP selector switch (an RLC SR-TC-R-D), it differs from the RF circuitry of the general converter block diagram of Section 2.1. In addition, the RCP and LCP RF circuits are not identical as in the generic converter. In contrast to 8.4 GHz inputs, the 23 GHz first IF inputs to the selector switches do not have isolators or bandpass filters. The selector switch outputs have a second DITOM D3I 17011 isolator to minimize reflections back to the 23 GHz Front-Ends in mode 3 (i.e. when the 23 GHz first IF is selected).

The bandwidth of the input from the 8.4 GHz Front-End is determined by the K&L 6FV-844/X960 bandpass filter. The center frequency is 8.4 GHz, the 1 dB bandwidth is 960 MHz and the center-frequency insertion loss is 0.25 dB. The next page has a plot of the filter's attenuation.

The Triangle Microwave YL-56 two way power divider evenly divides the RCP signal into two components that drive the mixers. The divider's LCP output is input to the LCP mixer in mode 2 via the RCP-LCP selector switch. The YL-56 outputs are 3 dB below the splitter input so a 3 dB attenuator (Narda 4778-3) reduces the LCP RF signal level from the LCP selector switch to equalize the two path losses in mode 1. The insertion loss of the

YL-56 is 0.6 dB. The 50 Ohm termination on J3 of the RCP-LCP selector switch terminates the power divider's LCP output in mode 1.

At this point in mode 1, the 8.4 GHz inputs to the Watkins-Johnsom M77C have been reduced from T106's input levels by the insertion losses of the two isolators (0.35 dB each), the 8.4 GHz filter (0.25 dB), the selector switch (0.15 dB), the RCP-LCP selector switch (0.1 dB) and the divider (0.6 dB). The power level is further reduced by the LCP path attenuator (3 dB) and the RCP path power divider (3 dB). The values cited are all typical and the total attenuation in this mode is about 4.8 dB. The mode 2 RF circuit losses to the mixier are identical to those of mode 1 while the mode 3 (23 GHz) losses to the mixer are about 4.2 dB because one isolator and the filter have been omitted from the path.

IF Circuitry

The IF path Amp/Attenuator, Amp/Divider and 6B120-750/X550 If bandpass filter were described in Section 2.5. IF gain adjustment is described in Test I, Section 2.7.

A DPDT IF Gain Relay Assembly C53500A009 selects either the 8.4 GHz (modes 1 and 2) or the 23 GHz (mode 3) front panel gain control potentiometers for control of the Amp/Attenuator gain. The 28 volt relay assembly is driven by L107, address 0A, bit 6 via P11-24. The IF Relay Assembly drawing is included in Section 2.5.

LO Drive Circuitry

The LO drive circuitry also differs from that of the general converter of Section 2.1 because it has a second LO drive amplifier to drive the LCP mixer

through an RLC SR-TC-R-D LO selector switch. This second LO drive is used in mode 2.

In modes 1 and 3, the J10 LO input drives the mixer's LO ports via a MITEQ AMF-2B-7494 amplifier, a Triangle Microwave YL-56 two-way power divider, the J3-J4 contacts of the LO selector switch and the K&L 2FV-8400/2500 bandpass filters.

In mode 2, the J9 LO input drives the LCP mixer's LO port via the second MITEQ AMF-2B-7494 amplifier, the J2-J4 contacts of the LO selector switch and the LCP 8400/2500 bandpass filter.

The 50 Ohm termination on the LO selector switch J1 terminates the second LO amplifier in mode 1 and terminates the LCP port of the LO power divider in mode 2.

The LO amplifiers are MITEQ AMF-2B-7494-15P amplifiers, identical to those used in T110. During the T106 design process, bench tests showed that this amplifier could also be used in T106 without degradation of performance so it was used in T106. This improves commonality between modules.

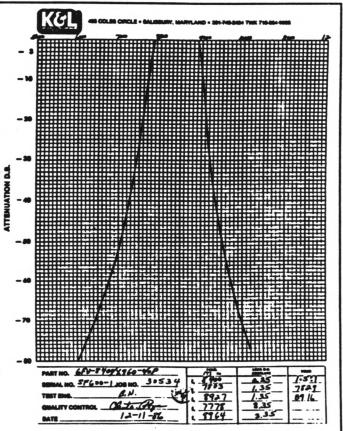


Figure 22 K&L 6FV-8400/X960 Bandpass Filter

These amplifiers are a special order adaption of the AMF-2B amplifier series for NRAO. The amplifier is characterized over the 7.4 to 9.4 Ghz LO frequency range but operates satisfactorily at the 10.4 GHz frequency LO frequency of mode 3. The gain is 15 dB and is flat over this band within \pm 0.5 dB; the noise figure is about 3.3; maximum input and output VSWR is 1.9 and the 1 dB compression point is about 18.5 dB. During module alignment, the amplifier gain is adjusted to produce a +10 dBm drive to the WJ M77C mixers. The gain is determined by the selection of the appropriate NARDA 4772-X pad. The LO amplifier gain procedure is described in Test I, LO Powr, Gain and Flatness, Section 2.7. A MITEQ test data sheet for this amplifier is included at the rear of this section.

The LO drive circuitry has K&L 2FV-8400/2500 bandpass filters in series with the drive to each mixer LO port. These filters have a center frequency of 8400 MHz, a 3 dB bandwidth of 2500 MHz and an insertion loss of 0.24 dB at the center frequency. Figure 23 shows the filter attenuation characteristics.

RF Switching

Two Transco 909C70100 SPDT selector switches (S106A and S016B) are used to select either Front-End input. At 8 GHz typical values are: VSWR - 1.1:1, insertion loss - 0.15 dB and the isolation is 90 dB. This switch is described in Section 2.5. A +28 volt input to terminal 1 (P11-24) will select the 23 GHz Front-End signal and a +28 volt input to terminal 2 (P11-25) will select the 8.4 GHz Front-End signal. The switch coil common is connected to the module common distribution.

This pair of switches is driven by L107, address 1DH, bits 0 and 1. Section 2.5 has data sheet for the Transco 909C70100 selector switch.

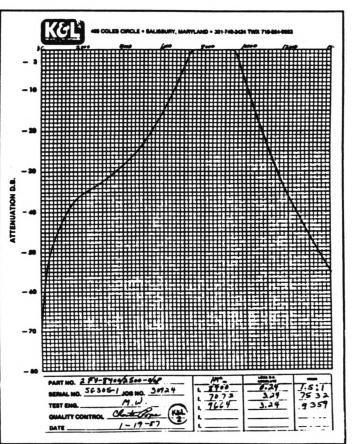
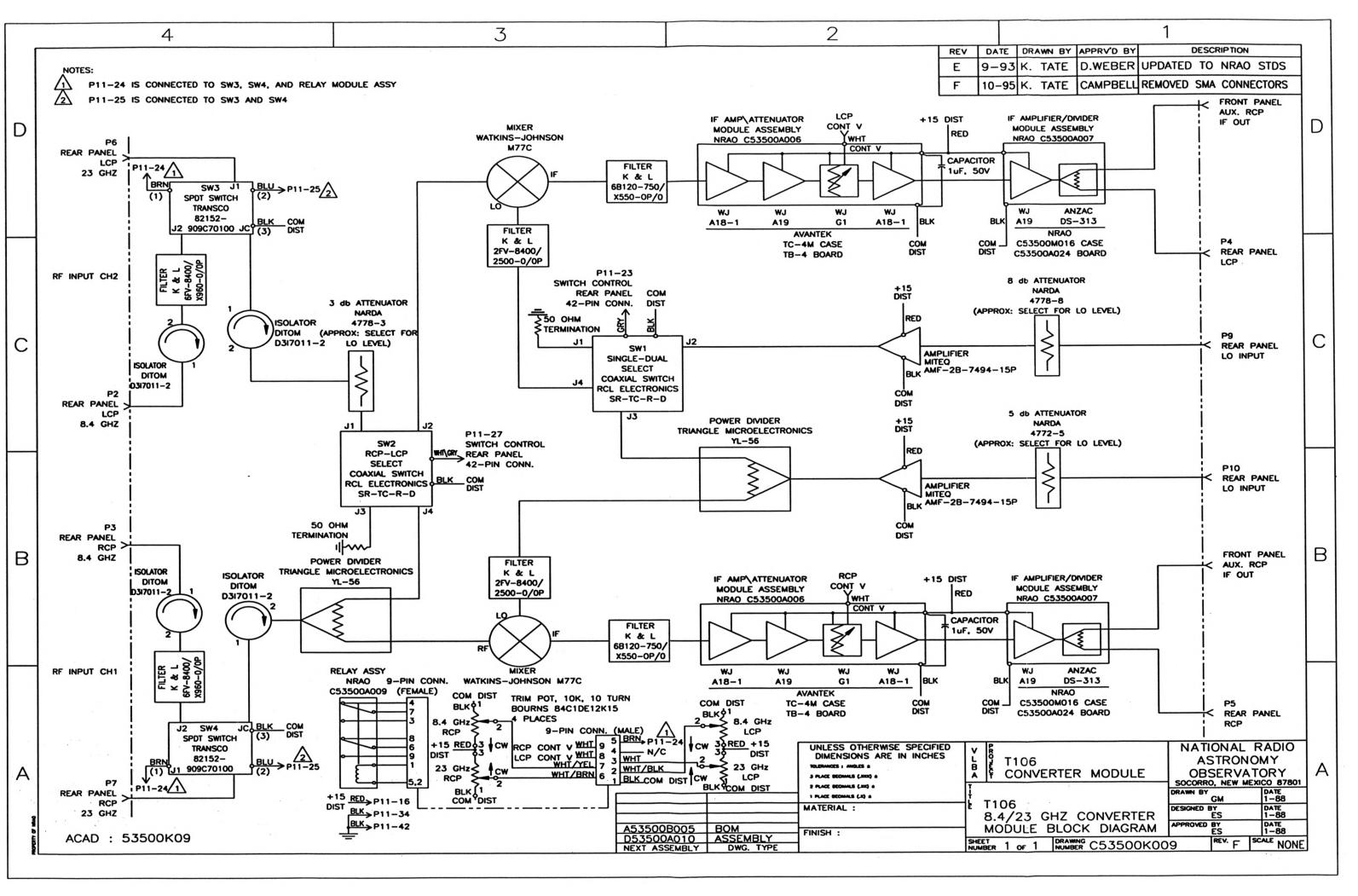
Two RLC SR-TC-R-D selector switches (the RLC data sheet calls the switch a transfer switch) are used as selector switches. This switch is typically used as a transfer switch but it can also be used as a selector switch as is the case in T106. This switch is a failsafc switch. The NC contacts are closed when the coil is not energized; applying +28 volts energizes the coil and closes the NO contacts.

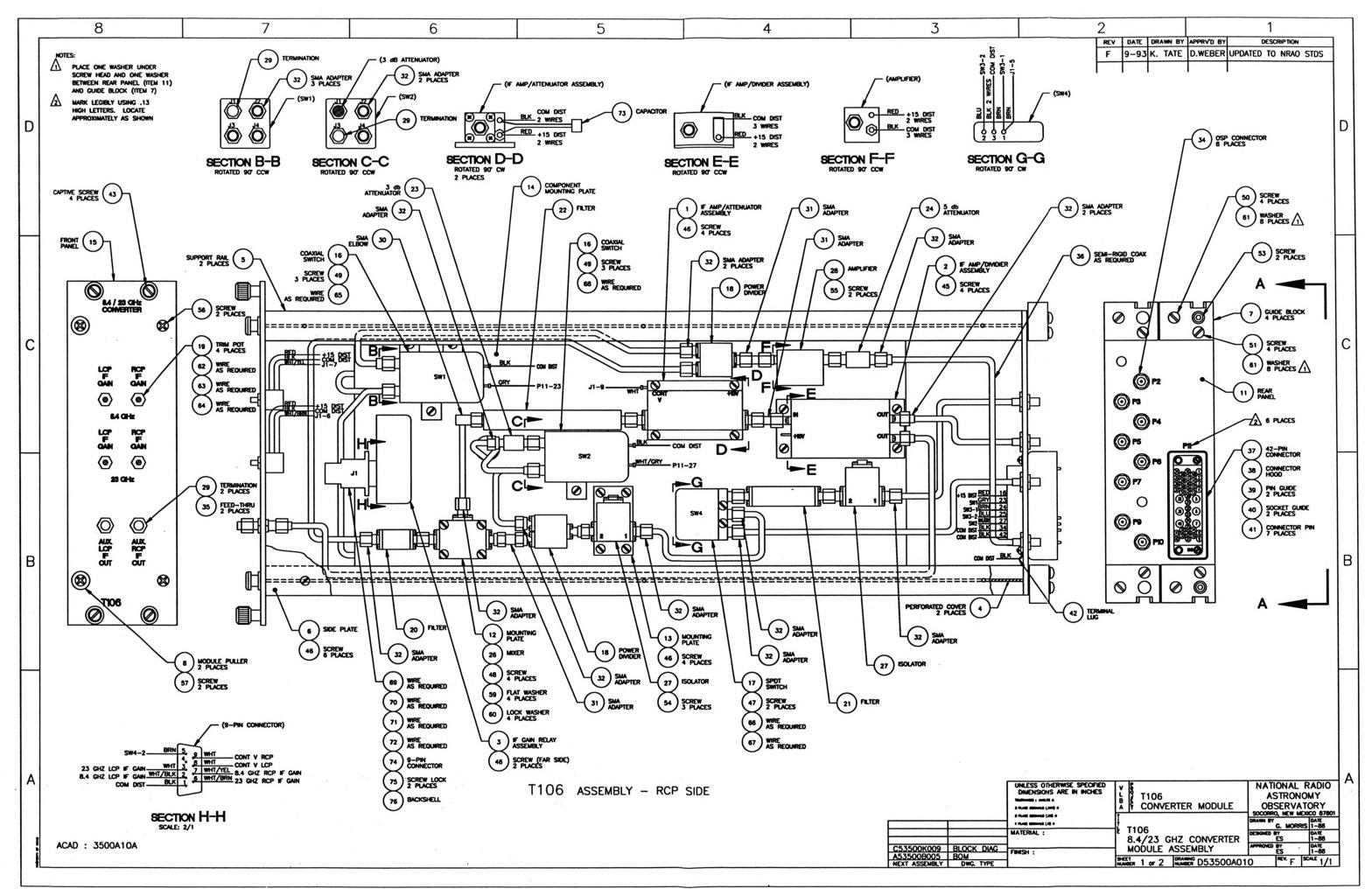
The first switch, S106D, selects either the LCP signal from the 8.4/23 GHz selector switch (mode 3 is the 23 GHz case) or the RCP signal from the RCP selector switch (this case is mode 1) for input to the LCP mixer. This switch is connected to P11-27 (the standard transfer switch pin) and is driven by M102, address 15H, bit 0.

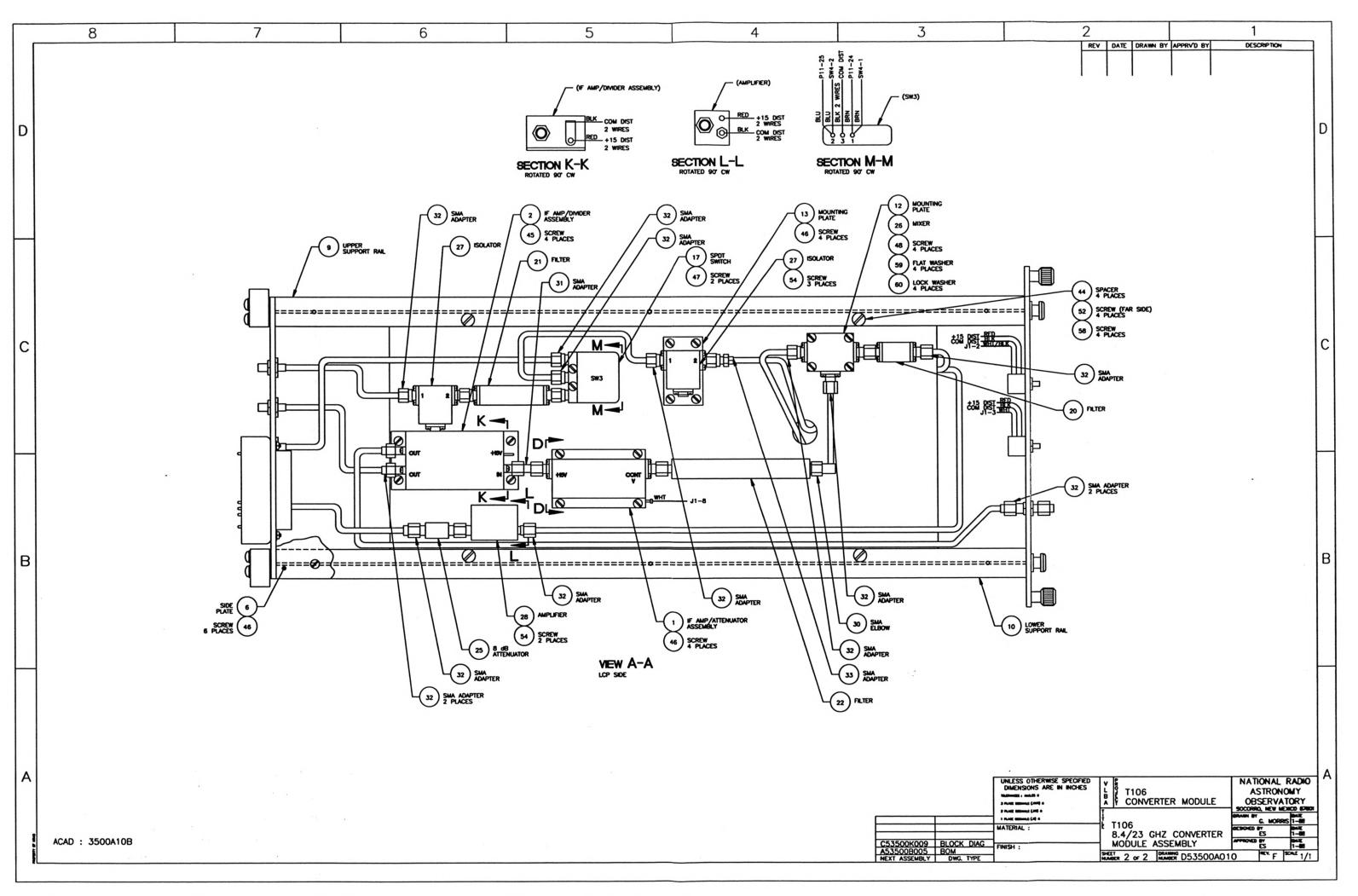
The second RLC SR-TC-R-D switch, S106E, is connected to P11-23 and is driven by L107, address 1EH, bit 0.

T106 does not have an RCP-LCP transfer switch.

Transco switch 710C70100 may be used as an alternate to the RLC switch. Section 2.5 has data sheets for the two switches.


Figure 23 K&L 2FV-8400/2500 Bandpass Filter


T106 Power Circuitry

All T106 active components are powered by +15 volts. +15 volts from P11-16 is connected in a +15 distribution string to the amplifiers. The common returns for these devices are connected to a frame ground lug connected to P11-34 and P11-42. This ground is also the ground return for the +28 volt drive to the transfer switch.

The Amp/Attenuator has a 1.0 uF bypass capacitor connected across the amplifier's power terminals.

			<u></u>	REVISIONS			
REV	DATE	DRAMM BY	APPRVD BY			DESCRIPTION	
В	9-93	K. TATE	D. WEBER	UPDATED	TO NRAO	STANDARDS	
-							····
ł							
	ļ						
DRAWN BY	. TATE		DATE 9-93				
DESIGNED BY		· · · · · · · · · · · · · · · · · · ·	DATE			C53500K009	BLOCK DIAG
APPROVED BY			DATE			D53500A010	ASSEMBLY
	. WEBEF	<u> </u>	9-93	······	,	NEXT ASSY	USED ON
				V	T106 C	ONVERTER MODU	E
		IADIO ASTR SERVATORY				.4/23 GHZ CON	
				B A	ASSEME	BLY BOM	
l				A DMG NO.	A53500B	005 s H	<u>er 1 of 5</u>

X ELECTRICAL X MECHANICAL	BOM #A53500B005	REVB DATE9-22-	<u>-93</u> PAGE <u>2</u> OF <u>5</u>
MODULE <u>T106</u> NAME <u>8,4/23 GHZ CONVERTER</u>	DWG# <u>D53500A010</u> s	SUB ASSY	DWG#
SCHEM. DWG# LOCATION	QUA/SYS	PREPRD BY <u>K. TATE</u>	APPRVD BY <u>D. WEBER</u>

ITEM #	REF DES	MANUFACTURER	PART NUMBER	DESCRIPTION	TOTAL QTY.
1	<u></u>	NRAO	C53500A006	ASSY, IF AMP/ATTENUATOR	2
2		NRAO	C53500A007	ASSY, IF AMP/DIVIDER	2
3		NRAO	C53500A009	ASSY, IF GAIN RELAY	1
4		NRAO	C53306M014-1	COVER, PERFORATED	2
5		NRAO	C53306M016	RAIL, SUPPORT	2
6		NRAO	C53306M017	PLATE, SIDE	2
7		NRAO	B53306M018	BLOCK, GUIDE	4
8		NRAO	A53306M038	PULLER, MODULE	2
9		NRAO	B53500M001	RAIL, UPPER	1
10		NRAO	B53500M002	RAIL, LOWER	1
11		NRAO	B53500M004-1	PANEL, REAR	1
12		NRAO	B53500M029	PLATE, MIXER MOUNTING	2
13		NRAO	B53500M030	PLATE, ISOLATOR MOUNTING	2
14		NRAO	D53500M031	PLATE, COMPONENT MOUNTING	1
15		NRAO	C53500M033	PANEL, FRONT	1
16	SW1, SW2	RLC ELECTRONICS	SR-TC-R-D	SWITCH, COAXIAL	2
17	SW3, SW4	TRANSCO	82152-909C70100	SWITCH, SPDT	2
18		TRIANGLE MICROELECTRONICS	YL-56	DIVIDER, POWER	2
19		BOURNS	84C1DE12K15	TRIM POT, 10K PANEL	4
20		K&L	2FV-8400/2500-0/0P	FILTER	2

X	X ELECTRICAL X MECHANICAL BOM # A53500B005 REV B DATE 9-22-93 PAGE 3 OF 5						
ITEM #	REF DES	MANUFACTURER	PART NUMBER	DESCRIPTION	TOTAL QTY.		
21		K&L	6FV-8400/X960-0/0P	FILTER	2		
22		K & L	6B120-750/X550-0/0P	FILTER	2		
23		NARDA	4778-3	ATTENUATOR, 3 db	1		
24		NARDA	4778-5	ATTENUATOR, 5 db	1		
25		NARDA	4778-8	ATTENUATOR, 8 db	1		
26		WATKINS-JOHNSON	M77C	MIXER	2		
27		DITOM	D317011-2	ISOLATOR	4		
28		MITEQ	AMF-2B-7494-15B	AMPLIFIER	2		
29		SOLITRON	8018-6005	TERMINATION, 500	4		
30		SOLITRON	2912-6001	ELBOW, SMA MALE/.141 COAX	2		
31		SOLITRON	2993-6001	ADAPTER, SMA MALE/MALE	4		
32		SOLITRON	2902-6001	ADAPTER, SMA MALE/.141 COAX	31		
33		SOLITRON	2002-5015-00	ADAPTER, SMA FEM./.141 COAX '	1		
34	P1-P7, P9-P10	OMNI - SPECTRA	2081-0000-00	CONNECTOR, OSP .141 MALE	8		
35		OMNI-SPECTRA	2084-0000-00	FEED-THRU, SMA	2		
36		PRECISION TUBE	AA50141	COAX, .141, SEMI-RIGID	AR		
37	P11	AMP	204186-5	CONNECTOR BLOCK, 42-PIN	1		
38		AMP	202394-2	CONNECTOR HOOD, 42-PIN	1		
39		AMP	200833-2	PIN, GUIDE	2		
40		AMP	203964-5	SOCKET, GUIDE	2		
41		AMP	201578-1	PIN, 16 GA. CONNECTOR	7		

<u> </u>	ELECTRIC	CAL X MECHANICAL BOM	#A53500B005REVI	<u> DATE 9-22-93</u> PAGE <u>4</u>	_OF
ITEM #	REF DES	MANUFACTURER	PART NUMBER	DESCRIPTION	TOTAL QTY.
42				LUG, TERMINAL	1
43		SOUTHCO	47-11-204-10	SCREW, CAPTIVE	4
44		H.H. SMITH	9244	SPACER, 8-32UNC-2B x .44	4
45				SCREW, PAN HEAD, SS, 4-40UNC-2A x .19	8
46	_			SCREW, PAN HEAD, SS, 4-40UNC-2A x .25	30
47				SCREW, PAN HEAD, SS, 4-40UNC-2A x .63	4
48				SCREW, PAN HEAD, SS, 4-40UNC-2A x .75	8
49				SCREW, PAN HEAD, SS, 6-32UNC-2A x .25	6
50				SCREW, PAN HEAD, SS, 6-32UNC-2A x .75	4
51				SCREW, PAN HEAD, SS, 6-32UNC-2A x .88	4
52				SCREW, PAN HEAD, SS, 8-32UNC-2A x .63	4
53				SCREW, SOCKET HEAD, SS, 6-32UNC-2A x .38	2
54				SCREW, FLAT HEAD, SS, 2-56UNC-2A x .25	6
55				SCREW, FLAT HEAD, SS, 4-40UNC-2A x .25	4
56				SCREW, FLAT HEAD, SS, HP GREY, 6-32UNC-2A x .38	2

<u> </u>	ELECTRI	CAL X MECHANICAL BOM	#A53500B005REV	BDATE_9-22-93PAGE_5	_OF5
ITEM #	REF DES	MANUFACTURER	PART NUMBER	DESCRIPTION	TOTAL QTY.
57				SCREW, FLAT HEAD, SS, 6-32UNC-2A x .75	2
58				SCREW, FLAT HEAD, SS, 8-32UNC-2A x .75	4
59				WASHER, FLAT #4	8
60				WASHER, LOCK #4	8
61				WASHER, EXT. TOOTH #6	16
62		ALPHA	7055	WIRE, WHT #22	AR
63		ALPHA	7055	WIRE, BLK #22	AR
64		ALPHA	7055	WIRE, RED #22	AR
65		ALPHA	7055	WIRE, GRY #22	AR
66		ALPHA	7055	WIRE, BLU #22	AR
67	• · · · · · · · · · · · · · · · · · · ·	АLРНА	7055	WIRE, BRN #22	AR
68		ALPHA	7055	WIRE, WHT/GRY #22	AR
69		ALPHA	7055	WIRE, WHT/BLK #22	AR
70		ALPHA	7055	WIRE, WHT/BRN #22	AR
71		ALPHA	7055	WIRE, WHT/YEL #22	AR
72	· ····			WRAP, TIE	AR
73		SPRAGUE	2C20Z50105M050B	CAPACITOR, MONOLITHIC CERAMIC, 1µ£, 50V	2
74	J1	TRW CINCH	DE-9P	CONNECTOR, 9-PIN D-SUB	1
75		AMPHENOL	17-D20418-2X	SCREW LOCK, MALE	2
76		TRW CINCH		BACKSHELL	1

WJ-M77/M77C WJ-MY77/MY77C

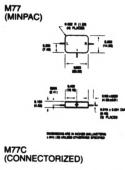
DOUBLE-BALANCED MIXER

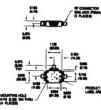
- ◆ LO 7.0 TO 15.0 GHz
- ♦ RF 8.0 TO 12.5 GHz
- ♦ IF DC TO 2500 MHz
- LO DRIVE +10 dBm (nominal)
- ♦ LOW NOISE FIGURE

*MIL-M-28837 Screening Available (See "QPL Mixers" Section)

Guaranteed Specifications 1

Characteristics	Min.	Тур.	Max.	Test Conditions
SSB Conversion Loss and SSB Noise Figure		5.0 dB	7.0 dB	1 _R 8 to 12.5 GHz 1_7 to 13.5 GHz 1, 30 to 1000 MHz
		5.5 dB	7.5 dB	¹ IR 8 to 12.5 GHz I _L 7 to 14.5 GHz I _L 1000 to 2000 MHz
		6.0 dB	8.0 dB	¹ R 8 to 12.5 GHz ¹ L 7 to 15.0 GHz ¹ I 2000 to 2500 MHz
Isolation				
L to R	20 dB	35 dB		fL 7 to 15 GHz
L to I	20 dB	35 dB		fL 8 to 12 GHz
	15 dB	30 dB		1 7 to 14 GHz
	10 dB	20 dB		1 14 10 15 GHz
Conversion Compression			1.0 dB	f _R level +4 dBm f _L level +10 dBm
Third Order Input Intercept Point		+15 dBm		1 _{R1} = 10.00 GHz; 1 _{R2} = 10.01 GHz both at -6 dBm 1 _L = 11.0 GHz at +10 dBm
Single Tone IM Suppression				1 _R 8 to 12.5 GHz at -10 dBm
1_ 1 _R				
2 x 2		60 dB		
2 x 3		70 dB		
3 x 2		37 dB		
3 x 3		59 dB		
3 x 4		> 70 dB		
4 x 3		> 70 dB		
4 x 4		> 70 dB		


The I-Port frequency range extends to DC for phase detection, pulse m degrades from a 50-ohm system at low IF trequencies.


Absolute Maximum Ratings

Operating	Temperat	ure		-54°C to +100°C
Storage T	emperature			-65°C to +100°C
Peak Inpu	It Power	+23 dBm ma	x. at +25°	C. +20 dBm max. at +100°C
Peak Inpu	t Current a	t 25°C		
Weight	M77:	9 grams (0.32 oz.) max. 36 grams (1.27 oz.) max.	MY77:	7.9 grams (0.28 oz.) max. 20.0 grams (0.70 oz.) max.
564		oo grame (1.27 Oz.) max.		20.0 grame (0.70 02.) max.

Outline Drawings

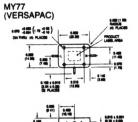
AND AND AND AND AN INCOME ANTIMAN

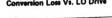
Typical Performance at 25°C*

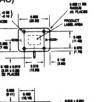
LO PONER - Mm

-H - BC to 1000 Met

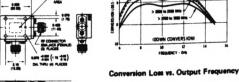
Conversion Loss vs. Frequency

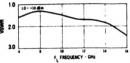


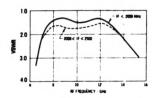

10 12 MOUDICY - GH 10


Conversion Loss Vs. LO Drive

- 10 GHz # -10 @.





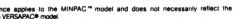


F. FREQUENCY . GHz

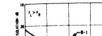
L-Port VSWR vs. Frequency

R-Port VSWR vs. Frequency

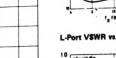
I-Port VSWR vs. fL

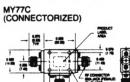


Typical Two-Tone Performance

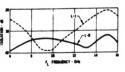


Typical Two-Tone Performance: f₁ = 1250 MHz, $f_R = 10.25$ GHz ± 1 MHz $f_R = -10$ dBm, $f_L > f_R$, $f_L = 11.5$ GHz \oplus +10 dBm. Vertical scale = 10 dB/cm.


*Typical performance applies to the MINPAC ** model and does not necessarily reflect the performance of the VERSAPAC® model.


565

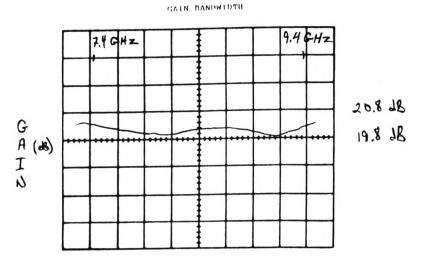
Isolation vs. Frequency

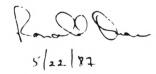

Conversion Loss vs. RF Input Power

-ALBE ION OUTPUT FREE ENCY - GHE

-----(DOWN C

Isolation vs. Frequency


Propert flore 11 1 6 Ger
File ho. :
EST DATA
P Served No.: 107864
Durchase Order No. :
Hz at 1 dB Compression +15 dBm min
tellage +15 Vbc
ar. Corrent (10x) 115 mA
Son a Figure (11) No SPEC
Dut Frence (dBa) at Lift Commension
3.37 + 19.2
3.24 + 16.8


P19706

MITEQ INC 7125 RICEFULD LANG HAUPPAUGE, NEW YORK 117877(516) 543-8872

Amplifier Model AME-28-7494-15P Secial No. 107864

FREQUENCY (6HZ)

•

MITER INC +1_507 (1000) (2000)

3.7 T107, 10.7 GHz CONVERTER MODULE

T107 Band Coverage and LO Frequencies

This section describes the T107 frequency converter that converts an X-Band 10.7 GHz (2.8 cm) Front-End signal to the standard 500 to 1000 MHz IF signal.

The Pie Town NM VLBA antenna is the only VLBA antenna site that has a 10.7 GHz receiving band capability. Currently, there are no plans to add the 10.7 GHz capability to the other VLBA sites. The T107 frequency converter used at the Pie Town site is a prototype unit and only one unit has been constructed.

The 10.7 GHz Front-End does not have bandwidth limiting filters, this function is performed by K&L 6FV-10700/X1200-O/OP bandpass filters in T107's RF circuitry. For VLBA K&L filters, the X supplemental code indicates that the bandwidth is defined at the -1 dB points. The RF filter center frequency is 10.7 GHz, the bandwidth is 1200 MHz and the -1 dB band edges are 10.1 and 11.3 GHz, respectively.

This band uses LO frequencies ranging between 9.6 GHz and 11.9 GHz. The following tabulation shows the mixer IF port spectrum, converted and attenuated bands. The converted band is that passed by the 750/X550 IF Bandpass filter and the attenuated bands are mixer IF port frequencies attenuated by the filter. The IF port frequencies are in MHz, the others in GHz.

LO Freq Mixer IF Port	Converted	Attenuated
9.6 500 to 1700	10.1 to 10.6	10.6 to 11.3
9.9 200 to 1400	10.6 to 11.1	10.1 to 10.6 10.6 to 11.3
11.6 300 to 1500	10.6 to 11.2	10.1 to 10.6 10.6 to 11.3
11.9 600 to 1800	10.9 to 11.3	10.1 to 10.9

When the 11.6 and 11.9 GHz LO frequencies are used, the IF spectrum is reversed. It is important to remember this effect when testing the T107 with these LO frequencies.

T107 Size and Location

T107 is a double-width module installed in Rack B, Bin A, Slots 1-2.

T107 Drawings and Data Sheets

The following T107 functional and assembly drawings are found at the end of this section.

C53500K003, Rev C	- T107 10.7 GHz Converter Module Block Diagram
D53500A004, Rev A	- T107 10.7 GHz Converter Module Assembly
A53500B003, Rev A	- T107 10.7 GHz Converter Module Assembly BOM

Data sheets for the Avantek DBX-158M-1 mixer, and Avantek AFT-12633 amplifier follow the drawings. Data sheets for the Narda 4315-1 power divider and Narda 4779-X attenuator are included in the Appendix, Section 6. A data sheet for the Virtech V3I 8012 isolator was not available for this manual.

T107 Specifications

Nominal Gain, dB	14	Gain Flatness, ± dB	2	LCP-RCP Path Isol, dB	65
Nom Output Pwr Ə Std Syst Temp, dBm	-40	Min Out Pwr Ə 1% Compression, dBm	+6.3	Nom Output Pwr Density, dBm/MHz	-67
Avg Noise Temp, K	14,000	Noise Temp for 1% added Syst Noise, K	20,000	Nom LO Pwr input, dBm	+1
Avg Noise Figure, dB	17.0	Noise Figure for 1% added Syst Noise, dB	18.4		
15 Volt Power Req't, mA	850				

T107 Differences From the General Converter Block Diagram

The differences between the General Converter Block Diagram of Section 2.1 are the omission of bandpass filters in the LO drive circuitry and the use of an isolator on the output of the RF bandpass filter. T107 does not have a transfer switch.

Unwanted Sideband and Image Band Attenuation

Unwanted sidebands are attenuated by the K&L 6B120-750/X550 IF bandpass filter described in Section 2.5. Image response bands are attenuated by T107's K&L 6FV-10700/X1200 bandpass filter which has a -1 dB passband of 10.1 to 11.3 GHz. The following tabulation shows the LO frequency, unwanted (UWSB) and image sidebands in GHz and the attenuation of these bands in dB.

LO Freq	UWSB	UWSB Attn	Image	Image Attn
9.6	19.7 to 21.5	»70	8.1 to 9.1	»54
9.9	20.0 to 21.2	»70	8.9 to 9.4	» 42
11.6	21.7 to 22.9	»70	12.1 to 12.6	»55
11.9	22.0 to 23.2	»70	12.4 to 12.9	»59

Noise Temperature

The T107 noise temperature is a composite value that is a function of the noise figures of the mixer, Amp/Attenuator and Amp/Divider. The average of the measured noise temperatures of the LCP and RCP channels is 14,000 K. A T107 noise temperature of 20,000 K would add 1 K to the system temperature.

Mixer

The AVANTEK DBX-158M-1 is an important component; a data sheet follows the drawings at the rear of this section. This mixer is designed for LO and RF frequencies of 8.0 to 15.0 GHz, IF frequencies of DC to 1000 MHz and a nominal LO drive of +10 to +17 dBm. At 10.5 GHz, the typical conversion loss is 5.5 dB and the typical noise figure is 5.5 dB. At 10 GHz, the port-to-port isolations are: 35 dB (RF-IF), 25 dB (RF-LO) and 23 dB (LO-IF). At 10.5 GHz, the RF and LO port VSWR's are about 1.2:1 and the IF port VSWR is 2.0 at 800 MHz.

RCP-LCP Isolation

The RCP-LCP isolation is a function of the isolation properties of two shunt paths: the isolation between the two mixer LO ports and the transfer switch leakage. As shown in the table above, the module's specified RCP-LCP path isolation is 65 dB. At 10 GHz the AVANTEK DBX-158M-1 mixer LO to RF isolation is 30 dB and the LO to IF isolation is 25 dB. The NARDA 4315-2 power divider minimum port-to-port isolation is 20 dB. The resultant worst-case isolation of this shunt path is thus about 70 dB.

At 10.7 GHz the typical RCP-LCP path isolation of the RLC SRC-TC-R-D transfer switch is about 75 dB.

VSWR's

The input VSWR is probably about 1.5:1 and is the composite of the VSWR's of the Virtech V3I 8012 Isolator (no value available) and K&L 6FV-10700/X1200 bandpass filter (1.5:1). The output VSWR is the composite VSWR of the Amp/Divider which is about 1.5:1.

RF Input Circuitry

The RF circuitry consists of two Virtech V3I-8012 isolators; one on the input to the K&L 6FV-10700/X1200 RF bandpass filter and one on the output. The output isolator is used to improve the AVANTEK DBX-72M-1 mixer's RF port VSWR. A data sheet for this isolator was not available at the time that this manual was written.

The losses in the RF input path are the insertion losses of the two isolators (estimated at 0.35 dB, each) and the bandpass filter (0.4 dB) for a total loss of 1.1 dB.

The K&L 6FV-10700/X1200 bandpass filter has a center frequency of 10.7 GHz, -1 dB bandwidth of 1200

MHz; and at the center frequency, the insertion loss is 0.4 dB and the VSWR is 1.5:1. Figure 24 shows the filter's typical attenuation vs frequency plot. Note that the filter's attenuation is about 40 dB for frequencies ± 1 bandwidth from the center frequency.

The Virtech V31-8012-2 isolators are probably similar the DITOM D3I 8012 isolators.

IF Circuitry

The IF path Amp/Attenuator, Amp/Divider and 6B120-750/X550 If bandpass filter were described in Section 2.5. IF gain adjustment is described in Test I, Section 2.7.

LO Drive Circuitry

The LO drive circuitry consists of a NARDA 4772-X attenuator used to set LO gain, an AVANTEK AFT-12633-1 LO amplifier and a NARDA 4315-2 two-way power divider.

The AVANTEK 12633-1 amplifier is designed for operation over the 6 to 12 GHz frequency range, has a 24 dB typical gain and a typical noise figure of 4.2. Over this frequency range, the gain is flat within \pm 1.0 dB and the

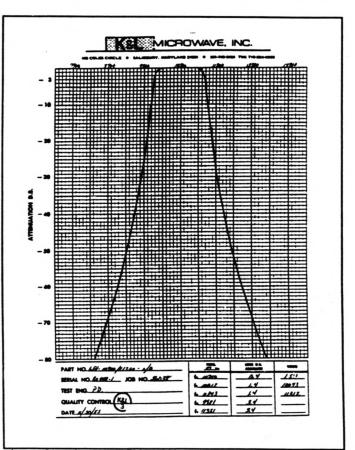
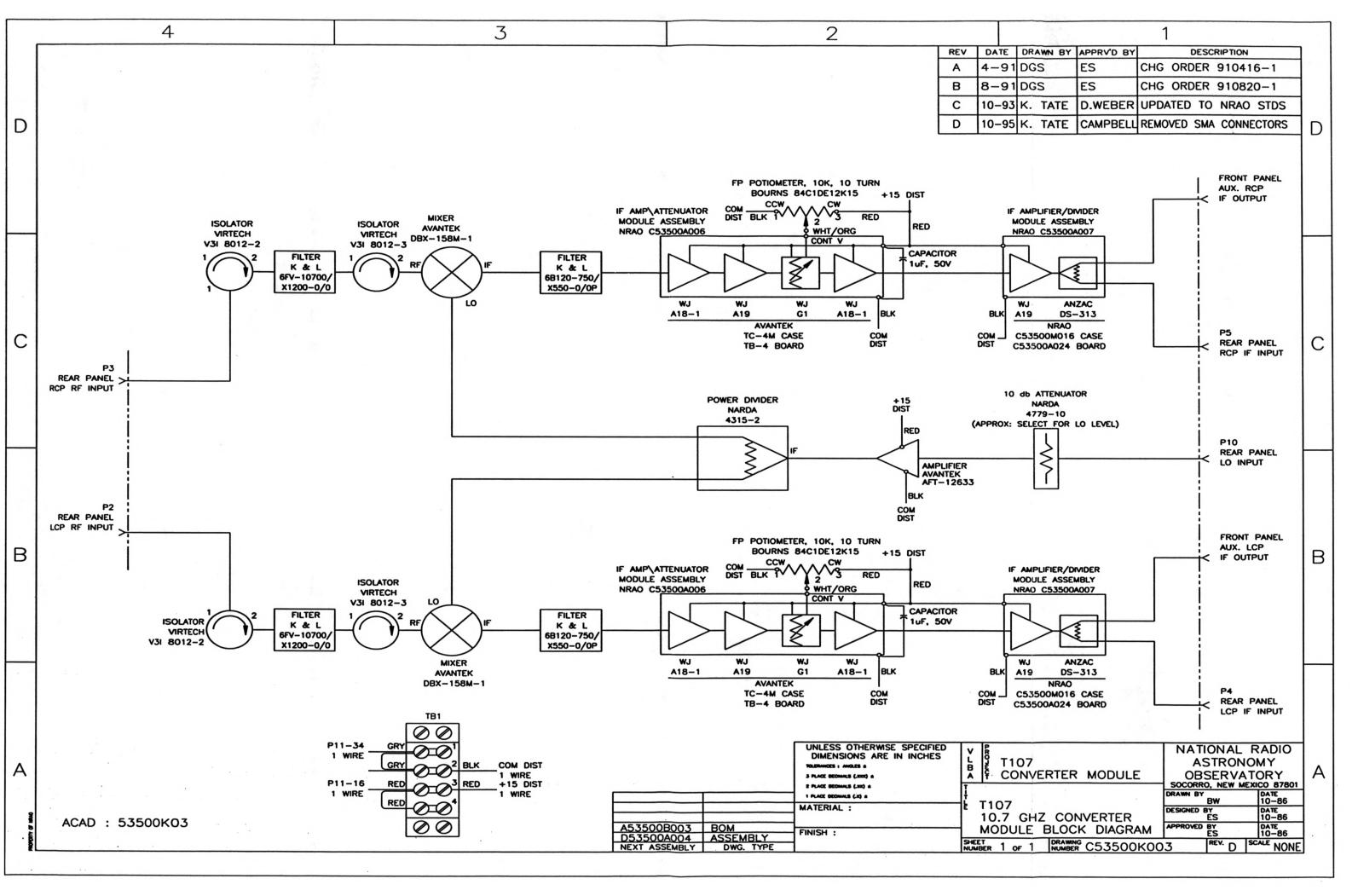


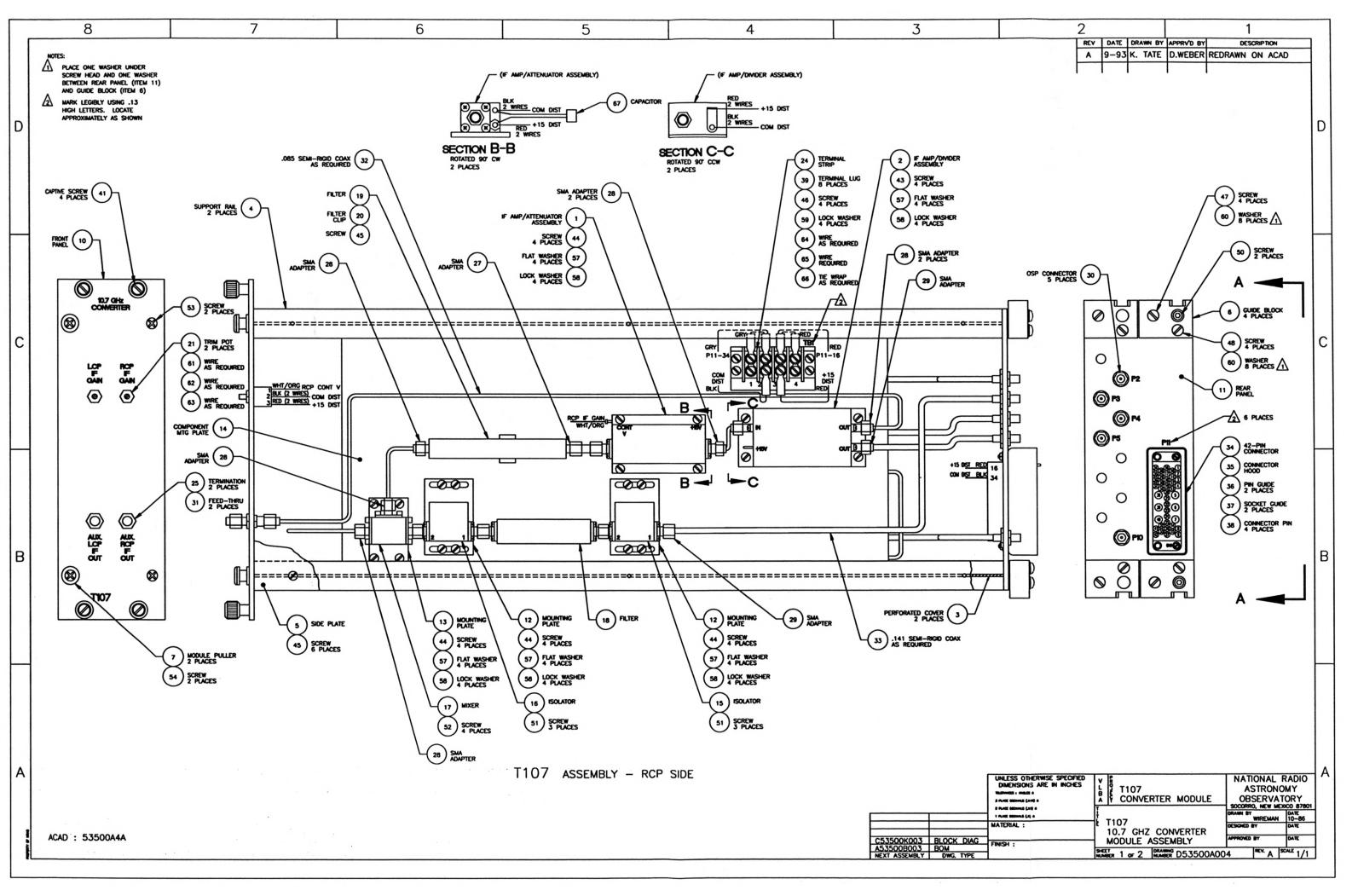
Figure 24 K&L 6FV-10700/X1200 Bandpass Filter

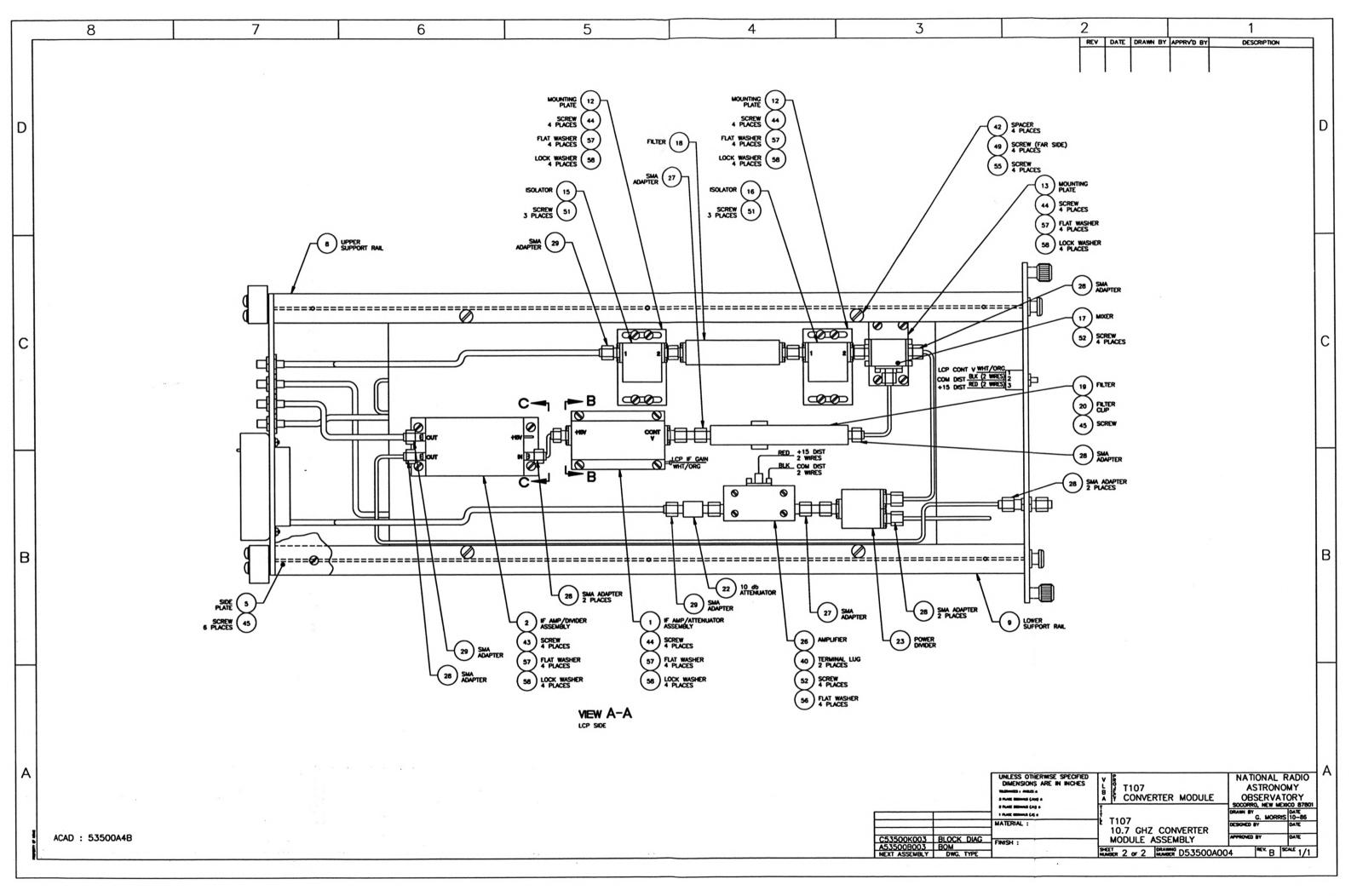
input and output VSWR's are 2.0. A data sheet for this amplifier follows the drawings at the back of this section.

The NARDA 4315-2 power divider has a minimum port-to-port isolation of 20 dB and a maximum insertion loss of 0.5 dB.

The nominal LO input power is +1 dBm and the LO drive to the mixer is +10 dBm. The LO path gain adjustment is described in Test I, Section 2.7.


RF Switching


T107 does not have a transfer switch although the Electronic System Block Diagram, D58001K001 shows a S107A transfer switch.


T107 Power Circuitry

All T107 active components are powered by +15 volts. +15 volts from P11-16 is connected to TB1 (terminal strip 1) terminals 3 and 4 where it is distributed to the amplifiers and gain potentiometers. The common returns for the amplifiers and potentiometers are connected to TB1 terminals 1 and 2. These terminals are connected to P11-34 and P11-42 and a frame ground lug at P11. The Amp/Attenuator has a 1.0 uF bypass capacitor connected across the amplifier's power terminals.

				REVISIONS	,			
REV	DATE	DRAMH BY	APPRVD BY			- · · ·	DESCRIPTION	
A	9-93	K. TATE	D.WEBER	UPDATED	TO	NRAO	STANDARDS	
	<u>}</u>							
	•	•	•	•				
MAIN SY		·	DATE				······································	I
K	. TATE		9-93 DAVE				С53500К003	BLOCK DIAG
							D53500A004	ASSEMBLY
PPROVED BY			DATE				NEXT ASSY	USED ON
	- <u>-</u>		L					
NA		ADIO ASTR		V PROJECT	T10)7 CO	NVERTER MODUL	E
174		SERVATORY					.7 GHZ CONVER	TER MODULE
		NEW MEXICO 87		B	ASS	SEMBL	Y BOM	
				A DWG NO.	A535	600B0	03 🕬	±n 1 o≠ 5

X ELECTRICAL X MECHANICAL	BOM # A53500B003 RI	EV <u>A</u> DATE <u>9-30-93</u> PAGE <u>2</u> OF <u>5</u>
MODULE <u>T107</u> NAME <u>10,7 GHZ CONVERTER</u>	DWG#	SY DWG#
SCHEM. DWG# LOCATION	QUA/SYS PREPRD	BY K. TATE APPRVD BY D. WEBER

ITEM 🖸	REF DES	MANUFACTURER	PART NUMBER	DESCRIPTION	TOTAL QTY.
1		NRAO	C53500A006	ASSY, IF AMP/ATTENUATOR	2
2		NRAO	C53500A007	ASSY, IF AMP/DIVIDER	2
3		NRAO	C53306M014-1	COVER, PERFORATED	2
4		NRAO	C53306M016	RAIL, SUPPORT	2
5		NRAO	C53306M017	PLATE, SIDE	2
δ		NRAO	B53306M018	BLOCK, GUIDE	4
7		NRAO	A53306M038	PULLER, MODULE	2
8		NRAO	B53500M001	RAIL, UPPER	1
9		NRAO	B53500M002	RAIL, LOWER	1
10		NRAO	B53500M003	PANEL, FRONT	1
11		NRAO	B53500M004-1	PANEL, REAR	1
12		NRAO	A53500M008-3	PLATE, ISOLATOR MOUNTING	4
13		NRAO	A53500M009	PLATE, MIXER MOUNTING	2
14		NRAO	D53500M025	PLATE, COMPONENT MOUNTING	1
15		VIRTECH	V3I 8012-2	ISOLATOR	2
16		VIF.TECH	V3I 8012-3	ISOLATOR	2
17	 	AVANTEK	DBX-158M	MIXER	2
18		K&L	6FV-10700/X1200-0/0	FILTER	2
19		K&L	6B120-750/X550-0/OP	FILTER	2
20		K&L	M12-A	CLIP, FILTER	2

X ELECTRICAL X MECHANICAL BOM # A53500B003 REV A DATE 9-30-93 PAGE 3 OF 5

ITEM #	REF DES	MANUFACTURER	PART NUMBER	DESCRIPTION	TOTAL QTY.
21		BOURNS	3862C-122-103A	TRIM POT, 10K PANEL	2
22		NARDA	4779-10	ATTENUATOR, 10 db	1
23		NARDA	4315-2	DIVIDER, POWER	1
24	TB1	TRW CINCH	4-140	STRIP, TERMINAL	1
25		SOLITRON	8018-6005	TERMINATION, 500	2
26		AVANTEK	AFT-12633	AMPLIFIER	1
27		SOLITRON	2993-6001	ADAPTER, SMA MALE/MALE	3
28		SOLITRON	2906-6002	ADAPTER, SMA MALE/.085 COAX	14
29		SOLITRON	2902-6001	ADAPTER, SMA MALE/.141 COAX	5
30	P2-P4, P10	OMNI-SPECTRA	4503-7941-00	CONNECTOR, OSP .141 MALE	5
31		OMNI-SPECTRA	2084-0000-00	FEED-THRU, SMA	2
32		PRECISION TUBE	AA50085	COAX, .085 SEMI-RIGID	AR
33		PRECISION TUBE	AA50141	COAX, .141. SEMI-RIGID	AR
34	P11	AMP	204186-5	CONNECTOR BLOCK, 42-PIN	1
35		AMP	202394-2	CONNECTOR HOOD, 42-PIN	1
36		AMP	200833-2	PIN, GUIDE	2
37		AMP	203964-5	SOCKET, GUIDE	2
38		АМР	201578-1	PIN, 16 GA. CONNECTOR	2
39		ETC/MOLEX	AA-832-06	LUG, TERMINAL	8
40				LUG, TERMINAL	2
41		SOUTHCO	47-11-204-10	SCREW, CAPTIVE	4

ITEM #	REF DES	MANUFACTURER	PART NUMBER	DESCRIPTION	TOTAL QTY.
42		H.H. SMITH	8365	SPACER, 8-32UNC-2B x .75	4
43				SCREW, PAN HEAD, SS, 4-40UNC-2A x .25	8
44	<u></u>			SCREW, PAN HEAD, SS, 4-40UNC-2A x .31	32
45				SCREW, PAN HEAD, SS, 6-32UNC-2A x .25	14
46				SCREW, PAN HEAD, SS, 6-32UNC-2A x .38	4
47				SCREW, PAN HEAD, SS, 6-32UNC-2A x .75	4
48				SCREW, PAN HEAD, SS, 6-32UNC-2A x .88	4
49				SCREW, PAN HEAD, SS, 8-32UNC-2A x .63	4
50				SCREW, SOCKET HEAD, SS, 6-32UNC-2A x .38	2
51				SCREW, FLAT HEAD, SS, 2-56UNC-2A x .25	12
52				SCREW, PAN HEAD, SS, 2-56UNC-2A x .50	12
53				SCREW, FLAT HEAD, SS, HP GREY, 6-32UNC-2A x .38	2
54				SCREW, FLAT HEAD, SS, 6-32UNC-2A x .75	2
55				SCREW, FLAT HEAD, SS, 8-32UNC-2A x .63	4

X ELECTRICAL X MECHANICAL BOM # A53500B003 REV A DATE 9-30-93 PAGE 4 OF 5

<u> </u>	ELECTRI	CAL X MECHANICAL BO	M #A53500B003 REV	A DATE PAGE	
ITEN #	REF DES	MANUFACTURER	PART NUMBER	DESCRIPTION	TOTAL QTY.
56				WASHER, FLAT #2	4
57				WASHER, FLAT #4	40
58				WASHER, LOCK #4	40
59				WASHER, LOCK #6	4
60				WASHER, EXT. TOOTH #6	16
61		ALPHA	7055	WIRE, WHT/ORG #22	AR
62		ALPHA	7055	WIRE, BLK #22	AR
63		ALPHA	7055	WIRE, RED #22	AR
64		ALPHA	7056/19	WIRE, GRY #20	AR
65		ALPHA	7056/19	WIRE, RED #20	AR
66		PANDUIT	PLT1M	WRAP, TIE 3.5"	AR
67		SPRAGUE	2C20Z50105M050B	CAPACITOR, MONOLITHIC CERAMIC, 1µf, 50V	2
68					
69					
70					
71					
72					
73					
74					
75					
76					

AVANTEK

DBX-158L/M/H DBY-158L/M/H **Durold Mixer** 8 to 15 GHz Double Balanced

FEATURES

- Single Schottky Diodo Quad
- 5.5 dB Conversion Loss
- · 30 dB isolation
- R Port VSWR ≤ 2.0:1

DESCRIPTION

The DBX/DBY Series uses precisely matched Schottky-barrier diodes and a "quasi-planar" physical construction for excellent overall symmetry. Construction techniques result in high LO to RF isolation, extremely low single tone intermodulation distortion and very good amplitude and phase match characteristics.

APPLICATIONS

Receivers

Downconverter

· Low Cost 11.7 to 12.2 GHz

Threat Warning Systems

 Self Protection Jammers Wideband Heterodyned

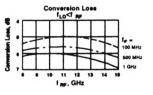
			Ope	rating Freq	uenclee	P	ower Lev	el	Specifications						
Symbol	Characteristic		10	GHz		LO Port dBm (typ)	Model Suffix	RF Port	Typical Te = 25°C	Guaranteed Tc = -55° to +100°C	Unit				
BW	Operating Frequency	Range		8.0-15.0	DC-1.0	, and					GHz				
a	SSB Conversion Loss			8.0-15.0	DC-0.5 DC-1.0				5.5 6.0	7.0 7.5	dB				
NF	SSB Noise Figure			8.0-15.0 8.0-15.0	0.03-0.5 0.03-1.0				5.5 6.0	7.0 7.5	dB				
ISOL	Isolation Port-to-Port	11111	8.0-15.0 	8.0-15.0 8.0-15.0 	1111				30 25 30 15 25	20 12 20	dB				
-	VSWR (50 ohm)	R	8.0-15.0	8.0-15.0	- 51.0				1.5:1 2.0:1 1.2:1		max				
cc	Conversion Compression Point (1	dB)	8.0-15.0	8.0-15.0 8.0-15.0 8.0-15.0	≤1.0 ≤1.0 ≤1.0	≥+ 7 ≥+10 ≥+17	LMH		+ 2 + 6 +12		dBr typ				
IP,	Third-Order Two-Tone Intercept Point		8.0-15.0	8.0-15.0 8.0-15.0 8.0-15.0	\$1.0 \$1.0 \$1.0	≥+10 ≥+17 ≥+20	LMH		+ 9 +10 +20	-	dBm typ				
-	LO Port Drive Level (typical)			8.0-15.0 8.0-15.0 8.0-15.0	DC-1 DC-1 DC-1	+ 7-+13 +10-+17 +17-+24	LMH				đBm				

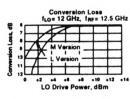
NOTE: Specifications guaranteed at LO Power of +7 dBm for "L" model, +10 dBm for "M" model, and +17 dBm for "H" model.

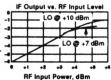
MAXIMUM RATINGS							
Peak Input Current @ 25°C .							
Pin Temperature							
Operating Case Temperature							
Storage Temperature							
Continuous RF Input Power				200 mW @ +25°C			
				100 mW @ +100°C			

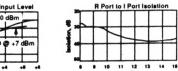
WEIGHT: (typical) DBX - 22 grams; DBY - 16 grams (with connectors)

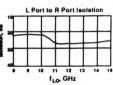
Aventuels, Inc. - 481 Cottonwood Drive, Mitpliker, CA 95035 - Context year load representative, distitutor or field eales offics for further information. Livings are in the basis of the Data Basis 7-30

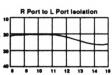


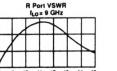

TYPICAL PERFORMANCE AT 25°C

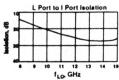

Typical Single Tone Intermodulation Harmonic Suppression at 25°C (dB below desired output)

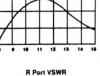

1	>70	>70	>70	>70
1	65	>70	55	>70
2	50	55	50	58
1	0	25	18	40
	1	2	3	4
		Harmonic	s of te	

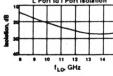

Typical Ha generated numbers ar	h	a	 m	10	'n	ic	1	C	đ	tł	1	i	n	D	u	t	si	a	n.	al	8	:	s	u	erga	ssion
L Suffix .																									+7	dBm
M Suffix H Suffix																										



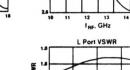


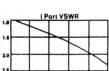




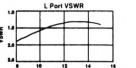


fLo= 10 GHz


IRF. GHZ



IRF, GHz



...

15

ist, inc. - 481 Cottonwood Drive, Milphae, CA 85035 - Contact your local repr live, distributor or field eales office for further information. Listings are in the back of this Data Book 7-31

DBX-158L/M/H and DBY-158L/M/H **Duroid Mixer**

6.0 to 12.0 GHz	AFT, AMT and AWT Series:
Frequency Range	Wideband Small Signal Amplifiers

AFT—Avanpak Series Amplifiers, Connectorized or Stripline Compatible

AMT-High Performance and Temperature Compensated Connectorized Amplifier Series

AET	- 0-	ries

Guaranteed S	pecifications @	25°C Case	Temperature
--------------	-----------------	-----------	-------------

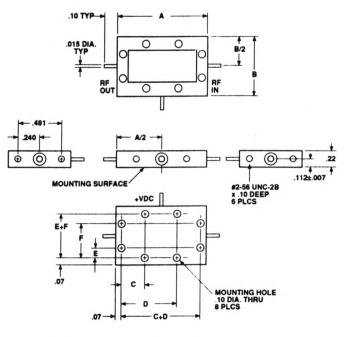
	Programmy Responses (GHz)	Casin (dB)	Typical Cale	Halas Piguro (dB)	Person Output for 1 dB Gala Compression (dBm)	Casin Fistmess (1988)	Typical Tubri Order Intercept Paint			Input Power Current @ +12 V	Case
Hedel	Minimum	num Minbourn	(48)	(dB) Typ.Mox.	Minderstein	Maximum	(#Bm)	•	Out	Typical (mA)	Type
AFT-12631	6-12	7.6	8.0 Typ.	6.0/6.5	+10	0.7	+20	2.0	2.0	76 Typ.	AX2
AFT-12632	6-12	15.0	16.0 Typ.	5.7/6.0	+10	1.0	+20	2.0	2.0	150 Typ.	AX2
AFT-12633	8-12	22.5	24.0 Typ.	4.2/4.5	+14	1.0	+24		2.0	175 Typ.	TXA
AFT-12634	6-12	30.5	32.0 Typ.		+14	1.5	+24		2.0	225 Typ.	AXA
AFT-12635	6-12	38.0	40.0 Typ.	4.2/4.5	+14	2.0	+24	2.0	2.0	276 Typ.	AXe
AFT-12661	6-12	5.0	5.5 Typ.	7.5/8.0	+20	0.7	+29	2.0	2.0	176 Typ.	AX2
AFT-12662	6-12	13.0	14.0 Typ.	6.0/6.5	+20	1.0	+29	2.0	2.0	250 Typ.	AX2
AFT-12663	6-12	21.0	22.0 Typ.	5.0/5.5	+20	1.0	+29	2.0	2.0	300 Typ.	AX4
AFT-12664	6-12	28.0	29.0 Typ.	4.5/5.0	+20	1.5	+29	2.0	2.0	360 Typ.	AXA
AFT-12665	6-12	36.5	38.0 Typ.	4.5/5.0	+20	2.0	+29	2.0	2.0	400 Typ.	AXE

AMT Series - Temperature Compensated

Guaranteed Specifications @ -54° to +100°C Case Temperature

Mardal .	Frequency Response (GHz) Misimum	Costa (dB) Milinimum	Casin (dB) Maximum	Holes Figure (dB) Maximum	Power Output tor 1 dB Gain Compression (dBm) Minimum	Casim Finimeses (±48) Mastimum	Typical Third Order Intercept Paint (dBm)		dana) Internet Out	Input Power Current © +12 V' Maximum (mA)	Све
AMT-12064	6-12	21	29	7.7	+20	1.5	+28	2.0	2.0	520	IXe
AMT-12065	6-12	32	40	5.0	+20	1.5	+28	2.0	2.0	460	IXe
AMT-12066	6-12	37	45	4.5	+20	2.0	+28	2.0	2.0	520	IX

Note


1. Units contain internal voltage regulator and operate with input voltage of +12 to +15 Vdc.

AFT, AMT and AWT Series: Wideband Small Signal Amplifiers

Case Drawings

AC_, AS_, and AX_

AFT Series: Avanpak™ PIN Package Dimensions - connectors and baseplate removed. All Avanpaks are supplied with connectors installed; however, they may be removed by the user. If DC filtercon is removed, the user may need to provide external filtering.

CASE		WEIGHT					
			c	D	E	F	GRAMS
AX2	1.384	.884	.237	.987	.137	.387	26
AC2	1.500	.764	.267	1.093	.187	.437	31
A82	1.500	.862	.267	1.093	.236	.486	33
AX4	1.850	.664	.237	1.473	.137	.387	36
AC4	2.170	.764	.602	1.428	.187	.437	46
A84	2.170	.862	.602	1.428	.236	.486	48
AXS	2.336	.884	.237	1.959	.137	.387	44

NOTES (UNLESS OTHERWISE SPECIFIED):

1. DIMENSIONS ARE SPECIFIED IN INCHES 2. TOLERANCES: .XX ± .01 .XXX ± .005

3. MATERIAL:

BODY AND RF CONNECTORS — 303 STAINLESS STEEL MOUNTING SPACER — ALUMINUM ALLOY FILTER BODY — NICKEL PLATED BRASS

Avantek, Inc.	•	3175 Bowers Ave., Santa Clara, CA 95054	•	Phone: 1-800-AVANTEK
		49		

Aventek, Inc. • 3175 Bowers Ave., Senta Clara, CA 95054 • Phone: 1-800-AVANTEK 59

3.8 T108, 14 GHz CONVERTER MODULE

T108 Band Coverage, LO Frequencies and Image Response Rejection

This section describes the T108 frequency converter that converts the U-Band (14 GHz/2 cm) Front-End signal to the standard 500 to 1000 MHz IF band.

The 14 GHz Front-End's spectrum is 12.0 to 15.4 GHz, a 3.4 GHz bandwidth, several times greater than most converter bandwidths. Because this conversion bandwidth is so large relative to the IF frequencies, four RF circuitry bandpass filters attenuate image frequency responses. This situation is unique to T108. The 14 GHz Front-End does not have bandpass filters.

Image frequency signal rejection was briefly described in the IF Passband and Out-of-Band discussion of Section 2.1. An image signal is an undesired spurious response that is only twice the IF frequency away from the desired frequency signal. To prevent the IF amplifier from responding to the image frequency signal, it must be attenuated by filtering ahead

of the mixer. In this Section 2.1 discussion, an example case showed that in converting a 14 GHz signal to a 0.6 GHz IF, an LO frequency of 13.4 GHz would be used. However, a 12.8 GHz frequency signal mixed with the 13.4 GHz LO would also produce a 0.6 GHz IF signal. The 12.8 GHz signal is called the image and there is nothing peculiar about its character; it is just present in the example's RF spectrum. If the image signal is not attenuated, the IF spectrum is a mixture of the desired signal and the undesired image signal. If the 14 GHz example is changed to use a higher IF frequency, say 5 GHz, the LO frequency would be 9 GHz and the resultant image frequency would be 4 GHz, much further from the 14 GHz signal to be converted.

One possible solution for the T108 image problem is to use a higher frequency first IF as is done for the 23 and 43 GHz

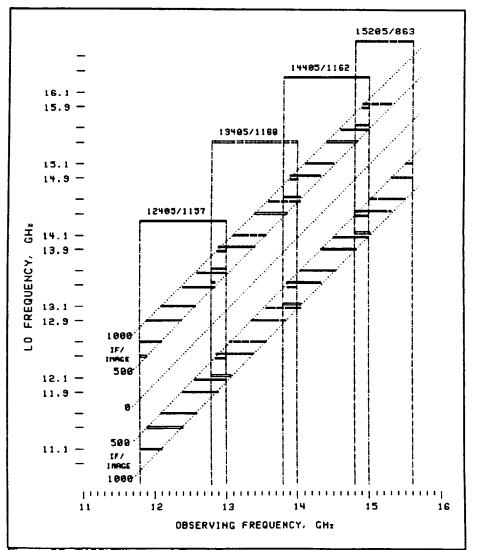


Figure 25 T108 Filters and Band Coverage

Front-Ends. There were system constraints that made this approach undesireable; partitioning the 3.4 GHz spectrum into four switch-selectable bands before mixing was the most economical and simplest design.

T108's RF circuitry contains computer-selectable bandpass filters. The Front-End spectrum is separated into four bands, the first three slightly less than 1200 MHz and the fourth is 800 MHz. The filter band edges and bandwidths are: 11.8-13.0 GHz; 12.8-14.0 GHz; 13.8-15.0 GHz; 14.8-15.6 GHz. Note that adjacent frequency filters have a 200 MHz passband overlap.

The T108 LO frequencies and associated observing frequency coverages are listed in the Appendix, Section 6. Figure 25 (previous page) is a graphic counterpart to the T108 portion of this table and shows the observing frequency band, LO frequencies, the RF filter bandpasses and the IF/Image frequency responses. Observing frequency is the X-axis and LO frequency is the Y-axis. The IF/Image frequency responses are bounded by the dotted lines showing the 500 and 1000 MHz IF bounds. The four sets of vertical dash-dot lines delimit the bandpass of the four filters. The center frequency/bandwidth labels indicate the filter's 1 dB bandpasses. The horizontal solid lines indicate IF/Image responses in the 12405/1157 and 14405/1162 filter bandpasses and the horizontal dashed lines indicate IF/Image responses in the 13405/1160 and 15205/863 filter bandpasses.

The figure shows that for a given observing band, a selected bandpass filter and LO frequency, one response will be the desired IF response, the other the undesired image response. Note the IF spectrum reversal resulting from cases in which the LO frequency is greater than the observing frequency. Figure 25 conveniently illustrates the relationships between the bandpass filters and the desired IF and undesired image responses. For example, if the 12405/1157 filter is selected and a 12.9 GHz LO frequency is used, the observing band coverage is 11.9 to 12.4 GHz. The associated image response is 13.4 to 13.9 GHz and is attenuated at least 40 dB by the 12405/1157 filter (Figure 26¹).

In the bandpass filter overlap regions, the two response lines are slightly separated for convenience in reading the figure. The figure also shows that for some observing frequency regions, one RF filter may be a better choice than another filter. The figure also shows that some LO frequencies are poor choices because they convert only a small portion of the input spectrum.

Worst-case image responses are exemplified by the 12.4 GHz LO frequency in the 12405/1157 filter. Only the lower 100 MHz of the input spectrum is converted and the lower portion of the associated image intrudes into the 12405/1157 filter response. Obviously this LO frequency is not a good choice; a 12.6 GHz LO would convert more of the spectrum and push the image out to the filter's attenuation skirts. In this 12.6 GHz LO case, the image's 13.1 GHz lower band edge frequency would be attenuated about 25 dB and the upper band edge frequency would be attenuated by 40 dB.

T108 Size and Location

T108 is a double-width module installed in Rack B, Bin A, Slots 8-9.

¹ Figures 26, 27, 28, 29 and 30 are T108 filter attenuation plots generated in the AOC Front-End laboratory and show a noise floor of about -40 dB; this is an artifact of the equipment's performance. The filter's actual attenuation curves probably resemble other K&L filtr plots which typically exhibit attenuation maximums of about 80 dB. At the time that this manual was generated, the T018 K&L filter attenuation plots were not available so the above plots were generated as a substitute.

T108 Drawings and Data Sheets

C53500K004, Rev D - T108 14 GHz Converter Module Block Diagram D53500A021, Rev B - T108 14 GHz Converter Module Assembly A53500B004, Rev B - T108 14 GHz Converter Module BOM C53500S005, Rev B - T108 14 GHz Converter Module Filter Select PCB Schematic Diagram C53500A019 - T108 14 GHz Converter Module Filter Select PCB Assembly

Data sheets for the RLC SR-4C-D selector switch, the RLC SR-TC-R-D coaxial switch, the WJ M80C mixer, the Allegro UDN-2981 driver and the SMT-S90-1172 and SMT-S91-1279 amplifiers follow the drawings. Data sheets for the Ditom D3I 8016, Omnispectra 2090-6210-00 power divider and Narda 4779-x attenuator are included in the Appendix, Section 6.

T108 Specifications

Nominal Gain, dB	13	Gain Flatness, ± dB	2	LCP-RCP Path Isol, dB	65
Nom Output Pwr Ə Std Syst Temp, dBm	-40	Min Out Pwr a 1% Compression, dBm	+5.3	Nom Output Pwr Density, dBm/MHz	-67
Avg Noise Temp, K	7,000	Noise Temp for 1% added Syst Noise, K	20,000	Nom LO Pwr input, dBm	0
Avg Noise Figure, dB added Syst Noise, dB	14.1	Noise Figure for 1%	18.4		
15 Volt Power Req't, mA	660				

T108 Difference From the General Converter Block Diagram

Several T108 block diagram features differ from the General Converter Block Diagram of Section 2.1. The differences consist of: the four sets of RF circuitry selector switches and bandpass filters; additional isolators and RF amplifiers in the RF Circuitry; isolators in the LO Drive circuitry; and a digital logic board that decodes the twobit Filter Select code to drive the filter select switches and front panel filter select LED indicators.

If only one RF filter were used instead of four, T108's block diagram would not differ greatly from the general block diagram; T108 contains a lot of parts.

Unwanted Sideband Rejection

The unwanted (sum frequency) sidebands are attenuated by the K&L 6B120-750/X550 IF bandpass filter described in Section 2.5. Because the RF and LO frequencies are so high, the attenuation of these sidebands is greatly in excess of 70 dB.

Noise Temperature

The T108 noise temperature is a composite value that is a function of the noise temperatures of the RF amplifier, mixer, Amp/Attenuator and Amp/Divider. The average of the measured noise temperatures of the LCP and RCP channels is 7000 K. A T108 noise temperature of 20,000 K would add 1 K to the system temperature.

Mixer

The WJ M80C is an important component; a data sheet follows the drawings at the rear of this section. This mixer is designed for LO frequencies of 4.0 to 18.0 GHz, RF frequencies of 6.0 to 18 GHz, IF frequencies of DC to 3000 MHz and a nominal LO drive of +7 dBm. Over the 12 to 15 GHz RF conversion frequency range, the typical conversion loss is about 5.5 dB and the typical noise figure is 7.0 dB. RF port, LO port and IF port VSWR's are 1.5:1, 1.5:1 and 1.75:1, respectively.

RCP-LCP Isolation

The RCP-LCP isolation is a function of the isolation properties of two shunt paths: the isolation between the two mixer LO ports and the transfer switch leakage.

The WJ M80C mixer typical LO to RF isolation is 36 dB for LO frequencies of 3.5 to 14 GHz and the LO to IF isolation is 38 dB for LO frequencies of 9 to 18 GHz. The OMNI-SPECTRA 2090-6210-00 power divider port-to-port isolation is 18 dB, minimum. The DITOM D3I-8016-2 isolators typical isolation is 19 dB. Over the 11.4 to 15.9 GHz range of LO frequencies, the isolation of this shunt path is the sum

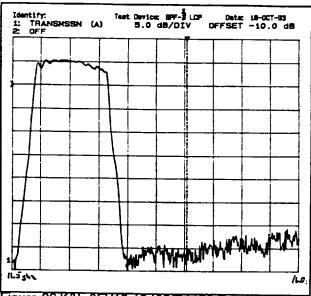


Figure 26 K&L 9FV10-12405/R1156 Bandpass Filter

of the two mixer's LO port to RF port isolation and the two isolators and dividers isolations; this is 128 dB. The LO filter's attenuation is about 1 dB (estimated) for frequencies in the 5000 MHz passband; for frequencies outside the passband, the isolation is increased by the filter's attenuation. Using the attenuation figures from Figure 29 below, the LO filter's add about 40 dB to the 128 dB LO path isolation at frequencies of 7.0 and 18 GHz, respectively.

The typical RCP-LCP path isolation of the RLC SRC-TC-R-D transfer switch at 12 GHz is about 73 dB and decreases to 70 dB at 15.5. From the table above, the module's specified RCP-LCP path isolation is 65 dB.

Since the 4PST selector switches are used to select the filters, the switch isolations are also a concern. The Transco 146C70600 switch has a typical port-to-port isolation of 90 dB over the 12 to 15 GHz frequency range.

VSWR's

The input VSWR 1.5:1, (estimated) is the composite of the VSWR's of the RLC SR-TC-R-D transfer switch (1.3:1), the Transco 146C70600 selector switch (1.15:1), selected filter (1.5:1) and Ditom D3I 8016 (1.3:1). At 13 GHz, the RLC Transfer switch typical VSWR is 1.3:1. The Transco 146C70600 switch VSWR is 1.15:1 and the filter VSWR's are about 1.5:1.

The output VSWR is the composite VSWR of the Amp/Divider which is about 1.5:1.

RF Input Circuitry

Four K&L bandpass filters are used in the RF circuitry. These four filter attenuation plots are shown

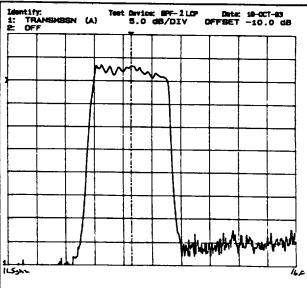


Figure 27 K&L 9FV10-13405/R1160 Bandpass Filter

on this and the following pages. The filter types and figure numbers are as follows: 9FV10-12405-E1157 - Figure 26; 9FV10-13405/R1160 - Figure 27; 9FV10-14405/R1162 - Figure 28 and 6FV10-15205/R863 - Figure 29. Figure 30 is a composite response of the four filters to show the filter's frequency overlap. The bandwidths are specified at the -1 dB frequency. Center frequency insertion losses are 0.9 dB for the 9FV filters and 0.6 dB for the 6FV filter.

A DITOM D3I-8016-2 isolator is used to reduce reflections between the Transco selector switch/RF filters and the RF amplifier. This isolator has a typical isolation of 19 dB and a typical insertion loss of 0.5 dB.

The RF amplifier is an SMT-S90-1172², characterized over a frequency range of 12.0 to 15.4 GHz, and is fabricated to NRAO specifications. NRAO SMT-S90-1172 specifications are: minimum gain - 18 dB; gain flatness - \pm 0.75 dB; 1 dB compression point +10 dBm; noise figure - 2.5 dB and input and output

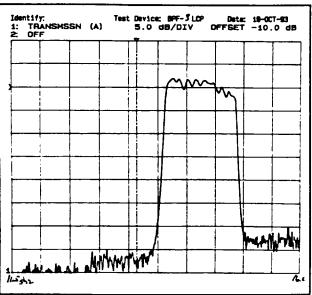
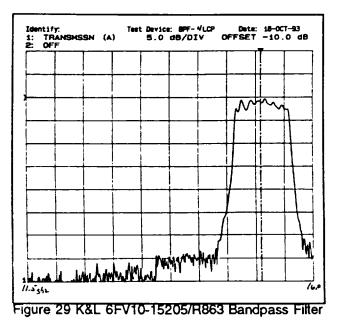


Figure 28 K&L 9FV10-14405/R1162 Bandpass Filter

VSWR's - 1.5:1. A SMT-S90-1172 manufacturer's test data sheet is included in the back of this section.

IF Circuitry


The IF path Amp/Attenuator, Amp/Divider and 6B120-750/X550 If bandpass filter were described in Section 2.5. IF gain adjustment is described in Test I, Section 2.7.

LO Drive Circuitry

The LO signal is input on J10; J1 is the standard LO jack on the other converter modules.

The LO drive circuitry consists of an SMT-S90-1279 amplifier, an OMNI-SPECTRA 2090-6210-00 two-way power divider, DITOM D3I-8016-2 isolators and K&L 6ED10-13500/U5000 LO filters. Figure 31 shows the LO filter attenuation plot.

The SMT-S91-1270 amplifiers are characterized over a frequency range of 11.4 to 15.9 GHz and are fabricated to NRAO specifications. NRAO SMT-S91-1279 specificationc are: minimum gain - 12.0 dB; gain flamess - \pm 0.5 dB; 1 dB compression point - +11.0 dBm; noise figure - 10. dB and input and output VSWR's - 1.5:1. A SMT-S91-1279 manufacturer's test data sheet is included in the back of this section.

² The Sierra Microwave Technology company has been acquired by the Milliwave company.

RF Switching and Switch Drive Circuitry

T108's RF switching consists of an RLC SR-TC-R-D transfer switch and four Transco 146C70600 4PST selector switches to select the filter inputs and outputs. The RLC SR-4C-D selector switch is interchangeable with the Transco 146C70600 and is used as an alternate in some modules. Data sheets for both switches are included in the rear of this section.

The transfer switch is designated S108A on drawing D58001K001. The T108 Block Diagram shows an RLC SR-TC-R-D transfer switch; some T108's may use the Transco 710C70100 as an alternate unit. The transfer switch is driven by M102, address 17H, bit 0. If bit 0 has a 0 value, the RCP and LCP signals are not interchanged; if bit 0 has a a 1 value, the signals are interchanged. Section 2.5 has data sheets for the two types of transfer switches.

The four filter selector switches are designated \$108B, \$108C and \$108D on drawing D58001K001,

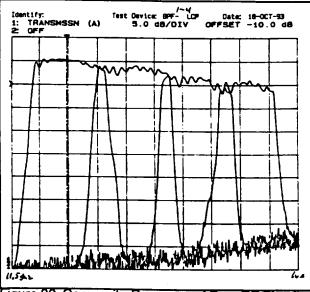
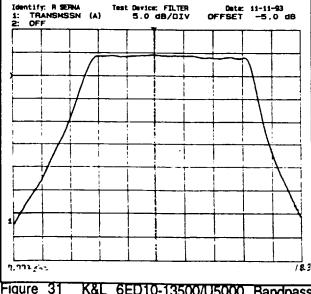



Figure 30 Composite Response of Four RF Circuitry Bandpass Filters

VLBA Electronic System Block Diagram (Antenna Electronics). Over the 12 to 15 GHz frequency range, typical VSWR, insertion loss and isolation values are: VSWR - 1.1:1; insertion loss - 0.2 dB and isolation - 90 dB. A Transco 146C70600 data sheet is included in the back of this section. Note that both the filter inputs and outputs are selected; common connections between inputs or outputs could cause undesirable interactions.

The four filter selector switch contacts are driven by individual solenoids; at any time, only one solenoid must be powered. Digital logic board, B53500A195 decodes the two-bit filter select code and drives one of the four solenoids in the four switches. It also drives one of the four front panel filter select indicator LED's.

Refer to sheet 2 of the T108 block diagram C53500K004, the digital logic board schematic C53500S005 and assembly drawing C53500A019, all at the back of this section. The two-bit filter select code iines on P11-19 (MSB) and P11-18 (LSB) are connected to terminals I2 (MSB) and I1 (LSB), respectively, on the digital logic board. The board is marked "SWT. DRIVERS" and is located in the front of T108. These two bits are input to two decoder sections of U4, a 74LS139 decoder chip; each decoder section has four low-true outputs that correspond to the four possible states of 11 and 12. Only one output is ever active low at any time. U4A's outputs are inverted by U3 inverters (74LS04) to drive U1 and U2, UDN2981A relay drivers that source a +28 volt drive to the four switch coils. Each UDN2981 has eight driver circuits and each decoder output drives four UDN2981A inputs. The four active UDN2981A outputs source +28 volt drive to the four associated switch solenoids.

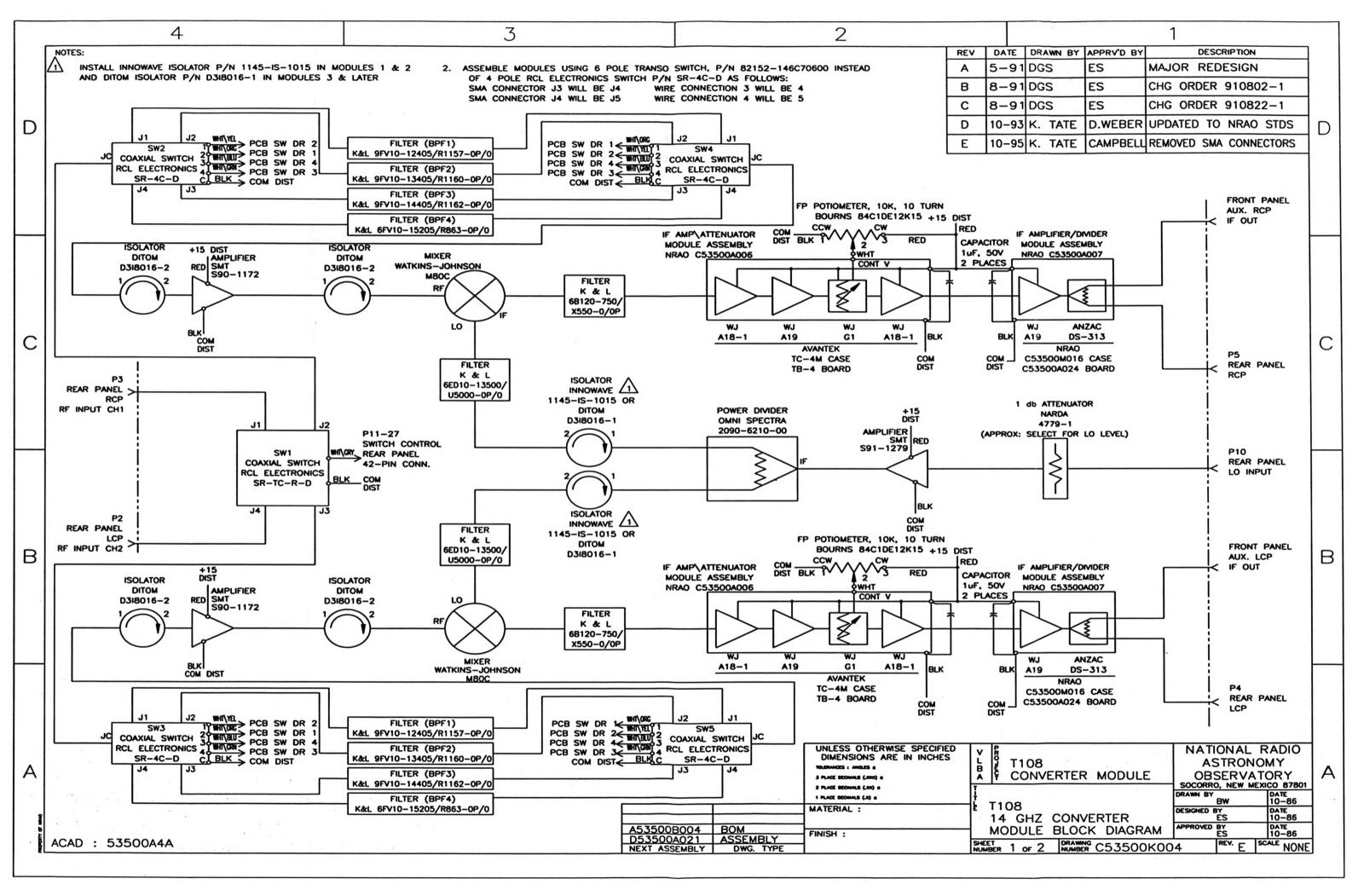
U4B's four low-true outputs each sink current

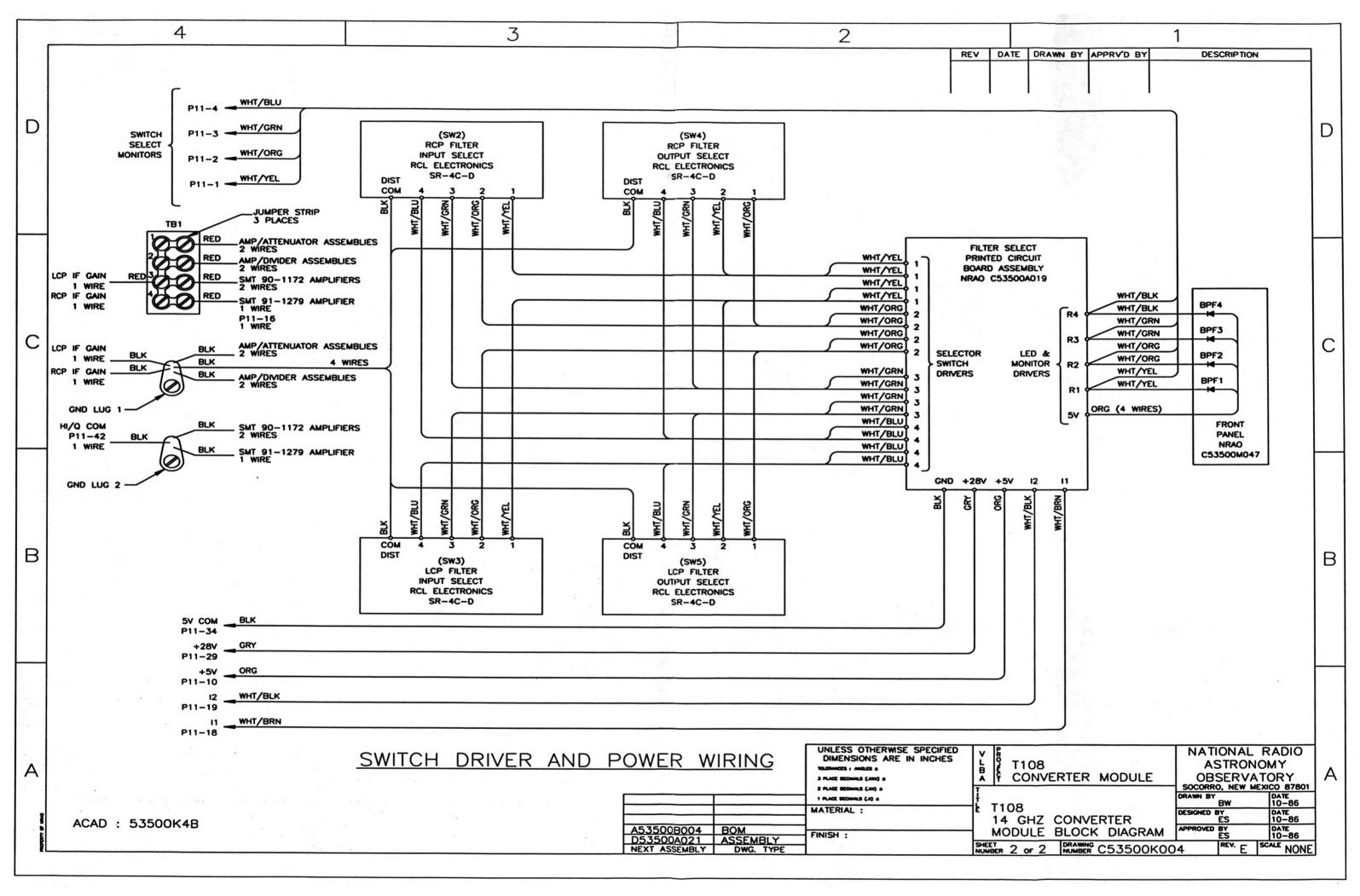
Figure 31 K&L 6ED10-13500/U5000 Bandpass Filter

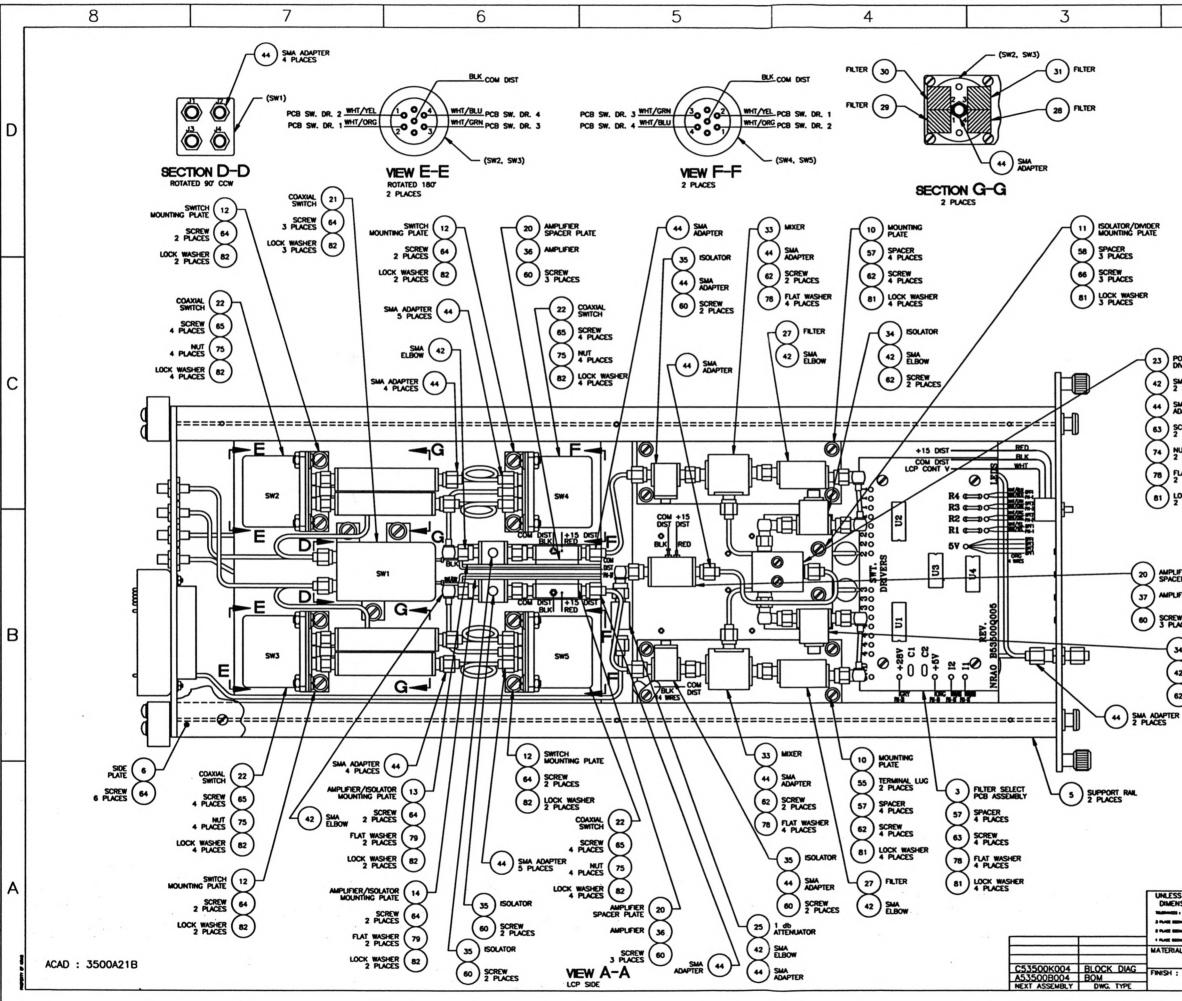
from one of the front panel filter select indicator LED's as a function of the state of I1 and I2. The indicator LED's have internal current-limiting resistors but the board has terminals for installation of limiting resistors. The state of U4B's outputs are also connected to P11-1, 2, 3 and 4. These four lines also function as a monitor data output to M102 to indicate the state of the filter select logic. The M102 address is 21H and P11 pins 1,2,3 and 4 are input to bits 8, 9, 10 and 11, respectively.

The 74LS139, 74LS04 chips are Low Power Schottky TTL logic chips; data books are readily available so data sheets for these IC² are not included. The UDN2981³ chip data sheet is included at back of this section, following the drawings.

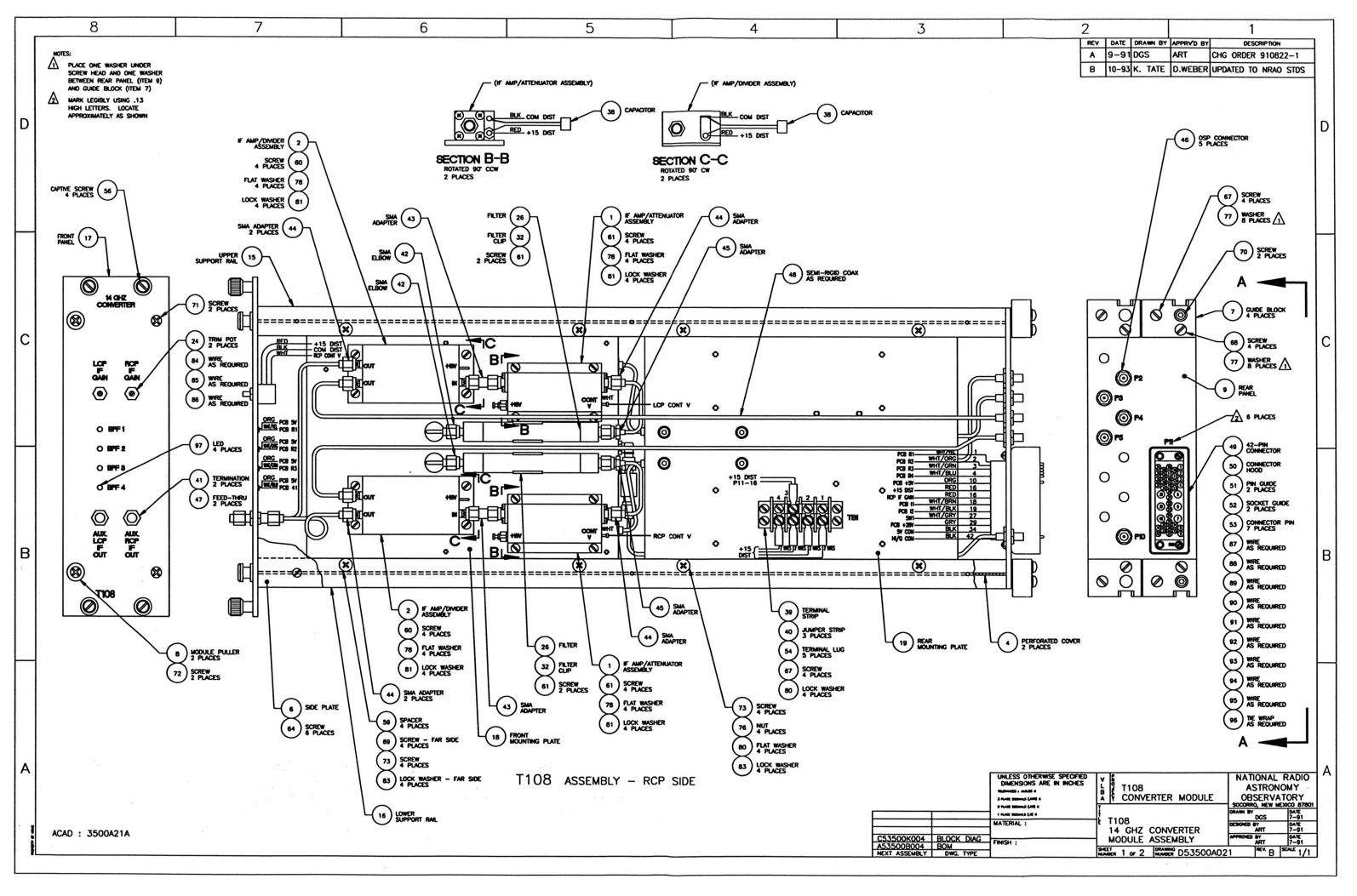
M102 drives P11-19 (I1, LSB) and P11-18 (I2, MSB). The I1 and I2 signals are high-true TTL logic level signals. The M102 command address is 20H and bits 0 and 1 drive I1 and I2, respectively. The filter selection state table is shown below.

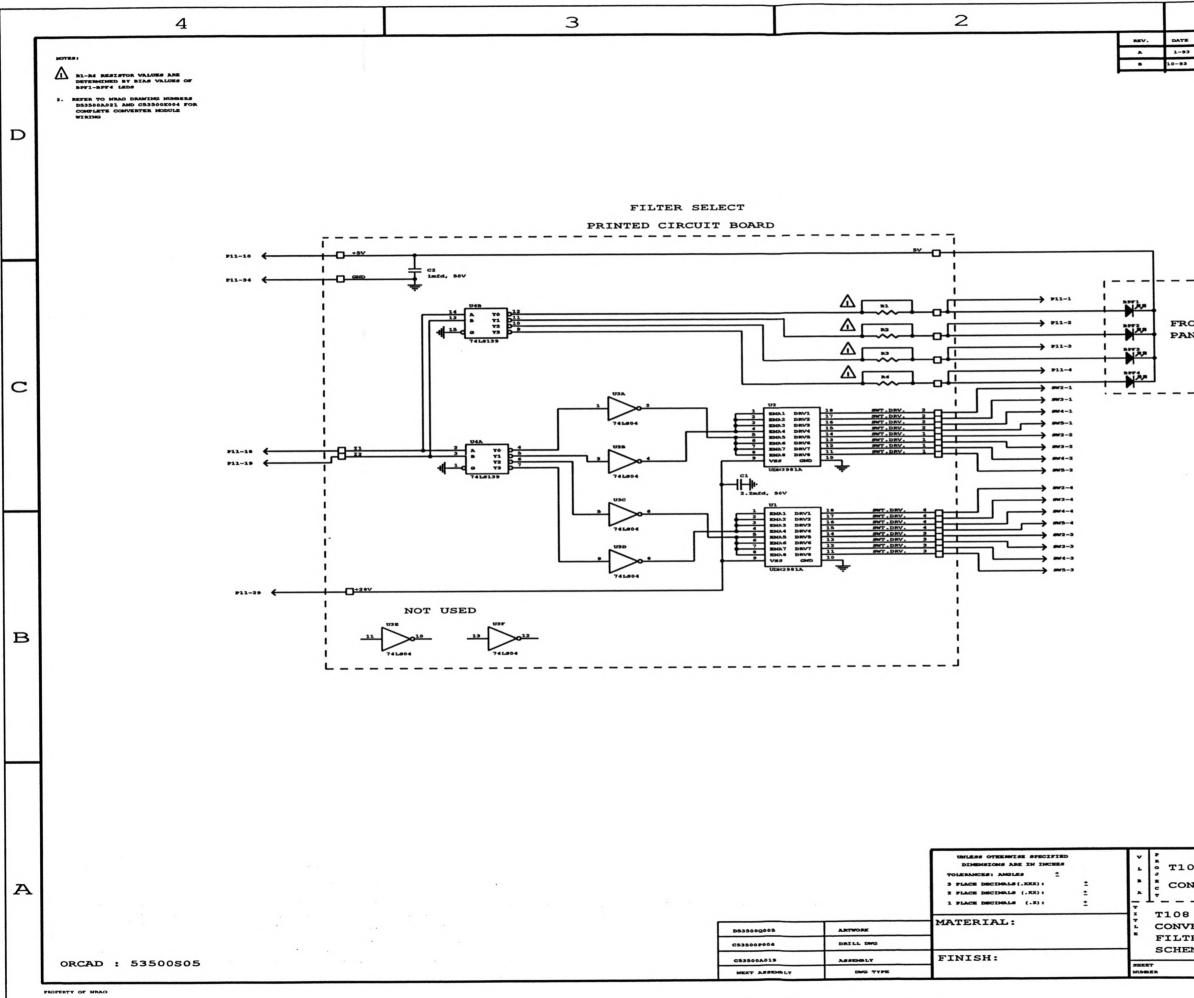

I2	I1	Selected Filter
0	0	9FV10-12405/R1157
0	1	9FV10-13405/R1160
1	0	9FV10-14405/R1162
1	1	6FV10-15205/R863

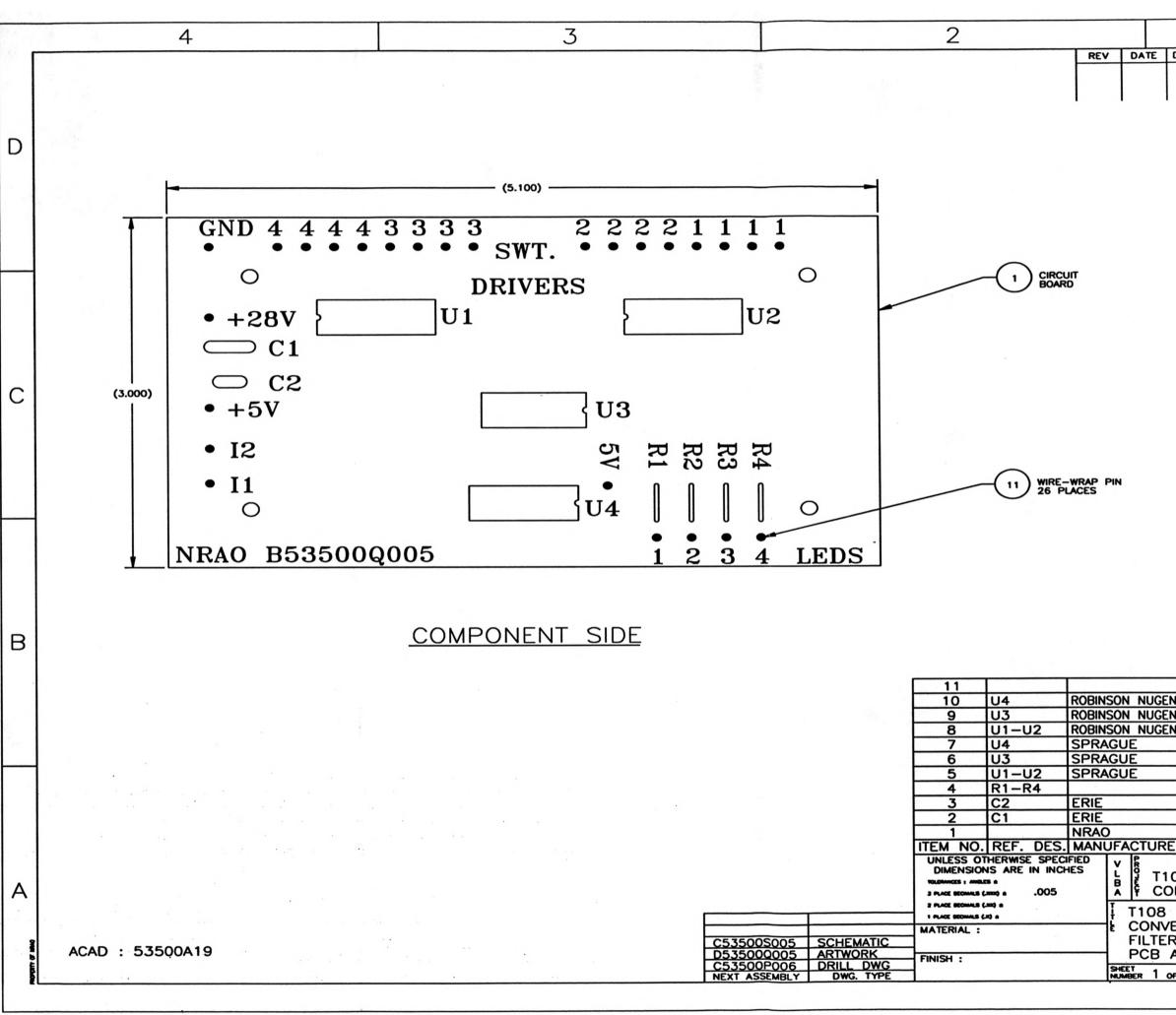

T108 Power Circuitry


Refer to sheet 2 of the T108 Block Diagram, C53500K004. T108 uses three types of DC power: +15 volts for radio frequency amplifiers, +5 volts for the digital logic board and LED's and +28 volts for filter selector switch control. +15 volts from P11-16 is connected to TB1 (terminal strip 1) terminals 1-4 where it is distributed to the amplifiers and gain control potentiometers. +5 volts from P11-10 is connected to terminal +5V on the digital logic board. +28 volts from P11-29 is connected to terminal +28V on the digital logic board. Power common distribution includes two chassis ground lugs that are the return paths for the +15 and +28 volt devices. These are the SMT amplifiers, the Amp/Attenuator, Amp/Divider and gain potentiometers. The common distribution ground lugs are connected to P11-42 (signal ground). The +5 volt logic common from terminal GND on the digital board is connected to the common distribution ground lugs and also P11-34 (power ground).

The Amp/Attenuator has a 1.0 uF bypass capacitor connected across the amplifier's +15 volt and common power terminals.


³ The UDN2981 chips are now manufactured by Allegro.





	2					1			
	REV	DATE	DRAWN BY	APPRVD BY		DESCRIPTI	ON		
								D	
							c.		
DWER									
VIDER MA ELBOW PLACES								С	
PLACES ANA MA									
RFW									
PLACES									
PLACES AT WASHER PLACES									
PLACES DCK WASHER PLACES									
PLACES									
FIER R Plate									
FIER									
CES									
SOLATOR								В	
2) SMA ELBOW									
2) SCREW 2) PLACES									
S OTHERWISE SPECIFI SIGNS ARE IN INCHE		e c			Т	NATIONA	L RADIO	A	
	S L B	T1 C	08 DNVERTER	R MODULE		ASTRO OBSERV	ATORY		
		T108				SOCORRO, NEW BANN BY DGS	MENCO 87801 DATE 7-91		
L :		14 G	HZ CON	ERTER		ART ART	04% 7-91 04% 7-91		
	94	MODU		MBLT D53500	A021	ART B	5-91 SCALE 1/1		
									•

	1				
E DRAWN BY AP	PRV'D BY	DESCRIPTIO			
S K. TATE		DATED TO NRAO STAN			
K. TATE D.	WEBER A	DED P11, FRONT PAN			
					D
				t t	
					С
					в
08		NATIONAL			
OB NVERTER MOD	III.E	OBSER			A
		ACCORDO, NEW H			
3 14 GHZ		DRAWN BY	DON	DATE 3-91	1
VERTER MODUI FER SELECT F	E	DESIGNED BY		DATE	1
FER SELECT E EMATIC DIAGE		APPROVED BY		DATE	1
1 07 1		535008005	-	SCALE -	1
	1				-

	1	
DRAWN BY APPRVD BY	DESCRIPTION	
	[)
		сl
	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	
	F	_
		в
NT ICT-163-S-TG30 SC	N, WIRE-WRAP 26 DCKET, IC, 16-PIN 1	
NT ICT-143-S-TG30 SC	DCKET, IC, 14-PIN 1	
	DCKET, IC, 18-PIN 2 , 16-PIN 1	
SN74LS04N IC	, 14–PIN 1	
UDN2981A IC	, <u>18–PIN</u> 2 JMPER 4	
RPE113X7R105K050V CA	PACITOR, 1.0uf, 50V 1	
RPE117X7R225R50V CA	PACITOR, 2.2uf, 50V 1 DARD, CIRCUIT 1	
ER PART NUMBER	DESCRIPTION QTY	
08	NATIONAL RADIO ASTRONOMY	
ONVERTER MODULE	OBSERVATORY	A
14 GHZ	DRAWN BY K. TATE	
ERTER MODULE R SELECT	DESIGNED BY DATE	
ASSEMBLY	APPROVED BY DATE	
OF 1 DRAWING C53500A	019 REV SCALE 2/1	

				REVISIÓ	NS		· ·· ·	
rev	DATE	DRAMN BY	APPRVD BY				DESCRIPTION	····
В	10-93	K. TATE	D. WEBER	UPDATE	- - TO	NRAO	STANDARDS	
						<u> </u>		
	•	•						
							· · ·	
DRAMN BY	. TATE		DATE 10-93					
DESIGNED BY			DATE				C53500K004	BLOCK DIAG
APPROVED BY			DATE				D53500A021	ASSEMBLY
	. WEBER	<u> </u>	10-93				NEXT ASSY	USED ON
				PROJ	1	108 C	ONVERTER MODU	LE
NA		1 ADIO ASTR SERVATORY					4 GHZ CONVERTE	
		NEW MEXICO II		B			LY BOM	
				A DWG NO.	A5.	3500B)04 s i	ean 1 o≠ 6

X ELECTRICAL	X MECHANICAL	BOM #A53500B004	REV <u>B</u> DATE 10-1	<u>8-93</u> PAGE <u>2</u> OF <u>6</u>
MODULE <u>T108</u> NAME _	14 GHZ CONVERTER	DWG#	SUB ASSY	DWG#
SCHEM. DWG#	LOCATION	QUA/SYS	PREPRD BY <u>K. TATE</u>	APPRVD BY <u>D. WEBER</u>

ITEM #	REF DES	MANUFACTURER	PART NUMBER	DESCRIPTION	TOTAL QTY.
1		NRAO	C53500A006	ASSY, IF AMP/ATTENUATOR	2
2		NRAO	C53500A007	ASSY, IF AMP/DIVIDER	2
3		NRAO	D53500A019	ASSY, FILTER SELECT PCB	1
4		NRAO	C53306M014-1	COVER, PERFORATED	2
5		NRAO	C53306M016	RAIL, SUPPORT	2
6		NRAO	C53306M017	PLATE, SIDE	2
7		NRAO	B53306M018	BLOCK, GUIDE	4
8	*	NRAO	A53306M038	PULLER, MODULE	2
9		NRAO	B53500M004-1	PANEL, REAR	1
10		NRAO	C53500M041	PLATE, ISO/MIXER/FILTER	2
11		NRAO	C53500M042-2	PLATE, ISOLATOR/DIVIDER	1
12		NRAO	C53500M043	PLATE, SWITCH MOUNTING	4
13		NRAO	C53500M044-1	PLATE, AMPLIFIER/ISOLATOR	1
14		NRAO	C53500M044-2	PLATE, AMPLIFIER/ISOLATOR	1
15		NRAO	C53500M045	RAIL, UPPER SUPPORT	1
16		NRAO	C53500M046	RAIL, LOWER SUPPORT	1
17		NRAO	C53500M047	PANEL, FRONT	1
18		NRAO	D53500M048	PLATE, FRONT MOUNTING	1
19		NRAO	D53500M049	PLATE, REAR MOUNTING	1
20		NRAO	C53500M050	PLATE, AMPLIFIER SPACER	3

X ELECTRICAL X MECHANICAL BOM # A53500B004 REV B DATE 10-18-93 PAGE 3 OF 6 TOTAL ITEM # DESCRIPTION REF DES MANUFACTURER PART NUMBER QTY. 1 SWITCH, COAXIAL 21 SW1 RLC ELECTRONICS SR-TC-R-D 4 SW2 - SW5 SWITCH, COAXIAL 22 RLC ELECTRONICS SR-4C-D 1 23 OMNI SPECTRA DIVIDER, POWER 2090-6210-00 2 TRIM POT, 10K PANEL 24 BOURNS 84C1DE12K15 1 ATTENUATOR, 1 db NARDA 25 4779-1 2 26 K & L 6B120-750/X550-0/0P FILTER 2 27 K & L 6ED10-13500/U5000-0/0P FILTER 2 28 K & L 6FV10-15205/R863-0P/0 FILTER 2 29 K & L FILTER 9FV10-12405/R1157-0P/0 2 30 K&L 9FV10-13405/R1160-0P/0 FILTER 2 31 K&L 9FV10-14405/R1162-0P/0 FILTER 2 32 AUGAT 6014-1A CLIP, FILTER 2 33 WATKINS-JOHNSON M80C MIXER 2 34 DITOM D318016-1 ISOLATOR 4 35 DITOM D318016-2 ISOLATOR 2 36 SMT S90-1172 AMPLIFIER 37 SMT 1 \$91-1279 AMPLIFIER 4 38 SPRAGUE 2C20Z50105M050B CAPACITOR, $1\mu f$, 50V 39 TB1 TRW CINCH 1 4-140 STRIP, TERMINAL 3 40 TB1 TRW CINCH 140J-1 STRIP, JUMPER 2 41 SOLITRON 8018-6005 TERMINATION, 500

REV <u>B</u> DATE <u>10-18-93</u> PAGE <u>4</u> OF <u>6</u> X ELECTRICAL X MECHANICAL BOM # A53500B004 TOTAL DESCRIPTION ITEM # PART NUMBER REF DES MANUFACTURER QTY. ELBOW, SMA MALE/.085 COAX 11 42 SOLITRON 2007-5035-2 2 ADAPTER, SMA MALE/MALE 43 SOLITRON 2993-6001 ADAPTER, SMA MALE/.085 COAX 40 2906-6002 44 SOLITRON 2 ADAPTER, SMA FEM/.085 COAX 45 SOLITRON 5 CONNECTOR, OSP, .085 MALE 2081-0000-00 46 P2-P5,P10 OMNI SPECTRA 2 FEED-THRU. SMA 2084-0000-00 47 OMNI SPECTRA AR COAX, .085 SEMI-RIGID AA50085 48 PRECISION TUBE 1 CONNECTOR BLOCK, 42-PIN 204186-5 49 P11 AMP 1 CONNECTOR, HOOD, 42-PIN 50 AMP 202394-2 2 200833-2 PIN, GUIDE 51 AMP 2 SOCKET, GUIDE 203964-5 52 AMP 12 PIN, 16 GA. CONNECTOR 201578-1 53 AMP 5 LUG, TERMINAL 54 ETC/MOLEX AA-832-06 2 LUG. TERMINAL 55 4 SCREW, CAPTIVE 56 SOUTHCO 47-11-204-10 12 SPACER, 4-40UNC-2B x .19 57 KEYSTONE 1593-4 SPACER, 8-32UNC-2B x .38 3 58 H.H. SMITH 8522 4 SPACER, 8-32UNC-2B x .44 59 H.H. SMITH 9244 25 SCREW, PAN HEAD, SS, 60 4-40UNC-2A x .19 12 SCREW, PAN HEAD, SS, 61 4-40UNC-2A x .25

<u> </u>	ELECTRICAL	X MECHANICAL BOM	A53500B004 REV	<u>B</u> DATE <u>10-18-93</u> PAGE <u>5</u>	_0F <u>6</u>
ITEM #	REF DES	MANUFACTURER	PART NUMBER	DESCRIPTION	TOTAL QTY.
62				SCREW, PAN HEAD, SS, 4-40UNC-2A x .38	16
63				SCREW, PAN HEAD, SS, 4-40UNC-2A x .50	6
64				SCREW, PAN HEAD, SS, 6-32UNC-2A x .25	27
65				SCREW, PAN HEAD, SS, 6-32UNC-2A x .38	16
66				SCREW, PAN HEAD, SS, 6-32UNC-2A x .50	3
67				SCREW, PAN HEAD, SS, 6-32UNC-2A x .75	8
68				SCREW, PAN HEAD, SS, 6-32UNC-2A x .88	4
69				SCREW, PAN HEAD, SS, 8-32UNC-2A x .63	4
70			······································	SCREW, SOCKET HEAD, SS, 6-32UNC-2A x .38	2
71			······	SCREW, FLAT HEAD, SS, HP GREY, 6-32UNC-2A x .38	2
72				SCREW, FLAT HEAD, SS, 6-32UNC-2A x .75	2
73				SCREW, FLAT HEAD, SS, 8-32UNC-2A x .75	8
74				NUT, HEX, SS, 4-40UNC-2B	2
75				NUT, HEX, SS, 6-32UNC-2B	16
76				NUT, HEX, SS, 8-32UNC-2B	4

<u> </u>	ELECTRICA		A53500B004 REV]	BDATE_10-18-93PAGE6	_0F <u>6</u>
ITEM #	REF DES	MANUFACTURER	PART NUMBER	DESCRIPTION	TOTAL QTY.
77				WASHER, EXT. TOOTH #6	16
78				WASHER, FLAT, SS, #4	30
79				WASHER, FLAT, SS, #6	4
80				WASHER, FLAT, SS, #8	4
81				WASHER, LOCK, SS, #4	31
82				WASHER, LOCK, SS, #6	33
83				WASHER, LOCK, SS, #8	8
84		ALPHA	7055	WIRE, WHT #22	AR
85		ALPHA	7055	WIRE, BLK #22	AR
86		ALPHA	7055	WIRE, RED #22	AR
87		ALPHA	7055	WIRE, GRY #22	AR
88		ALPHA	7055	WIRE, ORG #22	AR
89		ALPHA	7053	WIRE, WHT/BLK #26	AR
90		ALPHA	7053	WIRE, WHT/YEL #26	AR
91		ALPHA	7053	WIRE, WHT/ORG #26	AR
92		ALPHA	7053	WIRE, WHT/GRN #26	AR
93		ALPHA	7053	WIRE, WHT/BLU #26	AR
94		ALPHA	7053	WIRE, WHT/BRN #26	AR
95		ALPHA	7053	WIRE, WHT/GRY #26	AR
96				WRAP, TIE	AR
97	BPF1-BPF4			LED, GREEN	4
98					

WJ-M80/M80C

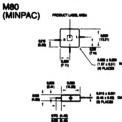
DOUBLE-BALANCED MIXER

- ◆ LO 4 TO 18 GHz
- RF 6 TO 18 GHz
- ♦ IF DC TO 3000 MHz
- ◆ LO DRIVE +7 dBm (nominal)
- ♦ WIDE BANDWIDTH
- ♦ LOW NOISE FIGURE

*MIL-M-28837 Screening Available (See "QPL Mixers" Section)

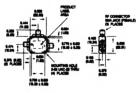
Guaranteed Specifications Characteristics Min Typ. Max. **Test Conditions** SSB Conversion Lose in = 6 to 16 GHz 8.0 dB 8.0 dB fL= 5 to 17 GHz and fi ... 30 to 1000 MHz SSB Noise Figure 7.0 dB 9.0 dB fp = 6 to 18 GHz 1 . 4 to 18 GHz f = 1000 to 3000 MHz Isolation fL = 3.5 to 14 G Hz L to R 23 dB 36 dB 32 dB fL = 14 to 18 GHz 18 dB fL = 3.5 to 9 GHz 16 dB Ltol 28 dB 23 dB 38 d6 1_ = 9 to 18 GHz Conversion In Level +3 dBm fL Level +7 dBm Compression 1.0 dB Third-Order fR1 = 13.00 GHz, fR2 = 13.01 GHz +10 dBm both at -10 dBm f = 14.0 GHz at +7 dBm

Met red in a 50-ohm evetem with nominal LO drive and do The I -Port frequency range extends to DC for phase detection, pulse modulation, or attenuator applicat VSWR degrades from a 50-ohm system at low IF framuen

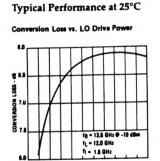

Absolute Maximum Ratings

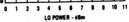
Operating Temperature		54°C to +100°C
Storage Temperature		65°C to +100°C
Peak Input Power	+23 dBm max. at +25°C,	20 dBm max. at +100°C
Peak Input Current at 25°C		

M80: 6 grams (0.21 oz.) max. Weight M80C: 30 grams (1.06 oz.) max.



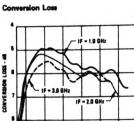
Outline Drawings





M80C (CONNECTORIZED)

SAMPLEONS AND IN INCHES BELLINETERS



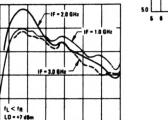
tL> tn

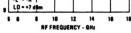
ā

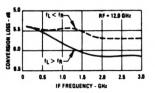
LO = +7 dBm

Isolation

3 4


VSWR


1.0


2 00

21

34 .

VSWR

LO = +7 dBm

LO - +7 dBm

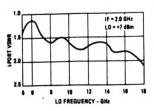
IF - 2.0 GHz

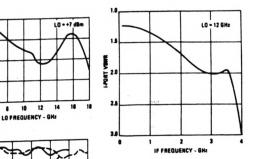
16

18

14

18 18


10 12 14


LO FREQUENCY - GHz

8 10 12

RF FREQUENCY - GHz

. LO FREQUENCY - GHz

Typical Two-Tone Intermodulation Performance

NOISE METER S.		[R -	ΤE	IST	Ī		SHE <u>- 390</u>	
	N/NE SUPPLY OF	<u>+</u> 15					140	0
	GAIN (db) RUNESSE -75	IN /	DUT	POVER 1dB /	(dBn) SAT	NOISE FIGURE (dB)		
SPEC.	+18.0	1.5.1	1.3.1	410		2.5		
13.75 14.75 15.00 15.40	18.0 18.0 18.0	1	-	ت د د د ه د د د		2.3 2.3 2.4		
MIN.	18.0		-	16.8		2.3		
HAX.		1.401	1,46.1					
	ny Utler Mayza A TAKEN			9/24 9-24	91 8/			

SMD SIERRA MICROWAVE TECHNOLOGY

NOISE NETER SA	LIFIE n <u>011.56</u> n <u>011.71</u> n/n spr.10 <u>-</u>	÷		CUST. PAR	SHE <u></u> 	-1279
	GAIN (dB) NANCSSI 0,5	IN / DUT	1dB / SAT	FIGURE (dB)		
SPEC	12.0 MIN	1.50 1.50	+/1.0 -	10.0		

FREDUENCY (GHz)	1						
11.40	13.2	1,36	1.23	+14.0		4.0	
12.53	/3,0			+/4.3	1	4.2	
13.65	13.0			+13.5	-	4.2	
14.78	13.2			+14.2		4.1	
15.90	13.0		_	+14.0	-	4.0	
MIN.	12.9	-	-	+13,5	_		 ļ
HAX.	13.2	1.41	1.46	-	-	4.2	

TECH. Kenneth C. Stiffer DATE 5/34/91 DA. <u>MOLO</u> DATE 5-24-91

NDTE: DATA TAKEN AT 25 .C.

DVG. ND. AFD-0001-001

COAXIAL SWITCH TYPE MO DATA SHEET 111A	SWITCH TYPE ACTUATOR CONNECTOR FREQUENCY	SP3T to SP6T * Selective with Solder Terminal SMA 0-18 GHz	SPECIFICATIONS Typical RF data of a production switch; computer printouts below:	VOLTAGE COIL RESISTANCE CURRENT SWITCHING TIME	20 to 30 Vdc 205 ±15 ohms @ 20° C 170 mA max @ 28 Vdc & 20 20 mS max @ 28 Vdc & 20°
DESCRIPTION The Type MO SP3T to SP6T switch utilizes selec- tive linear actuators for each position. RF geometry is optimized for SMA connectors and operates over a 0-18 GHz frequency band. Individual solenoids mean faster switching time no waiting for the switch to sequence through a number of positions before stopping at the selected position. Separate "selective" solenoids provide positive action and a low actuator current requirement.	SOLENOID FOR EACH R	IF POSITION	101 101 101 10 10 10 10 10 10 1	IMPEDANCE VIBRATION TEMPERATURE LIFE WEIGHT DIMENSIONS	50 ohms nominal 10 g's sine/random -55°C to 85°C 1,000.700 operations min 5.5 oz max for the SP6T
has switches are immersion proof and designed for extreme environmental conditions including including substation and shock. Type CON FREQ M TNC & 124 GH2 M T	SCHEMATIC SCHEMATIC 1 3 POS SCHEMATIC 3 SCHEMATIC	SCHEMATIC 2 4 POS	03	SPET THE DESCRIPTION OF TRANSPORT THE DESCRIPTION OF TRANSPORT	P/N 143C70600 P/N 143C70600 P/N 145C70600 P/N 145C70600 P/N 146C70600 P/N 140 P/N 146C70600 P/N 140 P/N

Type C Multi-Position Coaxial Switches (3 to 6 Position)

RLC Electronics' Basic Mid-size Multi-Position Coaxial Switch line provides up to 6 positions in an extremely high reliability, long life and outstanding electrical performance by utilizing high density packaging. The "Multi-Min" electrical characteristics features extremely low insertion loss and VSWR over the entire DC-18 GHz range while maintaining high isolation. The switch is available in the following configurations - manual or remote, 28 Vdc or 115 Vac operation, with or without indicator terminals, failsafe or latching cutthroat.

Specifications S1-2C-3.4.5.6.7

RF POSITIONS	3-6	3-6	3 TO 6 FOR OPTION 40			
Switch type:	SP-3T6T	SP-3T6T	SP-3T-40 SP-6T-4			
Frequency Range	DC-18 GHz	DC-26.5 GHz	DC-40 G	Hz		
Ins. Loss (dB max)			Ins. Loss: (dB max)			
DC-4.0 GHz	0.20	0.20	DC-6.0 GHz	0.25		
4.0-12.4 GHz	0.30	0.30	6.0-12 GHz	0.40		
12.4-18 GHz	0.50	0.50	12-18.5 GHz	0.50		
18-26.5 GHz (Opt. 26)	-	0.75	18.5-26.5 GHz	0.75		
			26.5-40 GHz	1.00		
VSWR: (Max)			VSWR: (Max)			
DC-4.0 GHz	1.25	1.25	DC-6.0 GHz	1.30		
4.0-12.4 GHz	1.40	1.40	6.0-12 GHz	1.40		
12.4-18 GHz	1.50	1.50	12-18.5 GHz	1.50		
18-26.5 GHz (Opt. 26)	-	1.80	18.5-26.5 GHz	1.70		
			26.5-40 GHz	2.00		
isolation: (dB Max)			Isolation: (dB Max)			
			DC-18.5 GHz	60		
DC-18 GHz	60	60	18.5-26.5 GHz	55		
18-26.5 GHz (Opt. 26)	-	40	26.5-40 GHz	45		

Impedance: 50 ohms Operating Power 25°C: (Failsafe): 12 Vdc at 400 ma nom. 28 Vdc at 150 ma nom. 115 Vac at 50 ma nom. (Latching): 12 Vdc at 462 ma nom. 28 Vdc at 400 ma nom. 115 Vac at 225 ma nom. Current applied 10 ms min.; cutthroat standard, recovery time 100 ms nom.

Connectors, Power: Feed through solder lugs. Life: 1,000,000 operations. Switching Time: 15 milliseconds max. Weight: 10 oz. Environmental Conditions: MIL-S-3928 Operating Mode: Manual, failsafe or latching. Switching Sequence: Break before make.

(5) "L" for latching cut throat if desired.
(6) "TL" for TTL Driver if desired.
(7) "26" for 26.5 GHz options.

To designate the switch desired use: (4) "I" for indicators if desired.

(1) "M" for Manual or "R" for Remote (2) "3C", "4C", "5C", or "6C" throw operation. (3) "A" for 115 Vac, "D" for 28 Vdc power or "H" for 12 Vdc. Example: SR-6C-D-I-L is remote, 6 position, 28 Vdc, with indicators, latching cutthroat switch.

> Specials requiring closer tolerances, different frequency ranges, special connectors, different materials, finishes, etc. can be furnished upon request.

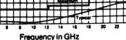
Specifications subject to change without notice

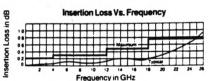
RLC ELECTRONICS, INC.

83 Radio Circle, Mt. Kisco, N.Y. 10549 - (914) 241-1334

DC-40 GHz Switches DC-18 & DC-26 GHz Switches **VSWR Vs. Frequency** VSWR Vs. Frequency Marpen L TYPICAL

뜅

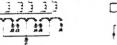

S


085

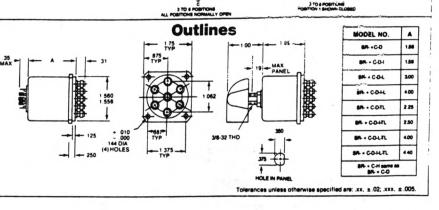
Š

뜅

c


Isolation Vs. Frequency

Ľ				++	++-	11						t
\Box	+		П	i i	11		~				\square	Ь
											_	1
	2	4		10	12	14	16	18	20	22	24	2


Failsafe

Schematics

8 Isolation in

Latching

Frequency in GHz Insertion Loss Vs. Frequency

TYPICAL TT

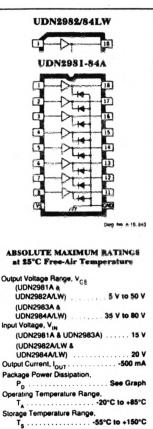
++++++

MAXIMUM

10 15 20 25 Frequency in GHz

Isolation Vs. Frequency

30 Frequency in GHz


* * *

a,

Typical Operating Curves

2981 тцки 2984

8-CHANNEL SOURCE DRIVERS

Note that the UDN2962/84A (dual in-line package) and UDN2962/84LW (small-outline IC package), respectively, are electrically identical and share a common pin number assignment. Recommended for applications requiring separate logic and load grounds, load supply voltages to 80 V, and load currents to 500 mA, the UDN2981A through UDN2984A/LW 8-channel source drivers are used as interfaces between standard low-power digital logic and relays, solenoids, stepping motors, magnetic print hammers, and LEDs.

The UDN2981A and UDN2983A drivers are for use with 5 V logic systems-TTL, Schottky TTL, DTL, and 5 V CMOS. The UDN2982A/LW and UDN2984A/LW drivers are intended for MOS interface (PMOS and CMOS) operating from supply voltages of 6 to 16 V. The UDN2981A and UDN2982A/LW will withstand a maximum output OFF voltage of 50 V, while the UDN2983A and UDN2984A/LW will withstand an output voltage of 80 V. In all cases, the output is switched ON by an active high input level. All devices incorporate input current limiting resistors and output transient suppression diodes.

The suffix 'A' (all devices) indicates an 18-lead plastic dual in-line package with copper lead frame for optimum power dissipation. Under normal operating conditions, these devices will sustain 120 mA continuously for each of the eight outputs at an ambient temperature of +50°C and a supply of 15 V.

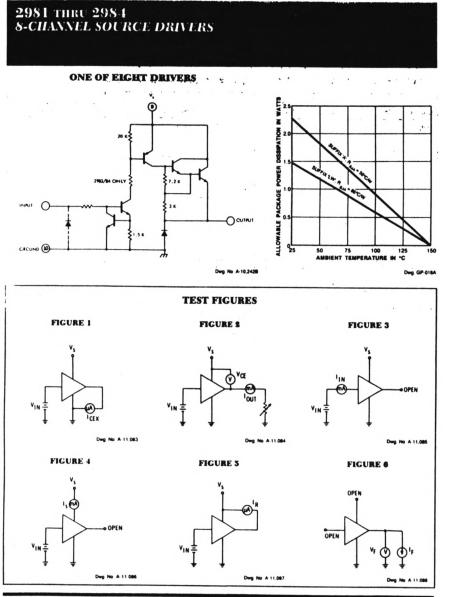
The suffix 'LW' (UDN2982LW and UDN2984LW only) indicates a surface-mountable wide-body SOIC package.

FEATURES.

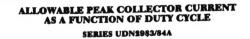
- TTL, DTL, PMOS, or CMOS Compatible Inputs
- # 500 mA Output Source Current Capability
- Transient-Protected Outputs
- Output Breakdown Voltage to 80 V
- DIP or SOIC Packaging

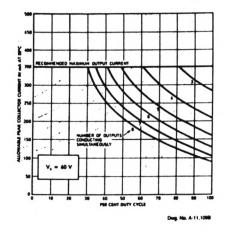
Always order by complete part number, e.g., UDN2981A. Note that all devices are not available in both package types.

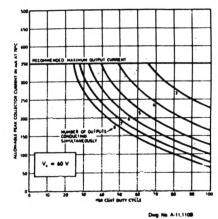
2981 THRU 2984 8-CHANNEL SOURCE DRIVERS


ELECTRICAL CHARACTERISTICS at T, = +25°C (unless otherwise specified).

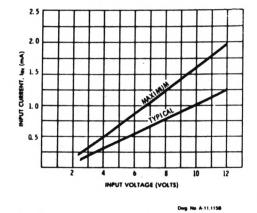
2		Applicable		Test	Limits			
Characteristic	Symbol	Devices	Test Conditions	Fig.	Min.	Тур.	Max.	Units
Output Leakage Current	ICEX	UDN2981/821	V _{IN} = 0.4 V*, V _S = 50 V, T _A = +70°C	1	-	-	200	μA
		UDN2983/841	V _{IN} = 0.4 V [*] , V _S = 80 V, T _A = +70°C	1	-	-	200	μA
Collector-Emitter			V _{IN} = 2.4 V, I _{OUT} = -100 mA	2	-	1.6	1.8	v
Saturation Voltage	VCE(SAT)	All	V _{IN} = 2.4 V, I _{OUT} = -225 mA	2	-	1.7	1.9	v
			V _{IN} = 2.4 V, I _{OUT} = -350 mA	2	-	1.8	2.0	v
Input Current		UDN2981/83A	V _{IN} = 2.4 V	3	-	140	200	μA
	IIN(ON)		V _{IN} = 3.85 V	3	-	310	450	μA
		UDN2982/841	V _{IN} = 2.4 V	3	-	140	200	μA
			V _{IN} = 12 V	3	-	1.25	1.93	mA
Output Source Current	bur	UDN2981/83A	V _{IN} = 2.4 V, V _{CE} = 2.0 V	2	-350	-	-	mA
		UDN2982/841	V _{IN} = 2.4 V, V _{CE} = 2.0 V	2	-350	-	-	mA
Supply Current	I _s	UDN2981/821	V _{IN} = 2.4 V [•] , V _S = 50 V	4	-	-	10	mA
(Outputs Open)		UDN2983/841	V _{IN} = 2.4 V*, V _S = 80 V	4	-	-	10	mA
Clamp Diode	i _R	UDN2981/821	V _R = 50 V, V _{IN} = 0.4 V*	5	-	-	50	μA
Leakage Current		UDN2983/841	V _R = 80 V, V _{IN} = 0.4 V*	5	-	-	50	μA
Clamp Diode Forward Voltage	V _F	All	I _F = 350 mA	6	-	1.5	2.0	v
Turn-On Delay	6N	All	0.5 E _{IN} to 0.5 E _{OUT} , R _L = 100Ω, V _S = 35 V	-	-	1.0	2.0	μs
Turn-Off Delay	GFF	All	$0.5 E_{IN} to 0.5 E_{OUT}, R_{L} = 100\Omega.$ V _S = 35 V	-	-	5.0	10	μs

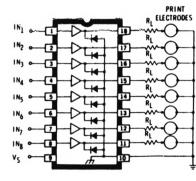

NOTES: Negative current is defined as coming out of (sourcing) the specified device terminal.


*All inputs simultaneously.


t Complete part number includes suffix to identify package style: A = DIP, LW = SOIC.

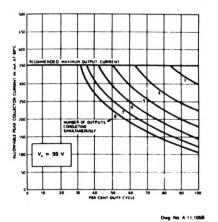
2981 THRU 2984 8-CHANNEL SOURCE DRIVERS

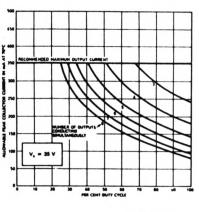




Dwg. No. A-11,113A

INPUT CUBRENT AS A FUNCTION OF INPUT VOLTAGE TYPICAL ELECTROSENSITIVE PRINTER APPLICATION

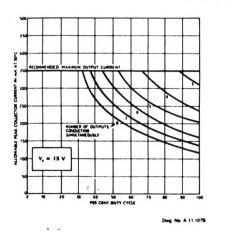


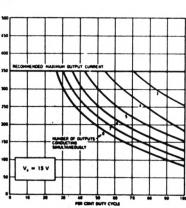

3-102

2981 THRU 2984 8-CHANNEL SOURCE DRIVERS

ALLOWABLE PEAK COLLECTOR CURRENT AS A FUNCTION OF DUTY CYCLE

SERIES UDN2980A





. Dwg No A 11,1118

SERIES UDN2981/82A

3

3-101

Dung No A 11,1088

3.9 T110, 43 GHz/ALT CONVERTER MODULE

T110 Band Coverage and LO Frequencies

This section describes the T110 frequency converter, a dual mode module that converts the Q-Band (43 GHz/0.7 cm) Front-End signal or an ALT (alternate Front-End) input to the standard 500 to 1000 MHz IF band.

The 43 GHz Front-End output is a first IF signal centered on 8.4 GHz and is produced by mixing the 43 GHz signal from the cooled preamplifier with an LO signal. After mixing, the first IF is filtered by a K&L 8400/1000 bandpass filter and then amplified by a 35 dB amplifier that drives T110 through interconnecting coax cables. As a result of this conversion, the 43 GHz Front-End's output frequency band is in the neighborhood of the other Front-Ends output frequencies.

The ALT input is intended for a future Front-End that outputs a first IF band near 8.4 GHz - possibly a future 86 GHz Front-End. Selector switches on the T110 inputs select either the 43 GHz or the ALT Front-End signals for conversion.

Since RF bandpass filters are installed in the 43 GHz Front-End, they are not included in the T110 RF circuitry.

The 43 GHz Front-End covers the 41.0 to 45.0 GHz band. The second LO frequencies used by T110 range from 7.4 to 9.4 GHz, and during observations they are selected in conjunction with the first LO frequency. Refer to the LO frequency table in Section 6. The table lists twenty-four sets of first and second LO frequencies to be used for the 41.0 to 45.0 GHz Front-End band.

A mixer in the 43 GHz Front-End converts the 43 GHz signal to a first IF signal that is filtered by the 8400/1000 bandpass filter and output to T110. The first IF spectrum is 7.7 to 9.1 GHz at the -3 dB frequencies. Synthesizer #3 provides the LO signal for this conversion. Since these filters are in the Front-End, T110's RF circuitry does not contain bandpass filters for the first IF signal. Four T110 LO frequencies (Synthesizer #2) are used in this mode: 7.4, 7.6, 7.9 and 8.1 GHz. In conjunction with the appropriate T110 LO frequencies, Synthesizer #3 is stepped in 200 and 300 MHz steps to cover the 43 GHz Front-End's output spectrum. The T110 LO frequencies, mixer IF port spectrum, converted and attenuated bands are tabulated below. The converted band is that passed by the 750/X550 IF Bandpass filter and the attenuated bands are mixer IF port frequencies attenuated by the filter. The mixer IF port frequencies are in MHz, the converted and attenuated frequencies in GHz.

LO Freq	Mixer IF Port	Converted	Attenuated
7.4	300 to 1700	7.9 to 8.4	7.7 to 7.9 8.4 to 9.1
7.6	100 to 1500	8.1 to 8.6	7.7 to 8.1 8.6 to 9.1
7.9	200* to 1200	8.4 to 8.9	7.7 to 8.4 8.9 to 9.1
8.1	400** to 1000	8.6 to 9.1	7.7 to 8.6
* 200 MMm hala	***		

* 200 MHz below the LO frequency, approaching the image.
 ** 400 MHz below the LO frequency, approaching the image.

T110 Size and Physical Location

T110 is a double-width module installed in Rack B, Bin C, Slots 11-12.

T110 Drawings and Data Sheets

The following T110 functional and assembly drawings are found at the end of this section.

C53500K010, Rev B D53500A020, Rev A A53500B019, Rev A	 T110 43 GHz/ ALT Converter Module Block Diagram T110 43 GHz/ALT Converter Module Assembly T110 43 GHz/ALT GHz Converter Module Assembly BOM
C53500A009, Rev B	- T106 8.4/23 GHz Converter Module IF Gain Relay Assembly
C53500A023	- T106 8.4/23 GHz Converter Module IF Gain Relay PCB Assembly

Data sheets for the Transco 909C70100 selector switch, WJ M77C mixer and Miteq AMF-2B-7494 amplifier follow the drawings. Data sheets for the Ditom D3I 7011 isolator, Triangle YL-56 power divider and Narda 4772-x attenuator are included in the Appendix, Section 6.

T110 Specifications

Nominal Gain, dB	14	Gain Flatness, ± dB	2	LCP-RCP Path Isol, dB	65
Nom Output Pwr a Std Syst Temp, dBm	-40	Min Cut Pwr @ 1% Compression, dBm	+4	Nom Output Pwr Density, dBm/MHz	-67
Avg Noise Temp, K	6,500	Noise Temp for 1% added Syst Noise, K	32,000	Nom LO Pwr input, dBm	+2
Avg Noise Figure, dB	13.7	Noise Figure for 1% added Syst Noise, dB	20.4		
15 Volt Power Req't, mA	650				

Unwanted Sideband and Image Band Attenuation

Unwanted sidebands are attenuated by the K&L 6B120-750/X550 IF bandpass filter described in Section 2.5. Image response bands are attenuated by the 43 GHz Front-End's 8400/1000 bandpass filter which has a -3 dB passband of 7.7 to 9.1 GHz. The following tabulation shows the LO frequencies, unwanted (UWSB) and image sidebands in GHz.

LO Freq	UWSB	UWSB Attn	Image
7.4	15.6 to 16.5	»70	6.4 to 6.9
7.6	15.3 to 16.2	»70	6.6 to 7.1
7.9	15.6 to 16.5	»70	6.9 to 7.4
8.1	15.8 to 16.7	»70	8.6 to 9.1

T110 Differences from the General Converter Block Diagram

Three features of the T110 Block Diagram are different from the general converter block diagram of Section 2.1. A pair of 43 GHz/ALT selector switches selects the output of either Front-End for conversion. The RF circuitry bandpass filters have been omitted and a DPDT Relay Module A53500A009 selects the Amp/Attenuator control voltages from a pair of 43 GHz or a pair of ALT gain control potentiometers. The 6B120-750/X550 IF filter, Amp/Attenuator and Amp/Divider are used for the IF circuitry. These components were described in Section 2.5.

Noise Temperature

The T110 noise temperature is a composite value that is a function of the noise temperatures of the mixer, Amp/Attenuator and Amp/Divider. The average of the measured noise temperatures of the LCP and RCP channels is 6500 K. A T110 noise temperature of 32,000 K would add 1 K to the system temperature.

Mixer

The WJ M77C is an important component; a data sheet follows the drawings at the rear of this section. This mixer is designed for LO frequencies of 7.0 to 15.0 GHz, RF frequencies of 8.0 to 12.5 GHz, IF frequencies of DC to 2500 MHz and a nominal LO drive of +10 dBm. At the 8.4 GHz conversion frequency, the typical conversion loss is 5.0 dB and the typical noise figure is 7.0 dB.

RCP-LCP Isolation

The RCP-LCP isolation is a function of the isolation properties of two shunt paths: the isolation between the two mixer LO ports and the transfer switch leakage.

The WJ M77C mixer typical LO to RF isolation is 35 dB and the LO to IF isolation is also 35 dB. The KDI/Englemen D307M power divider port-to-port isolation is 21 dB. Over the 7.4 to 9.4 GHz range of LO frequencies, the isolation of this shunt path is the sum of the two mixer LO port's to RF port isolation and the divider's isolation; this is 91 dB. The filter's attenuation is about 0.3 dB for frequencies in the 2500 MHz passband; for frequencies outside the passband, the isolation is increased by the filter's attenuation. Using the attenuation figures from two paragraphs above, the LO filter's add 20 dB to the 95 dB LO path isolation at frequencies of 5.9 and 10.9 GHz, respectively.

The typical RCP-LCP path isolation of the RLC SRC-TC-R-D transfer switch at 8.4 GHz is about 78 dB. From the table above, the module's specified RCP-LCP path isolation is 65 dB.

Since the SPDT selector switches are used to select either the 43 GHz or ALT Front-End outputs for conversion, the isolation of this switch is also a concern. The Transco 909C70100 switch has a port-to-port isolation of 60 dB at 8 GHz.

Isolation Between the 43 GHz and ALT Front-End Inputs

Two Transco 909C70100 SPDT coaxial selector switches (S110A and S110B) select the outputs of either the 43 GHz Front-End or the ALT Front-End for conversion. Since the frequencies of these two signals are similar, switch isolation is an important consideration because the coupling between the unselected signals and selected signals should be very small. At 8 GHz the switch's isolation between inputs is typically 90 dB.

VSWR's

The input VSWR 1.25:1 (estimated) is the composite of the VSWR's of the Transco 909C70100 selector switch (1.1:1) and the Ditom D3I 7011 isolator (1.18:1).

The output VSWR is the composite VSWR of the Amp/Divider which is 1.5:1.

RF Circuitry

The losses in the RF input path are the insertion losses of the Transco 909C70100 selector switch, 0.1 dB; Ditom D31 7011 isolator, 0.35 dB; and the RLC SR-TC-R-D transfer switch, 0.3 dB.

IF Circuitry

The IF path Amp/Attenuator, Amp/Divider and 6B120-750/X550 If bandpass filter were described in Section 2.5. IF gain adjustment is described in Test I, Section 2.7.

A DPDT IF Gain Relay Assembly C53500A009 selects the Amp/Attenuator control voltages from a pair of 43 GHz or a pair of ALT gain control potentiometers. The assembly drawing is included in Section 2.5.

LO Drive Circuitry

The LO isolation filter is a K&L 2FV-8400/2500, which is a two-section bandpass filter. The IF signals to be passed without attenuation range from 7.4 to 9.4 GHz. Frequencies outside this passband are attenuated to improve the RF-LO and IF-LO isolations between the mixer's LO ports. Figure 32 shows the filter's attenuation curve. The insertion loss is about 0.3 dB and the VSWR is about 1.5:1. This plot shows that the filter's attenuation is about 10 dB for frequencies that are one 3 dB bandwidth above or below the center frequency. These frequencies are 5.9 and 10.9 GHz, respectively.

The LO amplifier is a MITEQ AMF-2B-7494-15P that is a special order adaption of the AMF-2B amplifier series for NRAO; the amplifier is characterized over the 7.4 to 9.4 Ghz LO frequency range. The gain is 15 dB and is flat over this band within \pm 0.5 dB; the noise figure is about 3.3; maximum input and output VSWR is 1.9 and the 1 dB compression point is about 18.5 dB. During module alignment, the amplifier gain is adjusted to produce a +10 dBm drive to the WJ M77C mixers. The gain is determined by the selection of the appropriate NARDA 4772-X pad. The LO amplifier gain procedure is described in Test I, LO Powr, Gain and Flatness, Section 2.7. A MITEQ test data sheet for this

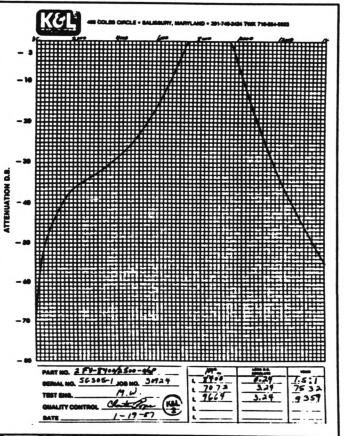
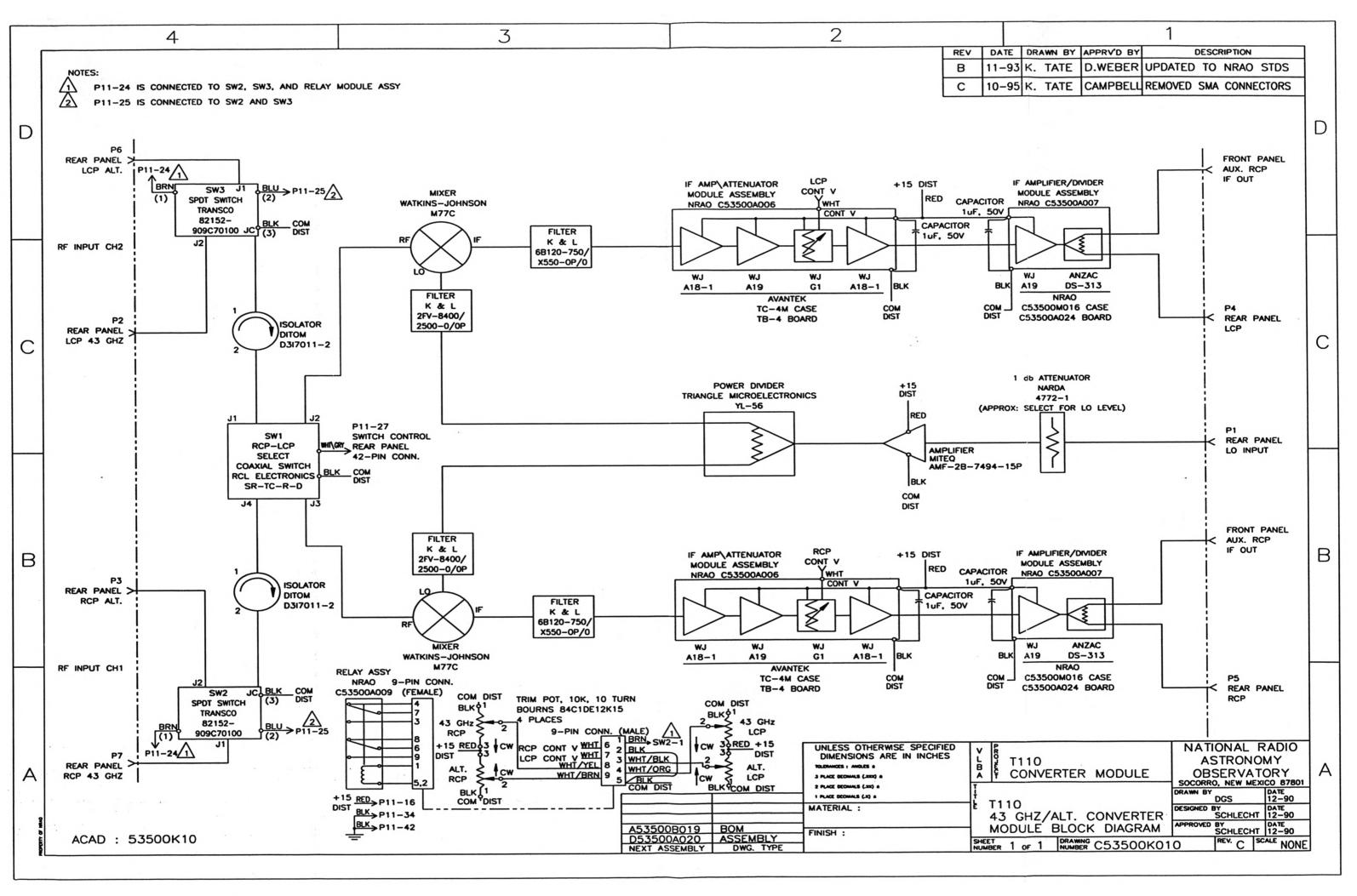
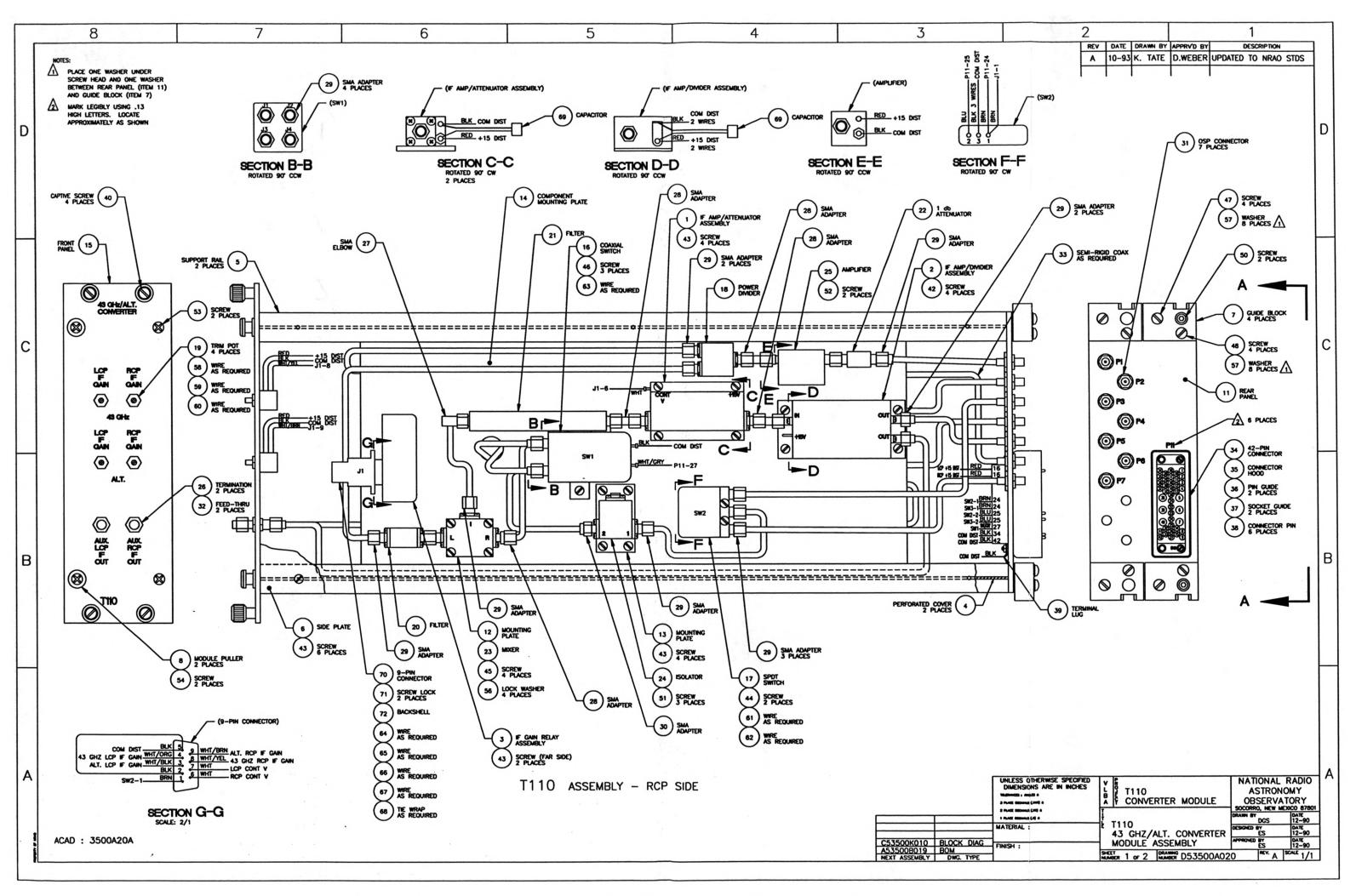
amplifier is included at the rear of this section.

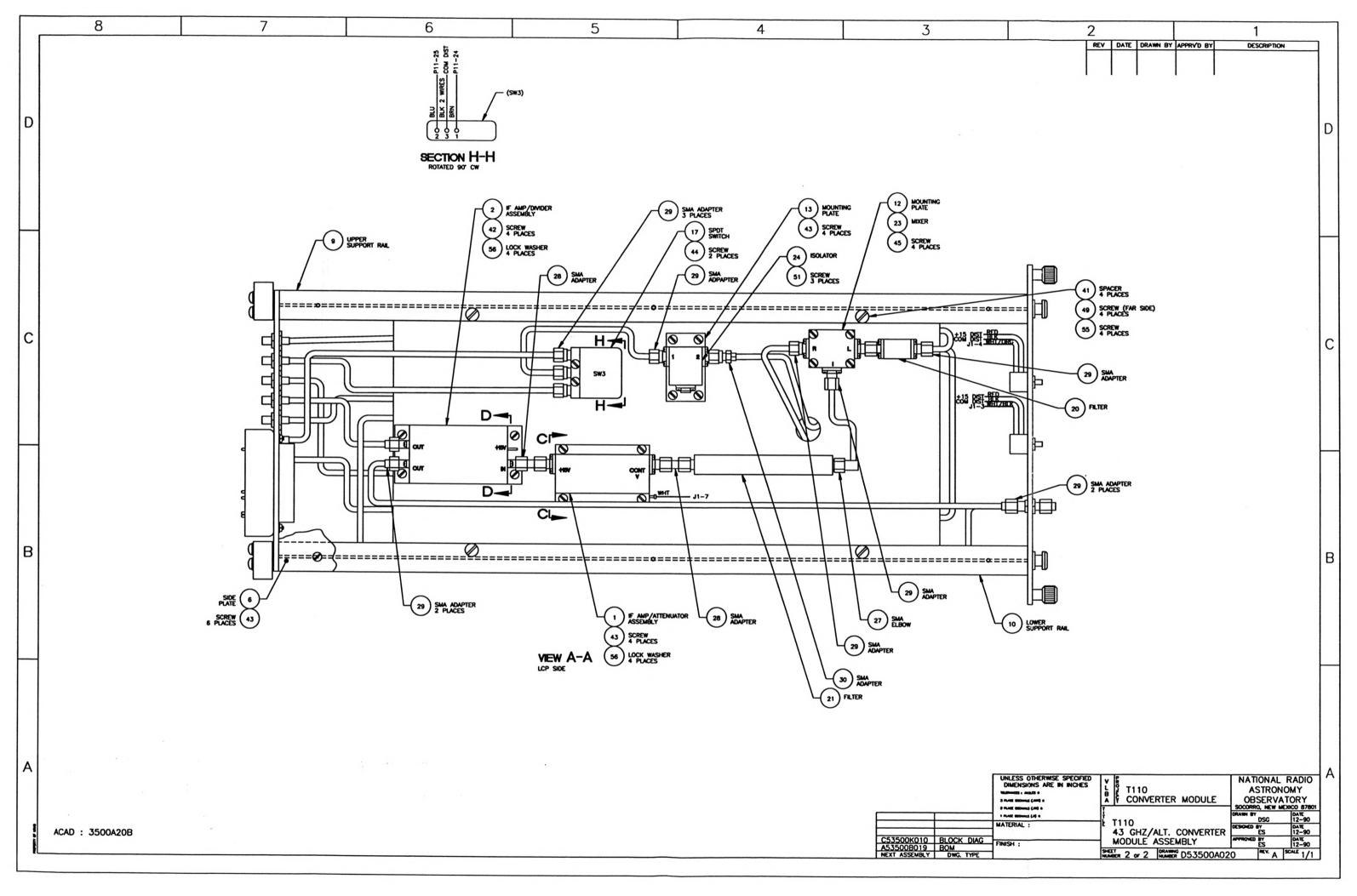
RF Switching

The transfer switch is designated S110C on drawing D58001K001. The T110 Block Diagram shows an RLC SR-TC-R-D transfer switch; some T110's may use the Transco 710C70100 as an alternate unit. The transfer switch is driven by M102, address 19H, bit 0. If bit 0 has a 0 value, the RCP and LCP signals are not interchanged; if bit 0 has a a 1 value, the signals are interchanged. Section 2.5 has a data sheet for the transfer switch.

Two Transco 909C70100 SPDT selector switches (S110A and S110B) are used to select either Front-End input. At 8 GHz typical values are: VSWR - 1.1:1, insertion loss - 0.15 dB and the isolation is 90 dB. This switch is described in Section 2.5. A +28 input to terminal 1 (P11-24) will select the ALT Front-End signal and a +28 volt input to terminal 2 (P11-25) will select the 43 GHz Front-End signal. The switch coil common is connected to :he module common distribution.

This pair of switches is driven by M102, address 1AH, bit 0. If bit 0 has a 0 value, the 43 GHz Front-End is selected; if bit 0 has a 1 value, the ALT Front-End is selected.


Figure 32 K&L 2FV-8400/2500 Bandpass Filter

T110 Power Circuitry

All T110 active components are powered by +15 volts. +15 volts from P11-16 is connected to TB1 (terminal strip 1) terminals 1-4 where it is distributed to the amplifiers. The common returns for these devices are connected to a frame ground lug that is connected to P11-34 and P11-42. This ground is also the ground return for the +28 volt drive to the transfer switch. The Amp/Attenuator has a 1.0 uF bypass capacitor connected across the amplifier's power terminals.

				REVISION	;			
REV	DATE	DRAMM BY	APPRVD BY			•••• ••	DESCRIPTION	
A	10-93	K. TATE	D. WEBER	UPDATED	TON	IRAO	STANDARDS	
		1						
	•	1	•	•				
MANN BY			DATE	··· · · · · · ·				l
H	(. TATE		10-93 DATE				С53500К010	BLOCK DIAG
							D53500A020	ASSEMBLY
VPROVED B). WEBEI	R	DATE 10-93				NEXT ASSY	USED ON
		· · ·		-			- I	<u></u>
								
N		RADIO ASTR	ONOLY	V PROJEC	T11	0 00	DNVERTER MODU	LE
UV.		SERVATOR			T11	0 43	3 GHZ/ALT. CON	VERTER MODULI
		NEW MEXICO &		B A Dwg	ASS	EMB	LY BOM	
				A DWG NO.	A535	00BC)19 s i	⊡ 1 ° 5

- -- 0 00 0

<u> </u>	X MECHANICAL	BOM # A53500B019	REV_A DATE_10-2	<u>8-93</u> PAGE <u>2</u> 0F <u>5</u>
MODULE <u>T110</u> NAME	43 GHZ/ALT. CONVERTER	DWG#	SUB ASSY	DWG4
SCHEM. DWG#	LOCATION	QUA/SYS.	PREPRD BY <u>K. TATE</u>	APPRVD BY WEBER

ITEN #	REF DES	MANUFACTURER	PART NUMBER	DESCRIPTION	TOTAL QTY.
1		NRAO	C53500A006	ASSY, IF AMP/ATTENUATOR	2
2		NRAO	C53500A007	ASSY, IF AMP/DIVIDER	2
3		NRAO	C53500A009	ASSY, IF GAIN RELAY	1
4		NRAO	C53306M014-1	COVER, PERFORATED	2
5		NRAO	C53306M016	RAIL, SUPPORT	2
6		NRAO	C53306M017	PLATE, SIDE	2
7		NRAO	B53306M018	BLOCK, GUIDE	4
8		NRAO	A53306M038	PULLER, MODULE	2
9		NRAO	B53500M001	RAIL, UPPER	1
10		NRAO	B53500M002	RAIL, LOWER	1
11		NRAO	B53500M004-1	PANEL, REAR	1
12		NRAO	B53500M029	PLATE, MIXER MOUNTING	2
13		NRAO	B53500M030	PLATE, ISOLATOR MOUNTING	2
14		NRAO	D53500M040	PLATE, COMPONENT MOUNTING	1
15		NRAO	C53500M033	PANEL, FRONT	1
16	SW1	RLC ELECTRONICS	SR-TC-R-D	SWITCH, COAXIAL	1
17	SW2, SW3	TRANSCO	82152-909C70100	SWITCH, SPDT	2
18		TRIANGLE MICROELECTRONICS	YL-56	DIVIDER, POWER	1
19		BOURNS 84C1DE12K15 TRIM POT, 10K PANEL		TRIM POT, 10K PANEL	4
20		K&L	2FV-8400/2500-0/0P	FILTER	2

X ELECTRICAL X MECHANICAL BOM # A53500B019 REV A DATE 10-28-93 PAGE 3 OF 5

TOTAL DESCRIPTION PART NUMBER MANUFACTURER ITEM 🖸 REF DES QTY. 2 FILTER K & L 6B120-750/X550-0/0P 21 1 ATTENUATOR, 1 db 22 NARDA 4772-1 2 MIXER WATKINS-JOHNSON M77C 23 2 ISOLATOR 24 DITOM D317011-2 1 AMPLIFIER 25 MITEQ AMF-2B-7494-15P 4 TERMINATION, 50Ω 26 SOLITRON 8018-6005 ELBOW, SMA MALE/.141 COAX 2 2912-6001 27 SOLITRON 5 ADAPTER, SMA MALE/MALE 2993-6001 28 SOLITRON 27 ADAPTER, SMA MALE/.141 COAX 2902-6001 29 SOLITRON 2 ADAPTER, SMA FEM./.141 COAX 30 SOLITRON 2002-5015-00 7 CONNECTOR, OSP .141 MALE OMNI - SPECTRA 2081-0000-00 31 P1-P7 2 FEED-THRU, SMA 2084-0000-00 32 OMNI - SPECTRA AR COAX, .141, SEMI-RIGID PRECISION TUBE 33 AA50141 1 CONNECTOR BLOCK, 42-PIN P11 AMP 204186-5 34 1 CONNECTOR HOOD, 42-PIN 35 AMP 202394-2

200833-2

203964-5

201578-1

9244

47-11-204-10

36

37

38

39

40

41

AMP

AMP

AMP

SOUTHCO

H.H. SMITH

2

2

6

1

4

4

PIN, GUIDE

SOCKET, GUIDE

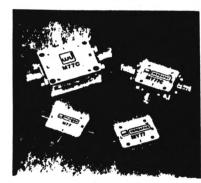
LUG, TERMINAL

SCREW, CAPTIVE

PIN, 16 GA. CONNECTOR

SPACER, 8-32UNC-2B x .44

X	ELECTRICAL	X MECHANICAL BOM		ADATE <u>10-28-93</u> PAGE4	_0F_5_
ITEM #	REF DES	MANUFACTURER	PART NUMBER	DESCRIPTION	TOTAL QTY.
42				SCREW, PAN HEAD, SS, 4-40UNC-2A x .19	8
43				SCREW, PAN HEAD, SS, 4-40UNC-2A x .25	30
44				SCREW, PAN HEAD, SS, 4-40UNC-2A x .63	4
45				SCREW, PAN HEAD, SS, 4-40UNC-2A x .75	8
46				SCREW, PAN HEAD, SS, 6-32UNC-2A x .25	3
47				SCREW, PAN HEAD, SS, 6-32UNC-2A × .75	4
48				SCREW, PAN HEAD, SS, 6-32UNC-2A x .88	4
49				SCREW, PAN HEAD, SS, 8-32UNC-2A x .63	4
50				SCREW, SOCKET HEAD, SS, 6-32UNC-2A x .38	2
51				SCREW, FLAT HEAD, SS, 2-56UNC-2A x .25	6
52				SCREW, FLAT HEAD, SS, 4-40UNC-2A x .25	2
53				SCREW, FLAT HEAD, SS, HP GREY, 6-32UNC-2A x .38	2
54				SCREW, FLAT HEAD, SS, 6-32UNC-2A x .75	2
55				SCREW, FLAT HEAD, SS, 8-32UNC-2A x .75	4

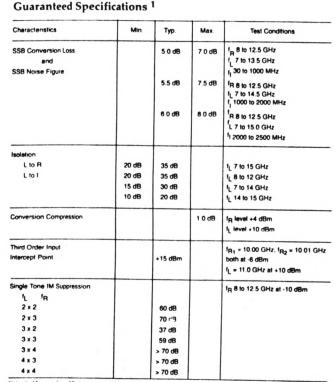

ITEM #	REF DES	MANUFACTURER	PART NUMBER	DESCRIPTION	TOTAL QTY.
56				WASHER, LOCK #4	18
57				WASHER, EXT. TOOTH #6	16
58		ALPHA	7055	WIRE, WHT #22	AR
59	· · · · · · · · · · · · · · · · · · ·	ALPHA	7055	WIRE, BLK #22	AR
60		ALPHA	7055	WIRE, RED #22	AR
61		ALPHA	7055	WIRE, BLU #22	AR
62		Alpha	7055	WIRE, BRN #22	AR
63		ALPHA	7055	WIRE, WHT/GRY #22	AR
64		ALPHA	7055	WIRE, WHT/BLK #22	AR
65		ALPHA	7055	WIRE, WHT/BRN #22	AR
66		ALPHA	7055	WIRE, WHT/YEL #22	AR
67		Аlрна	7055	WIRE, WHT/ORG #22	AR
68				WRAP, TIE	AR
69		SPRAGUE	2C20Z50105M050B	CAPACITOR, MONOLITHIC CERAMIC, 1µf, 50V	4
70	J1	TRW CINCH	DE-9P	CONNECTOR, 9-PIN D-SUB	1
71		AMP	200833-2	SCREW LOCK, MALE	2
72		WPI		BACKSHELL	1
73	· · · · · · · · · · · · · · · · · · ·				
74					
75					
76				······································	

WJ-M77/M77C WJ-MY77/MY77C

DOUBLE-BALANCED MIXER

- ◆ LO 7.0 TO 15.0 GHz
- ◆ RF 8.0 TO 12.5 GHz
- ♦ IF DC TO 2500 MHz
- LO DRIVE +10 dBm (nominal)
- LOW NOISE FIGURE

*MIL-M-28837 Screening Available (See "QPL Mixers" Section)

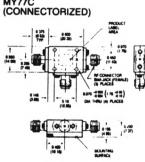


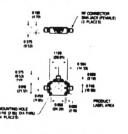
Outline Drawings

M77 (MINPAC)

M77C

(CONNECTORIZED)


Notes 1 Measured in a 50-ohm system with nominal LO drive and downconverter application only unless otherwise specified The I-Port frequency range estimate to DC for phase detection, pulse modulation, or attenuator applications, I-Port VSWR degrades from a 50-ohm system at low IF frequencies


Absolute Maximum Ratings

Operating	Temperatu	Jre		-54°C to +100°C
Storage T	emperature			-65°C to +100°C
Peak Inpu	It Power	+23 dBm ma	x. at +25°0	C. +20 dBm max at +100°C
Peak Inpu	ut Current a	t 25°C		
Weight	M77:	9 grams (0.32 oz.) max. 36 grams (1.27 oz.) max.	MY77:	7.9 grams (0.28 oz.) max. 20.0 grams (0.70 oz.) max.

MY77 (VERSAPAC) NADAUS 0070 -0000 (1 70 -000) PROLUCT 0 450 0 580 0 070 0015 - 000 038 - 000 + + +

DEMENSIONS ARE IN INCHES INILLINETERS

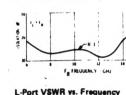
DESTRICTIONS ANE IN INCHES DELLINETERE

Outline Drawings

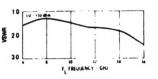
Typical Performance at 25°C* Conversion Loss Vs. LO Drive

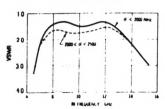
. 10 CHI # 10 00 -1000 MHz

Conversion Loss vs. Frequency


2000 to 2500 Meta

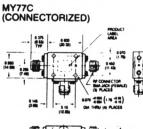
LOOWN CONVERSION

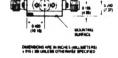

10 12 I REQUENCY - CH

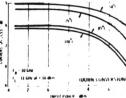

H . DC to 1000 MM > 1000 to 2000 M

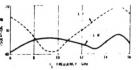
Isolation vs. Frequency

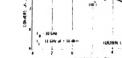
I-Port VSWR vs. f

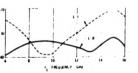


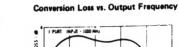

Typical Two-Tone Performance

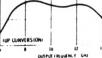

Typical Two-Tone Performance: f1 = 1250 MHz, $f_{R} = 10.25 \text{ GHz} \pm 1 \text{ MHz} f_{R}$ @ -10 dBm, $f_{L} > f_{R}$, $f_{L} = 11.5 \text{ GHz}$ @ +10 dBm. Vertical scale = 10 dB/cm.

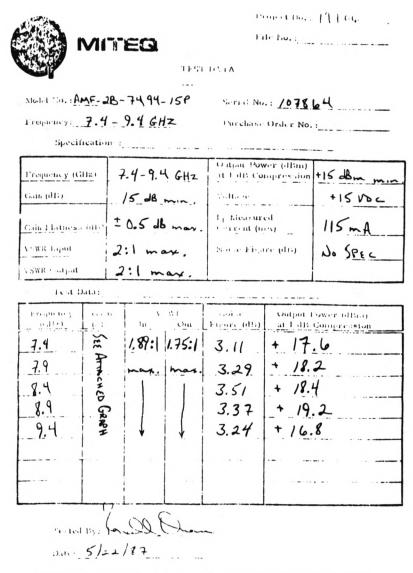

'Typical performance applies to the MINPAC'" model and does not necessarily reliect the performance of the VERSAPAC® model



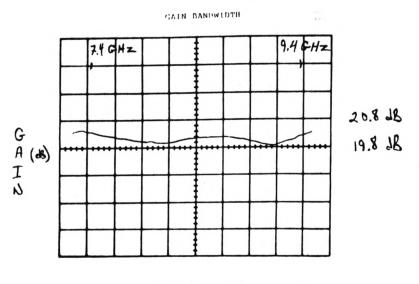

Conversion Loss vs. RF Input Power

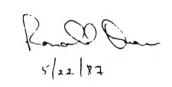






Isolation vs. Frequency


MITCOINC +1_100 Constitute House Service H1/BH-2006 • Tel (516) 543 0973


P19706

MITEO INC 7125 RICEHELD FANE HAUPPAUGE, NEW YORK 117877(515) 543-8873

Amplifier Madel AME-28-7494-15P Social No. 107864

FREQUENCY (LHZ)

4.0 LIST OF CONVERTER FUNCTIONAL DRAWINGS

C53500K005, Rev C - T101 330 MHz Converter Module Block Diagram D53500A015, Rev C - T101 330 MHz Converter Module Assembly A53500B002, Rev B - T101 330 MHz Converter Module Assembly BOM C53500A011, Rev A - T101 330 MHz Converter Module Converter Unit Assembly - T101 330 MHz Converter Module Converter Unit PCB Assembly C53500A025 - T101 330 MHz Converter Module Input Amplifier Assembly C53500A017 D53500K007, Rev E - T102 610 MHz Filter Module Block Diagram D53500A001, Rev C - T102 610 MHz Filter Module Assembly A53500B009, Rev C T102 610 MHz Filter Module BOM C53500A018, Rev A - T102 610 MHz Filter Module Input Amplifier Assembly B53500K006, Rev C - T102 610 MHz Filter Module Filter Block Diagram - T102 610 MHz Filter Module Filter Unit Assembly D53500A013 - T102 610 MHz Filter Module Filter Unit PCB Assembly D53500A022 C53500K001, Rev D - T103 1.5 GHz Converter Module Block Diagram D53500A002, Rev C - T103 1.5 GHz Converter Module Assembly A53500B001, Rev B - T103 1.5 GHz Converter Module Assembly BOM A53500A012, Rev A - T103 1.5 GHz Converter Module LO Amplifier/Detector Assembly A53500A008, Rev B - T103 1.5 GHz Converter Module LO Amp/Det PCB Assembly C53500K008, Rev D - T104 2.3 GHz Converter Module Block Diagram D53500A016, Rev B - T104 2.3 GHz Converter Module Assembly A53500B010, Rev B - T104 2.3 GHz Converter Module Assembly BOM C53500K002, Rev D - T105 4.8onverter Module Block Diagram D53500A003, Rev C - T105 4.8 GHz Converter Module Assembly A53500B002, Rev B - T105 4.8 GHz Converter Module Assembly BOM C53500K009, Rev E - T106 8.4/23 GHz Converter Module Block Diagram D53500A010, Rev F - T106 8.4/23 GHz Converter Module Assembly A53500B005, Rev B - T106 8.4/23 GHz Converter Module Assembly BOM C53500A009, Rev B - T106 8.4/23 GHz Converter Module IF Gain Relay Assembly C53500A023, Rev B - T106 8.4/23 GHz Converter Module IF Gain Relay PCB Assembly C53500K003, Rev C - T107 10.7 GHz Converter Module Block Diagram D53500A004, Rev A - T107 10.7 GHz Converter Module Assembly A53500B003, Rev A - T107 10.7 GHz Converter Module Assembly BOM C53500K004, Rev D - T108 14 GHz Converter Module Block Diagram D53500A021, Rev B - T108 14 GHz Converter Module Assembly A535008004, Rev B - T108 14 GHz Converter Module BOM C53500S005, Rev B 🚽 T108 14 GHz Converter Module Filter Select PCB Schematic Diagram - T108 14 GHz Converter Module Filter Select PCB Assembly C53500A019 C53500K010, Rev B - T110 43 GHz/ ALT Converter Module Block Diagram D53500A020, Rev A - T110 43 GHz/ALT Converter Module Assembly A53500B019, Rev A - T110 43 GHz/ALT GHz Converter Module Assembly BOM C53500A006, Rev B - Converter Module IF Amp/Attenuator Assembly C53500A007, Rev A - Converter Module IF Amp/Divider Assembly

5.0 DATA SHEETS FOR COMMERCIAL COMPONENTS

This section contains the following commercial component data sheets:

K&L Tubular Bandpass Filters Anzac DS-313 Power Divider Ditom Isolators Narda 4772-X Attenuators Omni-Spectra 2090-62XX Power Dividers Merrimac PDM-20 Series Power Dividers KDI-Triangle Series YL D300 Power Dividers Narda 4315-2 Power Divider

Features - Bandpass

K&L tubular bandpass filters are available in four different series ranging in size from .25 inch diameter to 1.25 inch diameter to cover the frequency range of 40MHz to 6.0GHz. K&L uses a 05dB Chebyshev design to yield low insertion loss in the passband and high attenuation levels in the stopband. The tubular filter design is made up of small resonating sections. These sections are capacitively coupled to provide the specified passband response and selectivity required This coupling structure provides a DC block.

In choosing the best tubular filter to meet the user's needs. K&L recommends the use of the 50 inch diameter: Model 120 This series has convenient size, broad frequency range, versatility of design, and is the most economical

The two larger series, .75 inch diameter and 1 25 inch diameter, offer the user lower insertion loss. lower frequency operation, and higher power capabilities. The .25 inch diameter offers the user miniature size and volume, higher frequency operations and less weight.

To Order

5 B121 - 500 / T 80 - O / O 1234 5 67 8 9

1. Number of sections 2. B - Bandpass

- 3. Model
 - 250 25"
 - 120 .50" 340 - .75
 - 110 1.25
- 4. Circuit structure
- 5. Center frequency (MHz) 6. Supplemental codes (see page 17)
- 7. Bandwidth (MHz)
- 8. Input connector
- 9. Output connector

Mechanical

For sizes and connectors, see pages 69 and 70.

To determine the maximum insertion loss of the tubular filter at center frequency the follow formula is used:

Insertion loss at center frequency = (Loss constant)(No. of sections + 1/2) +0.2 % 3dB BW

Insertion Loss/Loss Constant

Loss Constant vs. Frequency vs. Model Center Frequency (MHz) 4001 1001 2001 66 101 201 401 Model 41 51 6000 2000 4000 1000 40 50 65 100 200 400 3.0 2.5 3.5 B250 5.0 4.0 1.6 1.8 3.5 3.0 2.5 2.0 B120 1.2 1.6 1.4 B340 3.0 2.5 2.2 2.0 B110 2.5 2.4 2.2 1.8 1.6 1.3 1.2

Specifications - Bandpass

Model	Diameter Inches	Frequency Range (MHz)	3dB % of Center	VSWR	No. of Sections (Watts)		Average Power	Shock	Vibration	Humidity	
B250	1/4	200- 6000(2)	4-40%	1.5:1 or Less	2-8	50 75	2	30G. 11ms	10G 5-2000Hz	0-95%	-55°C +85°C
B120*	1/2	100- 2500	4-40%	1.5:1 or Less	2-10	50 75	18	30G, 11ms	10G 5-2000Hz	0-95%	-55°C +85°C
B340	3/4	50- 1700	4-40%	1.5:1 or Less	2-10	50 75	40	30G. 11ms	10G 5-2000Hz	0-95%	-55°C +85°C
B110	1-1/4	40- 600	4-40%	1.5:1 or Less	2-10	50 75	200	30G. 11ms	10G 5-2000Hz	0-95%	-55°C +85°C

*Most versatile. fits most applications 1. 50 Ohms standard

2. For frequency above 6,000MHz, combline and interdigital filters are better suited

Phone: 410-749-2424

FAX: 410-749-5725

Phone: 410-749-2424

E

FAX: 410-749-5725

Filter model: B120 Find the insertion loss at center

EXAMPLE:

frequency From the table the loss constant is shown to be 2.0 The percent 3dB bandwidth is:

Center frequency = 500MHz

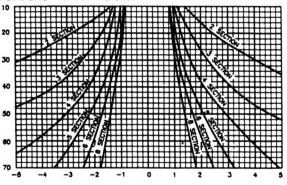
3dB bandwidth = 80MHz

Number of sections = 5

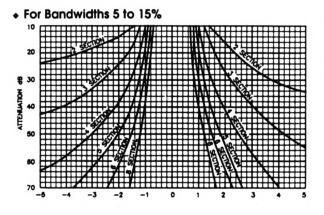
 $\frac{3 \text{dB BW}(100)}{\text{Center Frequency}} = \frac{(80)(100)}{500} = 16\%$

By substituting in the formula we find the insertion loss = (2)(5 + 1/2) +0.2 = 0.9dB 16

20


@ 30

Attenuation


The following curves are used in determining the out-of-band attenuation for K&L's four series of tubular filters. The curves show minimum stopband in dB, as multiples of 3dB bandwidth for filters with 2 through 8 sections. For more than 8 sections please contact the factory.

For the most part, tubular filters are free of spurious responses. However due to case moding or when resonance develops, spurious responses can occur. It is therefore advisable that the user specify the frequency which is to be spurious-free. By doing so, K&L can incorporate compensating networks to eliminate the spurious responses at no degradation in the passband frequencies.

For Bandwidths 4 to 5%

NUMBER OF 3dB BANDWIDTHS

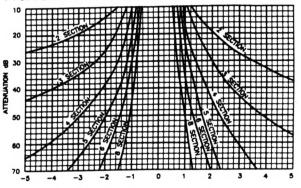
Phone: 410-749-2424

Attenuation

To determine which series of curves to use, first calculate the percentage 3dB bandwidth from the formula:

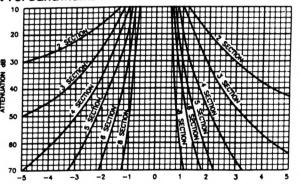
3dB BW Center frequency X 100 % BW =

To determine the number of bandwidths (3dB) from center frequency, use the following formula:


No. 3dB BW = Reject freq. - Center freq. 3dB BW

EXAMPLE:

Center frequency = 300MHz 3dB bandwidth = 50MHz Number of sections = 6Determine attenuation at 200MHz and 400MHz: 1. Calculate % BW = 50×100 = 17% 300 200-300 = -2 BW 2. -3dB BW = 50 400-300 =+2 BW 3. +3dB BW= 50 Referring to the curve for 15%-30%, a


6 section response -2 BW yields 64dB, and +2 BW yields greater than 70dB.

+ For Bandwidths 15 to 30%

NUMBER OF 3dB BANDWIDTHS

• For Bandwidths 30 to 70%

NUMBER OF 3dB BANDWIDTHS

FAX: 410-749-5725

Features

The length of a tubular filter is determined by adding the "A" and "B" dimensions. The "B' dimension is obtained from the table below and the "A" dimension is obtained from Length vs. Frequency tables on the following page

EXAMPLE:

A 3-section bandpass filter Model B120 with a center frequency of 300MHz and with SMA connectors has an "A" dimension of 2 inches and a "B" dimension of 0.8 inches. The total length is 3.6". B

Connector Style	Connector		"B" C	imension (Inc	thes)	
	Code	.25 Diameter	.50 Diameter	.75 Diameter	1.25 Diameter	Figure
"N" Female	N	NR*	1.28	1.4	1.7	•
"N" Male	NP	NR.	1.23	1.31	1.65	
BNC Female	в	NR.	1.0	1.35	1.42	
BNC Male	BP	NR.	.93	1.45	1.35	
IC Female	т	NR.	1.0	1.35	1.42	
Male	IP	NR*	.93	1.45	1.35	
MC Female (Screw On)	S	.6	.73	.73	.73	
MC Male (Screw On)	SP	NR.	.81	.81	.81	
MB Female (Snap On)	A	.6	.73	.73	.73	
SMB Male (Snap On)	AP	NR*	.81	.81	.81	
"F" Female	F	NR.	1.05	1.05	1.05	
SMA Female (Standard)	0	.6	.8	.8	.8	
SMA Female (Right Angle)	DO	NR.	.6	.6	.6	2
SMA Female (Right Angle Square)	EO	.55	.65	.65	.65	5
SMA Male (Standard)	OP	.73	.85	.85	.85	
SMA Male (Right Angle)	DP	NR.	.6	.6	.6	2
SMA Male (Right Angle Square)	EP	.55	.65	.65	.65	5
Cable, RG 188 (Right Angle Stand.)	С	.45	.5	.5	.5	1
Cable, RG 188 (Straight)	CS	.45	.55	.55	.55	3
Solder Lug	L	.40	.45	.45	.45	4
PC Mount (Right Angle)	P	•	•			

PC Mount (Right Angle) NR* Not recommended

· For PC mount, contact factory

Figure 1

Figure 2

Phone: 410-749-2424

FAX: 410-749-5725

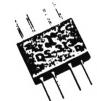
Figure 4

Approximate* Dimension "A" - Length vs. Frequency

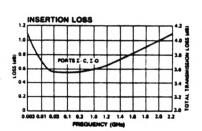
• B2	50					+ L2	50					-		
No. of			Frequency (M	Hz)		No. of				Frequenc	(MHz)		2000 500	5000 2000
Sections	200-300		100-1000 1000						40	300-1700	45	40	.40	5000-2000
2	1.10	1.00		30 .70	.50	2	.65	.55	.40	.85	.75	70	75	
3	2.00	1.90	1.40 1.		.70	3	1 00	1.25	1.00	1.20	1.10	1.00	1.50	•
4	2.90	2.80	1.90 1.		.90	4	1.45		1.30	1.55	1 40	1.30	1 40	Contact
5	3.80	3 60	2.40 2.		1.10	5	1.90	1.65	1.60	1.95	1.70	1.55	1.75	factory for exact size
6	4.70	4.40	2.90 2		1.30	6	2.30	2.00		2 30	2.00	1 85	2 10	at higher
7	5.60	5.20	3.40 2.	90 2.20	1.60	7	2.75	2 40	1.90		2.00	2 15	2 45	frequencies
8	6 50	6.00	3 90 3.	30 2.50	1.90	8	3.20	2 75	2 20	2 65			2 45	
		• • • • •				9	3 65	3 10	2 50	3 00	2 70	2.45	3 10	
						10	4.10	3.50	2.80	3 35	3.00	2 75	3 10	•
• B1	20					+ L1	20				13		2.2	
No. of			Frequency (MI	tz)		No. of					ncy (MHz)	0-400	400-800	800-3000
Sections	100-130	130-180	180-350	350-700	700-2500	Sections	60-70					1 10	75	65
2	2.00	1.60	1.30	1 10	90	2	2.45		1.80	1.			1 20	1 10
3	3.15	2 60	2.00	1.65	1.40	3	3.85	3.15	2.80	2		1.80	1 70	1 50
4	4.30	3.60	2.70	2.20	1.95	4	5.20	4.20	3.85	3		2 55		
5	5 45	4.55	3.40	2 70	2.45	5	6.60	5.25	4.85	4.		3.25	2 15	1 95
6	6 60	5.55	4.10	3.25	3.00	6	8.00	6.30	5.90	5		3 95	2 60	2 40
7	7 75	6.55	4.80	3 80	3.50	7	9.40	7.30	6.95	6		4 70	3 00	2 80
8	8 90	7 55	5.50	4.35	4 00	8		8.35	7.95	7		5 40	3 50	3 25
9		8.55	6.20	4 90	4.55	9		9 40	8.95	8		6.10	3.95	3 70
10		9.50	6.90	5 40	5.00	10				8	90	6 80	4 40	4 10
• B3	40					+ L3	40							
No. of			Frequency (MH	(7)		No. of		-		Frequenc				
Sections	50-80	80-140	140-230	230-500	500-1700	Sections	40-60	60-80	80-100	100-200	200-400	400-600	600-1000	1000-2000
2	3 00	2.00	1.50	1 30	1.10	2	3.90	3.10	2.20	2.00	1 20	1 00	.90	80
3	4 50	3 00	2.25	1 85	1.60	3	5.90	4.80	3.50	3.15	2 00	1.60	1 35	1 25
4	6.00	3.95	3.00	2 40	2.10	4	8 00	6 45	4.75	4.30	2 70	2.15	1 80	1 65
5	7 50	4.90	3.75	2 95	2 60	5		8 10	6.00	5 40	3.40	2 70	2.25	2 00
6	9 00	5 90	4.50	3 50	3 10	6			7.30	6.50	4 10	3 25	2 70	2 45
7		6 85	5 25	4.10	3.60	7		· ·	8.60	7.65	4 90	3 85	3.15	2 85
8		7.80	6.00	4 60	4.10	8				8.75	5.55	4 40	3 60	3 30
9		8.80	6 75	5 15	4.60	9					6 40	5 00	4 00	3 70
10		0.00	7 50	5.70	5.10	10		•	•		7 00	5 50	4 50	4 10
• B1	10							+ L1	10					
No. of			Frequency (MH	7)	1			No. of			Frequen	cy (MHz)		
Sections	40-55	55-80	80-200	200-400	400-500			Sections	30-40	40-1			200-600	600-1000
2	3.00	2 80	2.40	2 00	1.60			2	3.65	24	0 2	00	1 30	1 00
3	4.00	3 80	3.20	2.80	2 30			3	5.45	35		.85	2 00	1 55
4	5 00	4 80	4.00	3 60	3 00			4	7.25	47		70	2 60	2 00
5	6 50	6 00	5.20	4 40	3 80			5	9 10	60		55	3 25	2 60
6	8 00				4 60			6	9.10	7 1		40	3 90	3 10
7		7 20	5 60	5 20				7		8.3		25	4 55	3 65
8	9 50	8 40	6.40	6 00	5 40			8		9.5		10	5 20	4 20
		9 60	7.20	6 80	6 20				•	9.5				4 20
9 10			8 60	7 60 8 50	7 00 7 80			9 10				95 80	5 85 6 50	5 20
										-			0.50	510
onrectors	wh at left is internations in the second sec		Veight	(Ounc	es)			• We	eight	(Ou	nces)		
		B2		B340	B110			L250	L120			110		
		1/4		3/4 oz	1 1/2 OZ			1/4 02	3/4 02			2 02		
	70	peri	inch per incl	h per inch	per inch	12		per inch	per inc	h per	men per	inch		

FAX: 410-749-5725

Phone: 410-749-2424

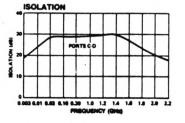

MODEL DS-313 TWO-WAY IN-PHASE POWER DIVIDER 10-2000 MHz

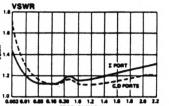
0.6 dB Typical Midband Loss 28 dB Typical Midband Isolation 1.2:1 Typical Midband VSWR


Guaranteed Specifications*

(From - 55°C to + 85°C)

Frequency Range		10-2000 MHz
Insertion Loss	20-1000 MHz	1.1 dB Max
(Less coupling)	10-1500 MHz	1.3 dB Max
	1500-2000 MHz	1.8 dB Max
Isolation	20-1000 MHz	23 dB Min
	10-1500 MHz	18 dB Min
	1500-2000 MHz	12 dB Min
Amplitude Balance	20-1000 MHz	0.3 dB Max
	10-1500 MHz	0.4 dB Max
	1500-2000 MHz	0.6 dB Max
Phase Balance	20-1000 MHz	4° Max
	10-1500 MHz	6° Max
	1500-2000 MHz	8° Max
VSWR (All Ports)	20-1000 MHz	1.5 Max
	10-1500 MHz	1.6 Max
	1500-2000 MHz	1.8 Max


Typical Performance



Operating Characteristics

mpedance	50 Ohms Nominal
Maximum Power Rating or Input Power	250 mW Max
Internal Load Dissipation	n 50 mW Max
Package Type (S	Flatpack (FP-2) ee page 474 for physical dimensions.)
	meet the environmental and screening age 496 of the Adams-Russell catalog.
Pin Configuration	1, P1, Output 'C', P4, Output 'D', P8

Ordering Information

					FREQUENCY ON						
Model No.	Part No.	c	onnectors	Unit Price (5-9 Units)							
DS-313 Detwery is from stock	8559	'	Pin	\$67							
ANZA	1C		Make	the Connection	Adams Russell						
			Cambridge St	eet, Burlington, MA 01803 Fa	COMPONENTS GROUP						
for Technical Inform	nation, Call (617) 2	73-3333			For Ordering Information, Call (617) 273-3333						

Single Junction — Octave/Broadband

Isolators and Circulators

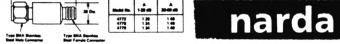
Frequency ¹ Range (GHz)	isolator Model Number	Model	Model	Circulator Model Number	isola (di		Lo	ertion ess B)	VSV (+df		Pow (Wa	er [:] ' tts)	Operating Temperature Range ³ (°C)	Outline Number	Approx Weight Oz (gm)
			Тур	Min	Тур	Max	Typ	Max	Avg	Pk					
2.0-4.0	D3I 2040	D3C 2040	20	18	0.40	0.50	1 25	1.30	2	20	0 to +50	1	3 5 (100		
2.0-6.0	D3I 2060	D3C 2060	15	14	0.70	0.80	1.45	1.50	2	20	0 to +50	1	3.5 (100		
2.0-8.0	D3I 2080	D3C 2080		12		1.10		1.85	2	20	0 to +50	1	6.9 (195		
2.6-5.2	D3I 2652	D3C 2652	20	18	0.40	0.50	1 25	1.30	2	20	0 to +50	1	3.5 (100		
3.0-6.0	D3I 3060	D3C 3060	21	19	0.35	0.40	1 25	1.30	2	20	0 to +50	2	2 0 (60)		
3.5.7.0	D3I 3570	D3C 3570	20	18	0.35	0.40	1 25	1 30	2	20	0 to +50	3	1 2 (35)		
3.7-8.3	D3I 3783	D3C 3783	18	17	0.50	0.60	1.30	1.35	2	20	0 to +50	3	1 2 (35)		
4.0-8.0	D3I 4080	D3C 4080	22	20	0.35	0.40	1.18	1.25	2	20	-10 to +60	3	1.2 (35)		
6.0-12.4	D3I 6012	D3C 6012	19	17	0.50	0.60	1.30	1.35	2	20	-10 to +60	6	10(30)		
7.0-11.0	D3I 7011	D3C 7011	22	20	0.35	0.40	1.18	1.25	2	500	-30 to +85	4	1.0 (30)		
7.0-18.0	D3I 7018	D3C 7018	16	15	0 90	1 00	1 45	1.50	2	30	-10 to +85	5	0 9 (25)		
8.0-12.4	D3I 8012	D3C 8012	22	20	0 35	0.40	1 18	1.25	2	500	-30 to +85	4	10(30)		
8.0-18.0	D3I 8018	D3C 8018	17	16	0 70	0.80	1 40	1.45	2	30	-10 to +85	5	0 9 (25)		
8.0-20.0	D3I 8020	D3C 8020		15	0.70	1.00		1 45	2	30	-10 to +85	5	0 9 (25)		
8.0-16.0	D3I 8016	D3C 8016	19	17	0.50	0.60	1 30	1.35	2	30	-20 to +65	5	0 9 (25)		
10.0-20.0	D3I 1020	D3C 1020	17	16	0.60	0.70	1.35	1.40	2	30	-20 to +65	5	0 9 (25)		
12.0-18.0	D3I 1218	D3C 1218	22	20	0.45	0.50	1.18	1.25	2	30	-20 to +65	5	0.9 (2 -)		
18.0-26.5	D3I 1826	D3C 1826	20	18	0.70	0.80	1 35	1.40	2	30	-20 to +65	5	091.		
20.0-30.0	D3I 2030	D3C 2030	20	18	0.60	0.70	1 35	1 40	2	30	20 to +65	5'	09		
20.0-40.0	D3I 2004	D3C 2004		13		1.20		1.60	2	30	-20 to +65	5.	09		
26.5-40.0	D3I 2640	D3C 2640	15	14	0.80	1.00	1.45	1 50	2	30	-20 to +65	5*	091 >>>		

Single Junction — EW/Broadband

Isolators and Circulators

Frequency ¹ Range (GHz)	Isolator Model Number	Model	Circulator Model Number	lsola (d		Lo	ertion Iss B)	VSV (+dE		Pow (Wa		Operating Temperature Range ⁵ (°C)	Outline Number	Approx Weight Oz (gm)
			Тур	Min	Тур	Max	Тур	Max	Avg	Pk				
2.6-5.3	DMI 2652	DMC 2652	16	15	0.90	1.00	1.45	1.50	2	20	-30 to +75	9	0.70 (20)	
5.0-10.7	DMI 5011	DMC 5011	16	15	0.90	1.00	1.40	1.45	2	20	-30 to +75	10	0.53 (15	
5.9-12.5	DMI 5912	DMC 5912	19	17	0.50	0.60	1.30	1.35	2	20	-40 to +85	10	0.53 (15	
6.0-18.0	DMI 6018	DMC 6018	15	14	0.90	1.00	1 45	1 50	2	20	0 to +85	11	0.40 (11)	
6.5-13.1	DMI 6513	DMC 6513	17	16	0.70	0.80	1.40	1.45	2	20	-40 to +85	11	0 40 (11	
6.5-18.0	DMI 6518	DMC 6518	15	14	0.90	1.00	1.45	1 50	2	20	0 to +85	11	0.40 (11)	
7.4.172	DMI 7417	DMC 7417	18	16	0.60	0 80	1 40	1 45	2	20	-55 to +85	11	0 40 (11)	
10.4-18.4	DMI 1018	DMC 1018	20	17	0 50	0.80	1 30	1 35	2	20	-55 to +85	11	0.40 (11)	

Notes	See Outline Drawings on Page 3.											
1. Other frequencies available on request.	Outline			Dimen	sion linch			-				
2. Consult factory for power handling capability of circulator.	Numbe	· A	в	С	D	E	F	G	н	J		
3. Storage temperature range is -55°C to +100°C. All units will operate -54°C to +85°C. Consult factory for	9	1 00	1 00	0 38	0 19	0 19	0 650	0 10	0 800	0 40		
specifications.	10	0 75	0 /5	0 38	019	0 19	0 425	0 10	0 550	0 27		
 Connector and termination locations are interchangeable. 		0 50	0 58	0 38	0 19	0 19	=	0 10	0 300	=		
5 Storage tomographics and a FE-C to torage												


Storage temperature range is -55°C to +125°C

Attenuators

Α	tte	en	uai	to	rs
					-

REQUENCY			ATION dB	POWER AVG.	INPUT PEAK		WR lax)	WEIG	SHT ax)	FREQUENCY			ATION dB	POWE	R INPUT PEAK		/SWR (Max)		(GHT Max)
(GHz)	MODEL		DC-6	(W)Max	(kW)Max	DC-4.0	4-6	Oz	Gr	RANGE (GHz)	MODEL	NOMINAL	DEVIATION DC-12.4	(W)Max	(kW) Max	DC-4	4-12.4	Oz	
DC-6	4772	0	±0.3	2	0.2	1.25	1.40	0.5	14	DC-12.4	4778	0	±0.3	2	0.2	1.15	1.30	0.5	
		0.5	±0.3	2	0.2	1.25	1.40	0.5	14		4//0	0.5	±0.3	2	0.2	1.15	1.30	0.5	
		1.0	±0.3	2	0.2	1.25	1.40	0.5	14			1.0	±0.3	2	0.2	1.15	1.30	0.5	
		1.5	±0.3	2	0.2	1.25	1.40	0.5	14			1.5	±0.3	2	0.2	1.15	1.30	0.5	
		2.0	±0.3	2	0.2	1.25	1.40	0.5	14			2.0	±0.3	2	0.2	1.15	1.30	0.5	
		2.5	±0.3	2	0.2	1.25	1.40	0.5	14			2.5	±0.3	2	0.2	1.15	1.30	0.5	
		3.0	±0.3	2	0.2	1.25	1.40	0.5	14			3.0	±0.3	2	0.2	1.15	1.30	0.5	
		3.5	±0.3	2	0.2	1.25	1.40	0.5	14			3.5	±0.3	2	0.2	1.15	1.30	0.5	
		4.0	±0.3	2	0.2	1.25	1.40	0.5	14			4.0	±0.3	2	0.2	1.15	1.30	0.5	
		4.5	±0.3	2	0.2	1.25	1.40	0.5	14			4.5	±0.3	2	0.2	1.15	1.30	0.5	
		5.0	±0.3	2	0.2	1.25	1.40	0.5	14			5.0	±0.3	2	0.2	1.15	1.30	0.5	
		5.5	±0.3	2	0.2	1.25	1.40	0.5	14			5.5	±0.3	2	0.2	1.15	1.30	0.5	
		6.0	±0.3	2	0.2	1.25	1.40	0.5	14			6.0	±0.3	2	0.2	1.15	1.30	0.5	
		6.5	±0.4	2	0.2	1.25	1.40	0.5	14			6.5	±0.4	2	0.2	1.15	1.30	0.5	
		7.0	±0.4	2	0.2	1.25	1.40	0.5	14			7.0	±0.4	2	0.2	1.15	1.30	0.5	
		7.5	±0.4	2	0.2	1.25	1.40	0.5	14			7.5	±0.4	2	0.2	1.15	1.30	0.5	
		8.0	±0.4	2	0.2	1.25	1.40	0.5	14			8.0	±0.4	2	0.2	1.15	1.30	0.5	
		8.5	±0.4	2	0.2	1.25	1.40	0.5	14			8.5	±0.4	2	0.2	1.15	1.30	0.5	
		9.0	±0.4	2	0.2	1.25	1.40	0.5	14			9.0	±0.4	2	0.2	1.15	1.30	0.5	
		9.5	±0.4	2	0.2	1.25	1.40	0.5	14			9.5	±0.4	2	0.2	1.15	1.30	0.5	
		10.0	±0.3	2	0.2	1.25	1.40	0.5	14			10.0	±0.3	2	0.2	1.15	1.30	0.5	
		10.5	±0.4	2	0.2	1.25	1.40	0.5	14			10.5	±0.4	2	0.2	1.15	1.30	0.5	
		11.0	±0.4	2	0.2	1.25	1.40	0.5	14			11.0	±0.5	2	0.2	1.15	1.30	0.5	
		11.5	±0.4	2	0.2	1.25	1.40	0.5	14			11.5	±0.4	2	0.2	1.15	1.30	0.5	
		12.0	±0.4	2	0.2	1.25	1.40	0.5	14			12.0	±0.5	2	0.2	1.15	1.30	0.5	
		12.5	±0.4	2	0.2	1.25	1.40	0.5	14			12.5	±0.4	2	0.2	1.15	1.30	0.5	
		13.0	±0.4	2	0.2	1.25	1.40	0.5	14			13.0	±0.5	2	0.2	1.15	1.30	0.5	
		13.5	±0.4	2	0.2	1.25	1.40	0.5	14			13.5	±0.5	2	0.2	1.15	1.30	0.5	
		14.0	±0.4	2	0.2	1.25	1.40	0.5	14			14.0	±0.5	2	0.2	1.15	1.30	0.5	
		15.0	±0.4	2	0.2	1.25	1.40	0.5	14			15.0	±0.5	2	0.2	1.15	1.30	0.5	
		16.0	±0.4	2	0.2	1.25	1.40	0.5	14			16.0	±0.5	2	0.2	1.15	1.30	0.5	
		17.0	±0.4	2	0.2	1.25	1.40	0.5	14			17.0	±0.5	2	0.2	1.15	1.30	0.5	
		18.0	±0.4	2	0.2	1.25	1.40	0.5	14			18.0	±0.5	2	0.2	1.15	1.30	0.5	
		19.0	±0.4	2	0.2	1.25	1.40	0.5	14			19.0	±0.5	2	0.2	1.15	1.30	0.5	
		20.0	±0.3	2	0.2	1.25	1.40	0.5	14			20.0	±0.5	2	0.2	1.15	1.30	0.5	
		23.0	±0.3	2	0.2	1.25	1.40	0.5	14			23.0	±0.5	2	0.2	1.15	1.30	0.5	
		24.0	±0.3	2	0.2	1.25	1.40	0.5	14			24.0	±0.5	2	0.2	1.15	1.30	0.5	
		25.0	±0.3	2	0.2	1.25	1.40	0.5	14			25.0	±0.5	2	0.2	1.15	1.30	0.5	
		26.0	±0.3	2	0.2	1.25	1.40	0.5	14			26.0	±0.5	2	0.2	1.15	1.30	0.5	
		30.0	±0.5	2	0.2	1.25	1.40	0.5	14			30.0	±0.8	2	0.2	1.35	1.35	0.5	
		32.0	±0.5	2	0.2	1.25	1.40	0.5	14			32.0	±0.8	2	0.2	1.35	1.35	0.5	
		35.0	±0.3 ±0.5	2	0.2	1.25	1.40	0.5	14			35.0	±0.8	.2	0.2	1.35	1.35	0.5	
		40.0	±0.5 ±0.75	2	0.2	1.25	1.40	0.5	14			40.0	±0.3	2	0.2	1.15	1.30	0.5	_
		60.0	±0.75		0.2	1.25		0.5	14			50.0	±1.2	2	0.	1.35	1.30	0.5	
		60.0	10.75	2	0.2	1.25	1.40	0.5	14			60.0	±1.2	2	0.2	1.35	1.30	0.5	

Model No J ____ Attenuation

LORAL Microsover Narda 269 268

Two-Way • Tapered • Isolated • Ultra Broadband Power Dividers

Frequency

Range

MHz

0.05 - 20

1 - 100

10 - 500

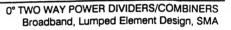
5 - 1000

PDM-20-1100 200 - 2000

Package Outline

1.1odel

Number


PDM-20-10

PDM-20-50

PDM-20-250

PDM-20-500

PDM-20 series

. 50 kHz to 2 GHz Frequency Range

• Uniform Phase and Amplitude Balance

VSWR

max.

1.3:1 1.2:1 2W max

1.3:1 1.2:1 1W max.

1.4:1 1.2:1 2W max.

2.0:1 1.5:1 2W max.

In Out

1.3:1 1.2:1

1.3:1 1.2:1

1.3:1 1.2:1

Input

3W max.

3W max.

3W max.

Power*

Multi-Octave Bandwidths

Low Insertion Loss

Phase

1* 0.5°

1. 0.5*

2°

4*

6°

Balance

Max. Typ.

1. 2*

1*

2*

3.

Insertion Loss, dB

Max Typ.

0.5 0.3

0.6 0.5

1.0 0.3

1.5 0.8

0.5 0.3

0.5 0.4

1.0 0.7 2* 1* Amplitude

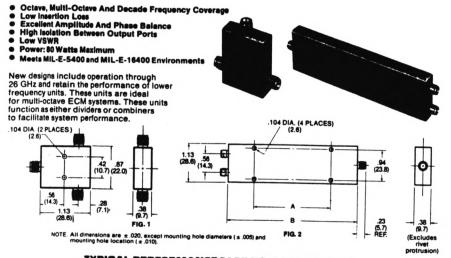
Balance

Max. Typ.

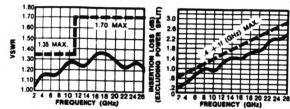
0.2 0.1

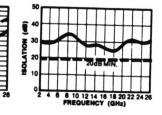
0.2 0.1

0.2 0.1


0.2 0.1

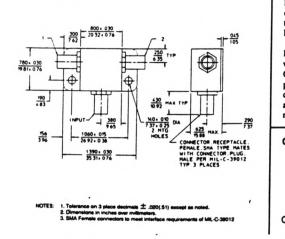
0.2 0.1


0.3 0.1


0.3

0 1

TYPICAL PERFORMANCE PART NO. 2090-6202-00


SPECIFICATIONS

PART NO.	NODEL NO.	REQUENCY RANGE (GHz)	VBWR (mes.)	IBOLATION	INSERTION LOSS dB (mas.)	UNB	LANCE	MAX.	8128, I	NCHES	we	тир
						((0)	MASE (deg.)	(wette)	A		F19.	
2090-6201-00	204928	0.5-26.0	1.35 (0.5 to 11) GHz 1.70 (11 to 26) GHz	12 (0.5 to 1) GHz 20 (1 to 26) GHz	0.4 +.15f	0.5	5.	80	9.40 (239)	11.02	2	8.0
2090-6202-00	204948	2.0-26.0	1.35 (2 to 1 i) GHz 1.70 (11 to 26) GHz	20	0.4 +.11	0.5	5.	40		4.02	2	2.9
2090-6203-00	204968	8.0-26.0	1.50 (8 to 18) GHz 1.90 (18 to 26) GHz	18	0.4 + .051	0.5	5.	20	-	-	1	1.1
2090-6204-00	204927	0.5-18.0	1.35 (0.5 to 11) GHz 1.70 (11 to 18) GHz	20 (0.5 to 3) GHz 23 (3 to 18) GHz	0.2 +.171	0.3	5	80	9.40	11.02	2	30 -8.0 226
2090-6205-00	204947	2.0-18.0	1.35 (2 to 11) GHz 1.70 (11 to 18) GHz	20 (2 to 3) GHz 23 (3 to 18) GHz	0.2 +.071	0.3	5	40		4.02	2	2.9
2090-6210-00	204967	8.0-18.0	1.50	18	0.2 +.031	0.3	5	20	-	-	,	1.1

[&]quot;To 18 GHz

Maximum input power with output loads of VSWR \leq 2.0:1. Derate to 10% of listed value when arbitrarily terminated.

Note: f is frequency in GHz.

Frequency

Performance

MHz

0.05 - 20

1 - 100

10 - 400

10 - 500

5 - 1000

500 - 1500

200 - 2000

Isolation

dB.

30 33

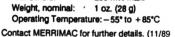
30 35

30 32

30 32

25 30

23 27


15 20

Min. Typ.

*Average Power into matched loads MERRIMAC In-Phase, Power Dividers/Combiners are available for frequencies from 10 kHz to 18 GHz, with outputs from two to sixteen and for powers up to several

kilowatts. The PDM-20 series of connectorized 2-way In-Phase Power Dividers/Combiners cover a very broad frequency range from 50 kHz to 2 GHz, using lumped element design, which provide very broad bandwidths. All units are designed to meet MIL-P-23971 requirements and can be supplied screened to meet specific military and space applications.

COMMON SPECIFICATIONS Impedance: 50 Ω nom. Internal Load Dissipation: PDM-20-1100: 125 mW max. All Others: 250 mW max.

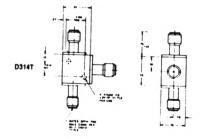
41 Fairfield Place, West Caldwell, N.J. 07006 • (201)575-1300 • FAX:(201) 575-0531 • Telex: 6853128

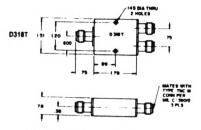
Control Components Division = 21 Continental Blvd., Merrimack, NH 03054-4343 = Tel (603) 424-4111 Fax (603) 424-6580

IN-PHASE 2-WAY SMA, N, TNC DIVIDERS, POWER

GENERAL INFORMATION

KDI/Triangle's Two-way Stripline in phase power dividers, Series YL, and D300 have excellent phase and amplitude balance. The internal resistive element is a ceramic pad and can, therefore, handle relatively high values of CW and peak power. Series YL is of Stripline construction, thereby ensuring excellent electrical and environmental performance.


GENERAL SPECIFICATIONS:


Frequency Range:	0.5-18.0 GHz
RF Impedance:	50 OHMS
RF Power:	The power handling capability for load VSWR's less than 1.50 is 1 watt CW and 1 kW peak for frequencies up to 2.0 GHz, and 400 mW CW and 0.4 kW peak for frequencies from 2.0 GHz to 18.0 GHz.
Temp. Information:	Operating temperature from - 55°C to + 85°C
Environment:	MIL-E-5400, MIL-STD-202, MIL-E-16400 MIL-STD-883 (Special request only).
Connectors:	SMA or N standard, others on request. TNC for D314T, D318T only

Notes:

1 If the frequency band of interest is narrower than that listed, it should be indicated when ordering Performance will be optimized over the band of interest and improved delivery may be provided. A special part number may be assigned.

P Output connectors are normally provided in line with input (Figures 1 &3) ress specified at time of order (Figure 2). Add "S" to part number (i.e. rt SI

KDI/triangle

ELECTRONICS 31 Farinella Drive • East Hanover, NJ 07936 • Phone: (201) 884-1423 TWX: (710) 986-8202 • FAX: (201) 884-0445

ELECTRICAL PERFORMANCE

 No.
 GHz
 YSWR
 Loss of

 Y1.18
 0.51.10
 120/115
 0.2

 Y1.19
 0.75.150
 120/115
 0.2

 Y1.23
 1.0-2.0
 120/115
 0.2

 Y1.23
 1.0-2.0
 120/115
 0.3

 Y1.23
 1.0-2.0
 120/10
 0.3

 Y1.32
 2.0-4.0
 125/120
 0.3

 Y1.44
 4.0-8.0
 130/125
 0.4

 Y1.45
 1.04.0
 4.00.0
 5.0/125

YL 56 7.0-14.0 1.40/1.35 0.5

YL-56 9.0-18.0 1.45/1.40 0.7

MULTI-OCTAVE BANDS YL-70 0.5-2.0 125/115 0.4

YL-71 1.0-4.0 1.30/1.20 0.4 YL-72 2.0-8.0 1.30/1.25 0.5 7L-74 8.0-18.0 1.50/1.40 0.8

YL 76 1.0-12.4 1.50/1.40 1.0 YL 78 2.0-18.0 1.50/1.40 1.4

 10.10
 2.04.00
 1.30/1.40
 1.4

 1.0.15
 1.70/1.30
 0.5

 1.5.2.0
 1.60/1.30
 0.5

 2.0-4.0
 1.50/1.30
 0.4

 0.0114
 4.0-8.0
 1.50/1.40
 0.5

 8.0-12.0
 1.50/1.40
 0.6
 1.50/1.40
 0.6

 12.0-16.0
 1.60/1.50/1.40
 0.6
 1.50/1.40
 0.6

POPULAR & COMMUNICATION BANDS

YL-80 0.95-1.3 1.20/1.15 0.2 YL-82 1.7-2.4 1.25/1.20 0.2

 YL-84
 3.6-4.3
 1.25/1.20
 0.3

 YL-84
 3.6-4.3
 1.25/1.20
 0.3

 YL-86
 5.7-6.5
 1.25/1.20
 0.3

 YL-88
 7.1-7.7
 1.30/1.25
 0.4

YL-90 8.0-12.4 1.35/1.30 0.5

YL 92 12.0-18.0 1.50/1.40 0.7 YL 94 14.0-16.0 1.40/1.35 0.5

UNITS WITH TYPE IN CONNECTORS: Up to 4.0 GHz multi isolation Above 4.0 GHz multiply VSWR's by 1.10, and to model no

(I

PER MIL-C-39012 3 PLS

0.8

378

TYPE THC CONNECTORS 0314T 6-16.5 1.50/1.40

2-10 0318T

100

D301M

16.0-18.5 1.70/1.60 1.2

In/Out VSWR

Range GHz

Max. Insertion Loss dB

SERIES YL D300

Balance dB

0.15 0.15

02

02

02

03

04

0.4

0 2

0 1 0.2

0.4 04

04

02 0.2 0.2

0.2

0.3

0.4

0 1 0.15

0.1

0 1

liply VSWR's by 1.05 and subtract 2.0dB from subtract 3.0dB from isolation. Add suffic "N"

C

1 N/A 9 4

5 1/4

(see DWG)

(see Dwg

(see DWG)

Out-line SMA

Phase Balance Degrees

Isolation dB

21

20

19

19

12

由

378 TYP

----B

Power Dividers

SPECIFICATIONS

FREQUENCY		VSWR		INSERTION ISOLATION	AMP	PHASE	AVERAGE*			WEIGHT		
RANGE GHz	MODEL	(Max)	Output	LOSS (Max)	dB (Min)	BAL dB (Max)	BAL Degrees (Max)		Watts	c	Oz	G
2-Way Po	ower Divi	ders				(Max)	(max)					
0.5-1.0	4311-2	1.25	1.15	0.4	22	0.2	2.0	30	20	3	1.1	3
1-2	4312-2	1.25	1.15	0.35	20	0.2	2.0	30	20	3	0.9	-
2-4	4313-2	1.30	1.20	0.4	20	0.2	2.0	30	20	3	8.0	-
44	4314-2	1.35	1.25	0.6	20	0.2	2.0	30	20	3	0.8	_
8-12.4	4315-2	1.35	1.30	0.5	20	0.2	3.0	30	10	1	0.8	
12-18	4316-2	1.40	1.35	0.7	19	0.3	6.0	30	10	1	0.8	
18-26.5	4317-2	2.00	2.00	1.0	15	0.5	12.0	30	10	1	0.8	
4-Way Po	ower Divi	ders						Ê.				
0.5-1.0	43118-4	1.45	1.30	0.9	22	0.3	3.0	30	10	1	2.9	
1-2	43128-4	1.40	1.25	0.8	20	0.3	3.0	30	10	3	2.0	
24	43138-4	1.35	1.35	0.6	20	0.3	3.0	30	10	1	2.0	
44	43148-4	1.45	1.35	0.5	20	0.3	3.0	30	20	3	2.7	
8-12.4	4315-4	1.45	1.35	0.8	18	0.4	4.0	30	10	1	2.2	
12-18	4316-4	1.5	1.4	1.5	18	0.5	6.0	30	10	1	2.2	

4

*Average Power Rating into a load VSWR of (A) 1.2 to 1, (B) 2 to 1 and (C) -VSWR

NOTE: (1) Connectors; All models provide SMA (Female) connectors except model 4317-2 which uses 3.5mm (Female) type

6.0 APPENDIX

The Appendix contains:

May 1992 list of VLBA Frequency Converter Bands and LO Frequencies List of NRAO Technical Reports, memoranda and drawings relevant to the frequency converter modules List of Converter Commercial Components VSWR Table Noise Temperature-Noise Figure Graph and Table

MODULE	BAND (FREQ RANGE) WAVELENGTH	FRONT-END FREQ RANGE	LO FREQ ¹ (Synth #1)	LO FREQ ¹ (Synth #2)	LO FREQ ² (SYNTH #3)
т10 3	1.5 (1.35 - 1.75) 20 cm	1.1 - 1.6* 1.4 - 1.9*		2.1 2.4	
т 104	2.3 (2.15 - 2.35) 13 cm	1.9 - 2.4* 2.1 - 2.6*		2.9 3.1	
T105	4.8 (4.6 - 5.1) 6 cm	4.4 - 4.9 4.6 - 5.1 4.6 - 5.1* 4.9 - 5.4*		3.9 4.1 5.6 5.9	
T106	8.4 (8.0 - 8.8) 4 cm	7.9 - 8.4 8.1 - 8.6 8.1 - 8.6* 8.4 - 8.9*	7.4 7.6 9.1 9.4		
T 107	10.7 (10.2 - 11.2) 2.8 cm	10.1 - 10.6 10.4 - 10.9 10.6 - 11.1* 10.9 - 11.4*	9.6 9.9 11.6 11.9		
T108	15/ (14.4 - 15.4) 2 cm	11.9 - 12.4 $12.1 - 12.6$ $12.4 - 12.9$ $12.6 - 13.1$ $12.9 - 13.4$ $13.1 - 13.6$ $13.4 - 13.9$ $13.6 - 14.1$ $13.9 - 14.4$ $14.1 - 14.6$ $14.4 - 14.9$ $14.6 - 15.1$ $14.9 - 15.4$ $12.9 - 13.4*$ $12.4 - 12.9*$ $12.6 - 13.1*$ $12.9 - 13.4*$ $13.1 - 13.6*$ $13.4 - 13.9*$ $13.6 - 14.1*$ $13.9 - 14.1*$ $14.1 - 14.6*$ $14.4 - 14.9*$ $14.6 - 15.1*$ $14.9 - 15.4*$	11.4 11.6 11.9 12.1 12.4 12.6 12.9 13.1 13.4 13.6 13.9 14.1 14.4 12.9 13.1 13.4 13.6 13.9 14.1 14.4 13.6 13.9 14.1 14.4 13.6 13.9 14.1 15.1 15.4 15.6 15.9		
T106	23 (21.7 - 24.1) 1.3 cm	21.5 - 22.0 21.8 - 22.3 22.0 - 22.5 22.3 - 22.8 22.5 - 23.0 22.8 - 23.3 23.0 - 23.5 23.3 - 23.8 23.5 - 24.0 23.8 - 24.3 21.5 - 22.0	8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9		12.1 12.4 12.6 12.9 13.1 13.4 13.6 13.9 14.1 14.4 11.9

MAY 1992 LIST OF VLBA FREQUENCY CONVERTER BANDS AND LO FREQUENCIES ALL FREQUENCIES IN GHZ

		21.7 - 22.2 22.0 - 22.5 22.2 - 22.7 22.5 - 23.0 22.7 - 23.2 23.0 - 23.5 23.2 - 23.7 23.5 - 24.0 23.7 - 24.2	9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1		12.1 12.4 12.6 12.9 13.1 13.4 13.6 13.9 14.1
τ110	43 (41.0 - 45.0) 0.7 mm	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		7.4 7.4 7.4 7.4 7.6 7.6 7.6 7.6 7.6 7.6 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 8.1 8.1 8.1 8.1 8.1	10.9 11.1 11.4 11.6 11.9 12.1 10.9 11.1 11.4 11.6 11.9 12.1 10.9 11.1 11.4 11.6 11.9 12.1 10.9 11.1 11.4 11.6 11.9
Nataa		44.9 - 45.4		8.1	12.1

Notes:

* Indicates that the IF spectrum is reversed.

1 Synthesizers 1 and 2 are used as LO sources for the Frequency Converters. 2 Synthesizer 3 provides the first LO for the 23 and 43 GHz Front-Ends, see the T106 and T110 descriptions.

For the 23 GHz band, the first IF is 9.4 - 10.1 GHz, T106 converts this to the Standard IF band. For the 43 GHz band, the first IF is 7.9 - 8.9 GHz, T110 converts this to the Standard IF band.

List of NRAO Technical Reports, memoranda and drawings relevant to the frequency converter modules

VLBA Technical Report No. 15 (Rev A), AN INTRODUCTION TO THE VLBA RECEIVING AND RECORDING SYSTEM by A. R. Thompson, March 10, 1993

Technical Manual draft for CONVERTER MODULES, by Erich Schlect, undated.

VLBA Technical Report No. 5 (Rev. June 1990) LIST OF CURRENT MONITOR AND CONTROL POINTS (JUNE 15, 1990) by D. S. Bagri

VLBA Technical Report No. 2 MODEL F103, 1.5 GHz CRYOGENIC FRONT-END R. Norrod, September 1986

VLBA Technical Report No. 10 MODEL F104, 2.3 GHz CRYOGENIC FRONT-END R. Norrod, M. Masterman June 3, 1991

VLBA Technical Report No. 3 MODEL F105, 4.8 GHz CRYOGENIC FRONT-END R. Norrod, December 1986

VLBA Technical Report No. 11 MODEL F110, 43 GHz CRYOGENIC FRONT-END R. Norrod, M. Masterman March, 1992

D58001K001, Electronic System Block Diagram (Antenna Electronics), Rev E

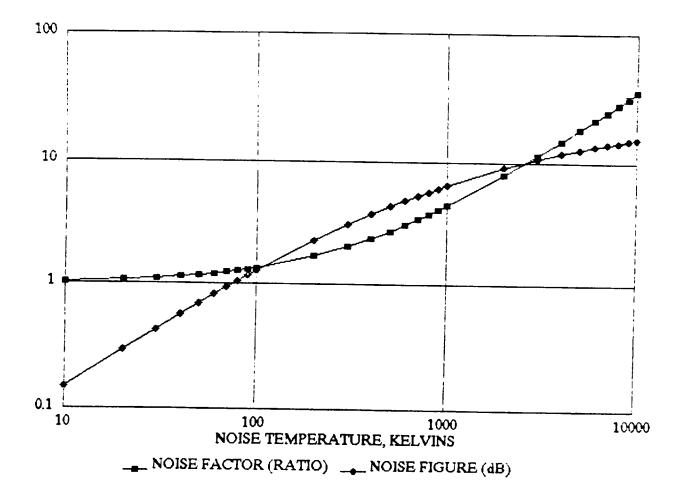
VLBA Electronics Memo No. 30, I.F. SIGNAL PROCESSING: PRELIMINARY SPECIFICATIONS by Larry R. D'Addario, 15 November 1984

VLBA Electronics Memo No. 39, DYNAMIC RANGE AND INTERFERENCE THRESHOLDS IN THE FRONT-END AND IF UNITS by A. R. Thompson and E. Schlecht, March 1, 1985

VLBA Electronics Memo No. 62, Notes on Gain Distribution in the VLBA Front-End and Converter Systems, by Erich Schlecht, February 14, 1986

List of Converter Commercial Components

DATA SHEET ITEMS FROM T101 - T110, 610 FLTR, AMP/ATN & AMP/DIV PARTS LISTS


Company	Used In:	Part No.	Component Function
ANZAC	610 FLTR	DS-313	POWER DIVIDER
11	AMP/DIV		"
AVANTEM	T107		
AVANTEK	T107 T105	DBX-158M-1 DBX-72M	MIXER
	1105	UDA 12M	:
AVANTEK	610 FLTR	UTO-1012	AMPLIFIER
14	61C FLTR	GPD - 1003	
11 14	610 FLTR	UTO-509	н
	LO AMP/DET	UTO-2013	44
	LO AMP/DET T107	UTO-2321 AFT-12633-1	94 81
		ATT 12033 1	-
AVANTEK	AMP/ATN	TC-4	CASE
COMPAC	AMP/DIV	R-51120-075-1	CASE
CUSTON COMPANT	LO AMP/DET	CCI15BD-4EQ (BD-4)	BACK DIODE DET
DITOM	T103	DF1170	ISOLATOR
44	T104	D31-2040-2	11
	T105	D31-4080-2	н
# 11	T106	D3I-7011-2	44
	т108 т110	D31-8016-2	11 10
	1110	D31-7011-2	**
INNOWAVE	T108	114515-1015	ISOLATOR
KD1/ENGLEMAN	T103	D307M	POWER DIVIDER
н	T104	D307M	
11	T105	D310M	44
K&L	T102	4B120-611/30-0/0	
H	T101	3B120-827/50-0P/0	FILTER
	T101	68120-327/x30-0/0	
н	T103	68120-750/X550-0/OP	н
10	T104	3B250-3000/600-0/0P	
11 14	T104	68120-750/X550-0/0P	ы
90 P1	T105	3B250-4100/1300-OP/0	
	T105 T106	68120-750/X550-0/0P	14 12
	T106	2FV-8400/2500-0/0P 68120-750/X550-0/0P	11
и	T106	6FV-8400/X960-0/0P	
	T107	6FV-10700/x1200-0/0	"
81	T107	68120-750/550-0/0P	84
88	T108	6B120-750/X550-0/0P	4
H	T108	6ED10-13500/U5000-0P	14
14 14	T108	6FV10-15205/R863-OP	44
	T108 T108	9FV10-12405/R1157-OP	14 14
н	T108	9FV10-13405/R1160-OP 9FV10-14405/R1162-OP	
	T110	2FV-8400/2500-0/0P	**
	T110	6B120-750/X550-0/0P	u
H	610 FLTR	3B120-111/5.5-P/P	"
41 80	610 FLTR	5B120-111/5.5-P/P	11
	610 FLTR	8851-11/4-P/P	11
MERRIMAC	T102	PDM-20-500	POWER DIVIDER
MINI-CIRCUITS	610 FLTR	MCL-TFM-4H	MIXER

MITEQ	T104	AMF-28-2830-18P	AMPLIFIER
1	T105	AMF-28-4156	II II IEK
11			
	T106	AMF-28-7494-15P	14
14	T110	AMF-2B-7494-15P	11
NARDA	T101	4772-2	ATTENUATOR
	T103	N	II II
и	T104	14	11
11			
	T102	4772-3	11
11	T104	н	n
63	T102	4773-5	**
	T105	н	18
60	T102	4778-16	50
64	T106	4110 10 N	
*1			
	T106	4778-12	10
11	T110	ы	40
••	T106	4778-3	40
60	T107	4778-9	14
NARDA	T107	4315-2	POWER DIVIDER
		4515 E	POWER DIVIDER
OHNI-SPECTRA	т104	1507 7/01 00	
H		4503-7491-00	.141 MALE OSP CONN
	T103		11
11	T102		14
6 3	T101	н	
••	T105	88	18
	T106	88	
	T110	18	84
H	T101	2084-0000-00	
	T102	2004-0000-00	FEED-THRU SMA
H			
	T104		и
84	T105	11	н
н	T 106	H	10
10	T101	2993-6005	PLUG-PLUG ELBOW
	T102	2081-0000-00	
u	T106	2081-0000-00	PLUG-PLUG SMA ADAPT
u			
	T106	2002-5015-00	SMA FEMALE
41	T108	11	
11	T110	N	
83	T106	2007-5054-00	PLUG-PLUG RT ANGLE
**	T108	4503-7985-00	OSP PLUGS
	T108	2007-5055-02	
	610 FLTR		SHA CONNECTORS
м		2052-1201-00	SHA HOUNT JACK
	610 FLTR	2062-0000-00	SMA PC BOARD CONN
н	610 FLTR	2084-0000-00	SMA JACK-JACK
OMNI-SPECTRA	T108	2090-6210-00	POWER DIVIDER
PRECISION TUBE	T101	AA50141	.141 SEMI-RIGID
64	T104	11	
	T105	11	
u .			42
	T106		86
	T107	11	•
М	T110		14
PRECISION TUBE	T107	AA50085	.085 SEMI-RIGID
54	T108		"
11	610 FLTR	11	11
Q-Bit	610 FLTR	98H-160	14
- 010	OID ILIK		••
RLC	T 108		
RLU		SR-TC-R-D	TRANSFER SWITCH
	T103	11	14
SMT	т108	s90-1172	AMPLIFIER
SHT	T108 T108	890-1172 891-1279	AMPLIFIER

SOLITRON	T102	8018-6005	50 OHM TERMINATION
14	T101	16	И
н	T103	10	14
0			
	T104	10	н
19	T105	10	11
11	T106		н
61		14	14
	T108		
10	т110	10	44
н	T110	2902-6001	.141 CABLE PLUG, OMNISPECTRA ?
	T101	н	H
u		2007-4005	
	T104	2993-6005	PLUG-PLUG SMA ELBOW
30	T103	84	11
н	T105	11	и
88	T 103	H	u
	T104	**	44
	T105	64	N
H	т106	н	11
34	T101	2993-6001	PLUG-PLUG SMA ADAPT
84	T110		
11			
	T107	84	н
м	T108	84	н
м	T107	2906-6002	.086 CABLE PLUG
н	T108	n	
		2042 (202	
	T110	2912-6001	SMA RIGHT ANGLE PLUG
14	AMP/DIV	2950-6200	SMA CONNECTOR
SVSNTEK	T105	DBX-72M-1	MIXER (see Avantek DBX-72M)
			HINCK (SEE AVAILER DBA-12M)
TRANCCO	T102	000070100	
TRANSCO	T102	909C70100	SPDT SWITCH
	T106	••	81
н	T110	11	н
TRANSCO	T108	1/6070600	(007.000.000
TRANSCO	1100	146C70600	4PST SWITCH
TRANSCO	T101	710C70100	TRANSFER SWITCH
••	T104	11	N
н	T105	98	
и		0	••
	T106		
11	T107	11	88
61	T110	0	H
н			
TRIANGLE	T106	YL-56	POWER DIVIDER
11	T110	H	N
VARI-L	T104	DBM1150H	MINER
TARI L	1104	DBATISON	MIXER
		- · · · · · ·	
VIRTECH	T107	V31-8012-2	ISOLATOR
14	т 107	V31-8012-3	II
WATKINS-JOHNSON	T103	M2TC	
H			MIXER
	T106	M77C	14
H	T110	31	11
68	T108	8M0C	11
WATKINS-JOHNSON	610 EL TO	440 4	
		A18-1	AMPLIFIER
H	AMP/ATN	H4	f4
	610 FLTR	A19	11
	AMP/ATN	41	44
	AMP/DIV	JA .	84
WATKINS-JOHNSON	AMP/ATN	G1	ATTN/LEVEL DET

THE EFFECT OF VSWR ON TRANSMITTED POWER

VSWR	VSWR (dB)	RETURN LOSS (dB)	TRANS. LOSS (dB)	VOLT. REFL. COEFF.	POWER TRANS. (%)	POWER REFL. (%)	VSWR	VSWR (dB)	RETURN LOSS (dB)	TRANS. Loss (db)	VOLT. REFL. COEFF.	POWER TRANS. (%)	POWER REFL. (%)
1.00	.0	x 0	.000	.00	100.0	.0	1.64	4.3	12.3	.263	.24	94.1	5.9
1.01	.1	46.1	.000	.00	100.0	.0	1.66	4.4	12.1	.276	.25	93.8	6.2
1.02	.2	40.1	.000	.01	100.0	.0	1.68	4.5	11.9	.289	.25	93.6	6.4
1.03	.3	36.6	.001	.01	100.0	.0	1.70	4.6	11.7	.302	.26	93.3	6.7
1.04	.3	34.2	.002	.02	100.0	.0	1.72	4.7	11.5	.302	.20	93.0 93.0	7.0
1.05	.4	32.3	.003	.02	99.9	.1	1.74	4.8	11.4	.329	.27	92.7	7.3
1.05	.5	30.7	.003	.02	99.9	.1	1.76	4.9	11.2	.342	.28	92.4	7.6
1.07	.6	29.4	.004	.03	99.9	.1	1.78	5.0	11.0	.356	.28	92.1	7.9
1.08	.7	28.3	.005	.04	99.9	.1							
1.00	.7	27.3	.008	.04	99.8	.2	1.80	5.1	10.9	.370	.29	91.8	8.2
							1.82	5.2	10.7	.384	.29	91.5 01.2	8.5
1.10	.8	26.4	.010	.05	99.8	.2	1.84	5.3	10.6	.398	.30	91.3	8.7
1.11	.9	25.7	.012	.05	99.7	.3	1.86	5.4	10.4	.412	.30	91.0	9.0
1.12	1.0	24.9	.014	.06	99.7	.3	1.88	5.5	10.3	.426	.31	90 .7	9.3
1.13	1.1	24.3	.016	.06	99.6	.4	1.90	5.6	10.2	.440	.31	90.4	9.6
1.14	1.1	23.7	.019	.07	9 9.6	.4	1.92	5.7	10.0	454	.32	90.1	9.9
1.15	1.2	23.1	.021	.07	99.5	.5	1.94	5.8	9.9	.468	.32	89.8	10.2
1.16	1.3	22.6	.024	.07	99.5	.5	1.96	5.8	9.8	.483	.32	89.5	10.5
1.17	1.4	22.1	.027	.08	99.4	.6	1.98	59	9.7	.497	.33	89.2	10.8
1.18	1.4	21.7	.030	.08	99.3	.7	2.00	6.0	9.5	.512	.33	88.9	11.1
1.19	1.5	21.2	.033	.09	99.2	.8	2.50	8.0	7.4	.881	.43	81.6	18.4
1.20	1.6	20.8	.036	.09	99.2	.8	3.00	9.5	6.0	1.249	.50	75.0	25.0
1.20	1.7	20.8	.030	.10	99.2 99.1	.8 .9	3.50	10.9	5.1	1.603	.56	69.1	30.9
1.21	1.7	20.4	.039	.10	99.0	1.0	4.00	12.0	4.4	1.938	.60	64.0	36.0
1.22	1.8	19.7	.045	.10	98.9	1.1	1						
1.23	1.9	19.7	.040	.10	98.9	1.1	4.50	13.1	3.9	2.255	.64	59.5	40.5
							5.00	14.0	3.5	2.553	.67	55.6	44.4
1.25	1.9	19.1	.054	.11	98.8	1.2	5.50	14.8	3.2	2.834	.69	52.1	47.9
1.26	2.0	18.8	.058	.12	98.7	1.3	6.00	15.6	2.9	3.100	.71	49.0	51.0
1.27	2.1	18.5	.062	.12	98.6	1.4	6.50	16.3	2.7	3.351	.73	46.2	53.8
1.28	2.1	18.2	.066	.12	98.5	1.5	7.00	16.9	2.5	3.590	.75	43.7	56.2
1.29	2.2	17.9	.070	.13	98.4	1.6	7.50	17.5	2.3	3.817	.76	41.5	58.5
1.30	2.3	17.7	.075	.13	98 .3	1.7	8.00	18.1	2.2	4.033	.78	39.5	60.5
1.32	2.4	17.2	.083	.14	98.1	1.9	8.50	18.6	2.1	4.240	.79	37.7	62.3
1.34	2.5	16.8	.093	.15	97.9	2.1	9.00	19.1	1.9	4.437	.80	36.0	64.0
1.36	2.7	16.3	.102	.15	9 7.7	2.3	9.50	19.6	1.8	4.626	.81	34.5	65.5
1.38	2.8	15.9	.112	.16	97.5	2.5	10.00	20.0	1.7	4.807	.82	33.1	66.9
1.40	2.9	15.6	.122	.17	97.2	2.8	11.00	20.8	1.6	5.149	.83	30.6	69.4
1.42	3.0	15.2	.133	.17	97.0	3.0	12.00	21.6	1.5	5.466	.85	28.4	71.6
1.44	3.2	14.9	.144	.18	96.7	3.3	13.00	22.3	1.3	5.762	.86	26.5	73.5
1.46	3.3	14.6	.155	.19	96.5	3.5	1						
1.48	3.4	14.3	.166	.19	96.3	3.7	14.00	22.9	1.2	6.040 6.201	.87	24.9 22.4	75.1
							15.00	23.5	1.2	6.301	.88	23.4	76.6
1.50	3.5	14.0	.177	.20	96.0 05.7	4.0	16.00	24.1	1,1	6.547 6.790	.88	22.1	77.9
1.52	3.6	13.7	.189	.21	95.7	4.3	17.00	24.6	1.0	6.780	.89	21.0	79.0
1.54	3.8	13.4	.201	.21	95.5	4.5	18.00	25.1	1.0	7.002	.89	19.9	80.1
1.56	3.9	13.2	.213	.22	95.2	4.8	19.00	25.6	.9	7.212	.90	19.0	81.0
1.58	4.0	13.0	.225	.22	94.9	5.1	20.00	26.0	.9	7.413	.90	18.1	81.9
1.60	4.1	12.7	.238	.23	94.7	5.3	25.00	28.0	.7	8.299	.92	14.8	85.2
1.62	4.2	12.5	.250	.24	94.4	5.6	30.00	29.5	.6	9.035	.94	12.5	87.5

Noise Temp. (Kelvins)	Noise Fig. (Ratio)	Noise Fig. (dB)	Noise Temp. (Kelvins)	Noise Fig. (Ratio)	Noise Fig. (dB)
0	1.00	0.00	600	3.07	4.87
10	1.03	0.15	700	3.41	5.33
20	1.07	0.29	800	3.76	5.75
30	1.10	0.43	900	4.10	6.13
40	1.14	0.56	1000	4.45	6.48
50	1.17	0.69	2000	7.90	8.97
60	1.21	0.82	3000	11.34	10.55
70	1.24	0.94	4000	14.79	11.70
80	1.28	1.06	5000	18.24	12.61
90	1.31	1.17	6000	21.69	13.36
100	1.34	1.29	7000	25.14	14.00
200	1.69	2.28	8000	28.59	14.56
300	2.03	3.08	9000	32.03	15.06
400	2.38	3.76	10000	35.48	15.50
500	2.72	4.35			