
VLBA Technical Report No. 46
THE VLBA CORRELATOR

DIGITAL FILTER
VOLUME 1 of 2

Joseph Greenberg

February 1, 1999

firmanvl.doc Microsoft Word not under SCCS control

Master file stored in /corrdwgs/manuals/firman/SCCS
(where the SCCS file would have been stored)

2 The VLBA Correlator Digital Filter Volume I

This page intentionally left blank

The VLBA Correlator Digital Filter Volume I 3

TABLE OF CONTENTS
TABLE OF CONTENTS.. 3
TABLE OF FIGURES.. 6
1... Introduction.. 7

1.1 Functions of the FIR Filter Card...7
2 The FIR Card...7

2.1 Top Level FIR Block Diagram Description..7
2.1.1 Reading Data from the LTA...7
2.1.2 Processing the LTA Data...8

3 Overview of the FIR Card...................................... 12
3.1 Data Rates..12

3.1.1 LTA to FIR Data Rates..12
3.1.2 FIR Output Data Rate...12

3.2 Basic FIR Program Loop...13
3.3 Straight Thru Mode..14
3.4 Backend Buffer..14
3.5 Subarrays.. 14
3.6 Validity Counts..15

3.6.1 Normalizing the Data, Using Validities...16
3.6.2 The Validity Ram...16

3.7 Tap Weights.. 16
3.8 Clear Accumulator (CLAC)...17
3.9 Microprocessor Interface...17

3.9.1 Microprocessor Loading of Fifos...17
3.9.2 Microprocessor DRAM Address Generation...18

3.10 Dram Address Generation..18
3.11 DRAM Printed Circuit Boards...19
3.12 Backend Address Generation...19
3.13 Backend Interface via the Ironies Board...20

3.13.1 Hardware Interface Between the FIR and the Backend..20
3.13.2 Backend Data Transfer Example..22

4 Inputting and Filtering Validities................................. 22
4.1 Validities Introduction..22
4.2 Filtering Validities...23

5 FIR Sequencer.. 24

4 The VLBA Correlator Digital Filter Volume I

5.1 Sequencer Overview.. 24
5.2 LTA Interface to the Sequencer..24
5.3 FIR Program Counter... 24
5.4 Main Loop Structure... 25
5.5 Tasks for the Sequencer to Do Broken up into HCB Tasks...25
5.6 How the Sequencer Tasks are Implemented....... .. 25
5.7 Detailed Sequencer Main Filter Loop Structure...265.7.1 PROM Addressing Structure... 265.7.2 The Idle Loop.. 275.7.3 The Main Loop.. 275.7.4 DRAM Addressing...275.7.5 Additional Signals on 103 ldl4.. 295.7.6 For More Detail Than Shown on 103 ldl4... 30

6 FIR Microprocessor Software....................................30
6.1 Brief Descriptions of the Software Modules...306.1.1 MASTER. ASM... 316.1.2 MONITOR. ASM... 316.1.3 ROMHCB.ASM and RAMHCB.ASM..316.1.4 TEST.ASM and RAMTEST.ASM... 316.1.5 RAM. ASM..316.1.6 HELP. ASM...32
6.2 Microprocessor Interrupt Structure...32

7 FIR PAL Descriptions.. 32
7.1 PAL File Locations...32
7.2 F1RPAL1 7 Bit Modulus Counter PAL...32
73 F1RPAL2A & 2B Baseline and Result Count Switch...34
7.4 FIRPAL3A&B&C 8to lM uxP A L s..35
7.5 FIRPAL4A Data Crossbar... 37
FIRPAL5 Address Multiplexer... 38
7.7 FIRPAL6B Ironies.. 39
7.8 FIRPAL7 Sequencer.. 40
7.9 FIRPAL8 CAS... 41
FIRPAL9A & B VME BL & Subarray Register / ACK Counter..42
FIRPAL10 Clear Accumulator (CLAC)............... ..43
7.12 FIRPAL11 HCB Control.. 43
7.13 FIRPAL12 Delay beLAST.. 44

8 File Locations,..44
9 Software for Exercising the FIR.................................. 45

9.1 firSST.. 45

9.2 .. 45
9.3 bldbsln..45
9.4 firRun...4^
9.5 Backend Access...4?

10 Transition Module for the Ironies Card.............................48
11 The Ironies Card...48

11.1 Ironies Hardware Description..48
11.2 Ironies Software Description..48

11.2.1 * irFirRead(firstbsln,nrbslines,nrresults,subarray)..48
11.2.2 irReset()..48
11.2.3 irStartDmaO..11.2.4 Other Ironies Control Words..49

12 The FIR Test Fixture..SO
12.1 Introduction..50
12.2 FIR Test Fixture Control Logic..51
12.3 FIR Test Fixture Wiring...51
12.4 Using the FIR Test Fixture...51

13 Troubleshooting the FIR..................................... SI
13.1 Microprocessor Based Tests...51

13.1.1 Rom Based Tests..51
13.1.2 Microprocessor RAM based tests...51

13.2 Tests via the Real Time System..52
13.2.1 firTestTaps..52
13.2.2 firTestRRLd... 52
13.2.3 firSST...52
13.2.4 firValSST..52
13.2.5 firRun..53
13.2.6 hcbTestLtaFir...53

13.3 How to Read an LTA Baseline Via the FIR..53
13.3.1 How to Read an Fir Baseline..53
13.3.2 How to Read LTA Baselines via the FIR...53

APPENDIX I FIR HCB Protocol.................................... 57
APPENDIX II FIR Memory Allocations.............................. 67
APPENDIX III TRW TMC3210 CMOS Floating Point Divider............... 71
APPENDIXIV Ironies IV-3272-PIO Parallel Interface Daughter Board.......... 73

The VLBA Correlator Digital Filter Volume I 5

. 8

. 9
15
25
33
34
35
36
37
38
38
39
40
41
42
43
44
44
62
64
65

The VLBA Correlator Digital Filter Volume I

TABLE OF FIGURES
1 Basic FIR Structure..................................
2 1031d38 Tap Weights.................................
3 FIR Subarray Example................................
4 Backend Result Ram Loading...........................
5 The Seven Bit Modulus Counter Pal....................
6 Baseline and Result Count Switch from Block Diagram...
7 The 8 to 1 MUX PAL.................................
8 8 to 1 MUX PAL for Bit 9............................
9 The DRAM Data Crossbar PAL..........................
10 Address Mux PAL Description........................
11 Address MUX Portion of the Block Diagram...........
12 The Ironies Handshake PAL Description..............
13 The Sequencer Control PAL Description..............
14 The CAS Handling Pal...............................
15 VME Baseline and Subarray Register / ACK Counter PAL
16 The CLAC PAL Logic.................................
17 Lower Center of Backend Block Diagram, 1031d07.....
18 FIR Oread Drawing Menu.............................
19 HCB21 Flowchart.....................................
20 LDTWBYSA Flowchart..................................
21 Tic Timing...

The VLBA Correlator Digital Filter Volume I 7

1 Introduction

1.1 Functions of the FIR Filter Card

The FIR Filter Card (FIR) has two main functions. In normal operation, the
FIR is an interface between the LTA (Long Term Accumulator) and the VME system. In
this case, the FIR reads results from the LTA and transfers them unaltered to the
VME system. Alternatively, the FIR can be operated as a Finite Impulse Response
Filter that filters the data from the LTA before passing it on to the VME system.
The primary purpose of this filtering is to reduce the output data rate while
retaining fringe frequency response.

The interface from the FIR to the VME system is by way of a commercial DMA
controller card installed in the VME chassis. This is the Ironies IV-3272 card
with the IV-3272-PIO Parallel I/O Daughter Board installed. Signals between the
FIR and the Ironies are buffered on the Transition Module for Ironies IV-3272, NRAO
schematic drawing number 56000L044 (Oread file name L044D01.SCH). This transition
module is located in the rear section of the VME chassis, with the other system
transition modules.

Each spectral point, of each baseline requested, is filtered. The data
streams are filtered in time, where one unit of time is one integration period.
The minimum LTA integration period is 131 ms.

2 The FIR Card

2.1 Top Level FIR Block Diagram Description

For the following discussion, refer to 1031d25.sch in Volume II, the Top Level
FIR Block Diagram. This diagram shows the overall data and address flow in the
FIR.

2.1.1 Reading Data from the LTA

The LTA is read out, one complex result at a time. A complex result consists of
two, 32 bit IEEE floating point numbers, real and imaginary. A 19 bit address is
supplied to the LTA. The address consists of an eight bit baseline (0-255), and an
eleven bit result (0-2047).

The FIR operates in a batch mode, in that it is given a list of instructions to
process every 131 msec. Once the instructions are processed, the FIR is idle,
until given more work. The instructions are queued up in Fifos on the FIR.

An instruction consists of the following;

The LTA baseline to be read.
The 'modulus' which tells how many results are in the baseline.
The 'tap weight index' telling which tap weights to use.
The 'stoploop bit' signaling the end of the list of baselines.
The 'DRAM baseline' specifying the FIR memory baseline to place the results
in.

The modulus controls a programmable counter, to count out the number of results
assigned to that baseline. This eleven bit result field becomes part of the
address to the LTA. A sequencer controls the sending of the addresses from the
FIFO to the LTA, along with a RQSTSTB\ signal to request reading the LTA. The IEEE
complex results from the LTA are strobed into an FIR input fifo, by the signal

8 The VLBA Correlator Digital Filter Volume I

FIRSI\. See HCB Function 16, LDFIFOS, in Appendix I, the HCB Protocol, for more
details.

2.1.2 Processing the LTA Data

2.1.2.1 Straight thru Mode

The simplest mode is Straight thru Mode. The data is passed straight thru
the 29C327 Floating Point Chip (FPC). This is accomplished by setting the tap
weights equal to one. The output of the FPC is captured in the Snapshot Register.
The Snapshot Register output is transferred to the Output Buffer. The Output
Buffer is a double buffer in DRAM, labeled R8,I8,R9,I9 on the diagram. Each half
of the Output Buffer has storage for 128 baselines of 2048 results each. Depending
on the state of BLMSB, each baseline can be broken in half to form two baselines of
1024 results, providing storage for 256 baselines of 1024 results each.

The address for writing into the Output Buffer is generated as follows. The
DRAM Baseline FIFO supplies the baseline number, and the control bit, BLMSB.
BLMSB=1 for 256 baselines and 1024 results. BLMSB=0 for 128 baselines and 2048
results. The result portion of the address comes from the same counter that
generated the result address to the LTA. A FIFO delays the result field for
timing. The Output Buffer address comes from a multiplexer, which chooses the
correct address source. The opposite half of the double buffered Output Buffer is
read by the Real Time System (RTS). This is done via the Ironies Card. The Output
buffer is read into a FIFO for timing purposes. The Ironies Card drains the FIFO.
This will be described in more detail in Section 11.

2.1.2.2 Filter Mode
Figure 1 presents an overview of how the FIR digital filter works.

Figure 1 Basic FIR Structure

The VLBA Correlator Digital Filter Volume I 9

Each input data point is multiplied by eight distinct tap weights. A
running sum of these products is stored in a distinct ram. This is done for all
the results of all the baselines being processed in the 131 ms time tic. The eight
ram sections correspond to RO/IO through R7/I7 on the right edge of the block
diagram, 1031d25.sch.

Actually, the tap weights 0 through 7 are reloaded from the microprocessor
for each time tic. This reloading allows different values of tap weights to be
used each tic. For an N tap filter, the N tap weight would be rotated through in N
tics. After N products have been summed in ram, the value can be read out as the
filtered result. After that, the CLAC signal clears the accumulator and the
process repeats. Notice the data rate can be reduced, since data is only output
every N tics. By having the process going on concurrently in 8 ram banks, with the
tap weights used staggered among the ram banks, we multiply the output data rate by
8. Thus, the decimation factor is equal to N/8. The decimation factor is the
amount the data rate has been reduced, and is shown below for each value of N.
N tap Filter Decimation Factor

8 1
16 2
32 4
64 8

M611 F6K BACH aiWXKKAV, fH BKF W T BHLV I ? » WEI flN Ti i
X N T I M S T Z » A SZV K N DUMP T Z M B .T A P F X L 7 E R

> B C 9 A T S T I C COUNT
RAMC r a m ; RAMS RAM3 RAM4 RAMS RAM* RAM?

- REACY r « t O U T P U T

IH P C T S T T 2 S
I N P U T 5 » T 2 «

X S H T S O P X X T S R S S T P O R S O tA K M Y S .

N P U T 3 0 T

V LB A C O RR E L A T O R P M J t C T

Figure 2 1031d38 Tap Weights
L031d38.sch here shows the tap weights used for N=8, 32, and N=64.

For the 8 tap filter on the right, each ram uses tap weights TO through T7
over eight tics. Notice the staggering of tap weights between rams. When each ram
has had the data points multiplied by T7 added in, then that ram's data is ready
for output, as indicated by the *. After the initial eight tics, there is data
output every tic.

10 The VLBA Correlator Digital Filter Volume I

For the 32 tap filter on the left, ramO shows the rotation of TO through
T31. The * at T31 indicates the summation is ready for output. In Ram 1, we see
the tap weights occurring 4 tics later. The next point output would be from Ram 1
when it gets to T31. This yields a decimation by four.

The factor LI is the tics per dump. For simplicity in the above
explanation, 1 tic per dump was assumed. However, LI=2 or LI=4 are allowed. For
LI=2, baselines are processed every other 131 ms tic. The basic batch cycle of the
FIR is always 131 ms. However, we can do different baseline lists each 131 ms, to
give an effective LI of 2 or 4. Alternatively, the FIR could be idle for some of
the tics. The batch nature of the FIR allows the RTS full control of the work load
distribution to the FIR. The RTS must be careful not to give the FIR more work
than can be done in 131 ms.

The following table shows an example of distributing the FIR workload when
there are multiple subarrays.

SUBARRAY EXAMPLE:

SUBARRAY 0 FILTERED THRU AN 8 TAP FILTER
16 BASELINES, DUMPED EVERY 131 MS.
16*2048 RESULTS*8 BYTES /.131 SEC = 2 MBYTES/SEC

SUBARRAY 1 IN STRAIGHT THRU MODE
136 BASELINES, DUMPED EVERY 20 * 131 MS.
136*2048 RESULTS*8 BYTES /20*.131 SEC =0.85 MBYTES/SEC
DUMP 6 OR 7 BASELINES PER CYCLE

4 MBYTES/SEC AVAILABLE FROM LTA. VS (2+0.85) MBYTES/SEC NEEDED
DUMP SUB 0 BASELINES 0-15
DUMP SUB 1 BASELINES 0-5
DUMP SUB 0 BASELINES 0-15
DUMP SUB 1 BASELINES 6-10
DUMP SUB 0 BASELINES 0-15
DUMP SUB 1 BASELINES 11-16
DUMP SUB 0 BASELINES 0-15
DUMP SUB 1 BASELINES 17-23
DUMP SUB 0 BASELINES 0-15
DUMP SUB 1 BASELINES 24-30
DUMP SUB 0 BASELINES 0-15
DUMP SUB 1 BASELINES 31-35
DUMP SUB 0 BASELINES 0-15
DUMP SUB 1 BASELINES 36-42
DUMP SUB 0 BASELINES 0-15 OUTPUT INITIAL FILTERED SUB0 DUMP
DUMP SUB 1 BASELINES 43-49

2.1.2.2.1 Tap Weight Ram Loading
Return to 1031d25.sch in Volume II, the Top Level Block Diagram. The Tap

Weight Ram is the 2Kx32 Ram in the center of the drawing. The tap weights are
loaded into the ram via HCB Function 10, DWNLDTAPS (Refer to Appendix I, the HCB
Protocol). The tap weights are stored as 32 bit IEEE floating point numbers. They
are written via the Microprocessor Write register, which parallels the data path
from the LTA. The data goes, via the FIFO, to the tap weight ram.
The 11 bit address to the tap weight ram has the 4 msb's pulled high. In the
remaining 7 bits, there is a 4 bit Tap Weight Index(TWI). This allows 16 different
versions of the tap weights to be stored in the ram at once. The RTS could load a
version of the tap weights, in a non-active TWI ahead of time. A 3 bit address

The VLBA Correlator Digital Filter Volume I 11

from the sequencer chooses among the eight active tap weights. This same address
bus is used for reading the tap weights when the filter is active.

2.1.2.2.2 The CLAC Ram
The Clear Accumulator (CLAC) Ram shares its address bus with the 7 active

bits of the Tap Weight Ram. It is also loaded from the microprocessor.
The ram provides these three control bits:

CLAC - Controls an instruction to the floating point chip, to zero the ram
accumulator contents, coincident with the TO tap weight.

SNAPCE\ - Snapshot Register Clock enable causes the Snapshot Register to capture
the data which is ready for transfer to the output buffer. That is the data which
has the complete summation of tap weights times data points.

SNAPOE\ - Snapshot Register Output Enable puts the Snapshot Register stored data on
the bus for transfer to the Output Buffer.

2.1.2.2.3 The DRAM Address Select Multiplexer
The address multiplexer provides the addresses to the DRAMs. One function

of the multiplexer is to break the 20 bit DRAM address into the two, 10 bit
sections (ROW and COL) the DRAM requires.

The Multiplexer supplies DRAM addresses for the following purposes:

1) The DRAMs can be written to or read by the microprocessor.
2) The DRAMs can be written with results from the LTA.
3) The DRAMs can be read by the backend logic.
4) The DRAMs are systematically refreshed.

12 The VLBA Correlator Digital Filter Volume I

3 Overview of the FIR Card

3.1 Data Rates

3.1.1 LTA to FI R Data Rates

Each dump from all the MAC cards, every 131 ms produces 210 baselines times 256
spectral points per baseline times 8 channels. This results in 430,080 complex
floating point numbers per dump, or 860,160 single precision IEEE values per dump,
or 3,440,640 bytes per dump. These values are integrated in the LTA.

The LTA has a maximum output rate of 1 complex floating point number / 2.0156
usee or 3.969 Mbytes/sec. At least one 2 usee period per 16 usee fft cycle is
needed for refresh. This degrades the LTA maximum rate to 7/8 * 3.969 = 3.473
Mbytes/sec.

The LTA transfers one complex point to the FIR every 2 usee, if requested. The
FIR software uses 5, 2 usee cycles to process 4 data points. This degrades the
maximum input rate to 4/5 * 3.969 = 3.175 Mbytes/sec. This rate allows the LTA a
refresh cycle every 5, 2 usee cycles. This satisfies the requirement that a
refresh cycle be allowed every 8, 2 usee cycles. The LTA imposes an up to 20 ms.
pause each tic for house keeping. This can degrade the input rate by lllms/131ms
to 2.7 Mbytes/sec. A 32 tap filter would decimate this to 0.67 Mbytes/sec.

3.1.2 FIR Output Data Rate
The maximum output data rate of the fir loop is determined by how much work

the fir is given each tic. A 2 usee period, which provides backend access, gives
7, 4 byte reads in the 2 usee. This is based on one backend ram read every 250 ns,
for 1.750 usee. The extra 250 ns cycle, in the 2 usee pause, is used to refresh
all DRAM's. When the fir is filtering, it uses the above 10 usee cycle, which
contains one 2 usee output cycle. This gives 2.8 Mbytes/sec maximum output rate
while running the 10 usee loop. During the portion of the tic, in which the fir is
not filtering, a 4 usee idle loop is run. This has one, 2 usee output cycle every
4 usee, for an output rate of 6.9 Mbytes/sec. See 1031dl4 in Volume II for the
sequence.

Each complex number gets multiplied by 8 real tap weights, and accumulated
in 8 separate ram banks. Each output is the weighted sum of 32 inputs. For the
output data rate to be H the input, 32/4=8. i.e. in order to store 32 points
worth, when we output every 4th dump, we need 8 ram banks. Each ram bank size is
half the maximum dump size or 1,720,320 bytes.

The VLBA Correlator Digital Filter Volume I 13

3.2 Basic FIR Program Loop

The following shows the basic 29C327 program loop for filtering data.
The 16 clock cycles represent 2 usee at a 125 ns clock period.
T1,T2... represent the tap weights for successive filter banks.
ACCrl,ACCr2... represents the accumulated value from memory.

This first section has 16 clock cycles to load R0-R7. The validities are input,
then the 4 complex values are input, normalized and stored. R IN and S IN straight
thru give a window for a microprocessor read of S & R.

CLOCK R-INPUT S-INPUT INSTRUCTION INPUT SOURCE OUTPUT

0 DUMMY INSTRUCTION FOLLOWING LAST MAC 76 T4*R7+ACCi28
1 VALO STRAIGHT THRU 77 T5*R7+ACCi29
2 VAL1 STRAIGHT THRU 78 T6*R7+ACCi30
3 VAL2 STRAIGHT THRU 79 T7*R7+ACCi31
4 VAL3 STRAIGHT THRU 1 R4=VAL0
5 REO RE0*R4 2 R5=VALl
6 IMO IM0*R4 3 R6=VAL2
7 RE1 RE1*R5 4 R7=VAL3
8 IM1 IM1*R5 5 R0=RE0*VAL0
9 RE 2 RE2*R6 6 R1=IM0*VAL0

10 IM2 IM2*R6 7 R2=RE1*VAL1
11 RE 3 RE3*R7 8 R3=IM1*VAL1
12 IM3 IM3*R7 9 R4=RE2*VAL2
13 R IN STRAIGHT THRU 10 R5=IM2*VAL2
14 S IN STRAIGHT THRU 11 R6=RE3*VAL3
15 12 R7=IM3*VAL3

DW FILTER 32 RESULTS OUTPUT =
16 TO ACCrO T0*R0+0 13 R IN
17 T1 ACCrl Tl*R0+ACCrl 14 S IN
18 T2 ACCr2 T2*R0+ACCr2
19 T3 ACCr3 T3*R0+ACCr3
20 T4 ACCr4 T4*R0+ACCr4 16 T0*R0+0
21 T5 ACCr5 T5*R0+ACCr5 17 Tl*R0+ACCrl
22 T6 ACCr6 T6*R0+ACCr6 18 T2*R0+ACCr2
23 T7 ACCr7 T7*R0+ACCr7 19 T3*R0+ACCr3
24 TO ACCiO T0*Rl+0 20 T4 *R0+ACCr4
25 T1 ACCil Tl*Rl+ACCil 21 T5*R0+ACCr5
26 T2 ACCi2 T2*Rl+ACCi2 22 T6*R0+ACCr6
27 T3 ACCi3 T3*Rl+ACCi3 23 T7*R0+ACCr7
28 T4 ACCi4 T4*Rl+ACCi4 24 T0*Rl+0
29 T5 ACCi5 T5*Rl+ACCi5 25 Tl*Rl+ACCil
30 T6 ACCi6 T6*Rl+ACCi6 26 T2*Rl+ACCi2
31 T7 ACCi7 T7*Rl+ACCi7 27 T3*Rl+ACCi3

28 T4*Rl+ACCi4
29 T5*Rl+ACCi5
30 T6*Rl+ACCi6
31 T7*Rl+ACCi7

CLOCKS 32 TO 47 REPEAT ABOVE USING R2 & R3
CLOCKS 48 TO 63 REPEAT ABOVE USING R4 & R5
CLOCKS 64 TO 79 REPEAT ABOVE USING R6 & R7

NOTE: A 0 IS ADDED ONLY WHEN CLAC IS USED TO CLEAR ACCUMULATOR.
This has a cycle of inputting 4 complex points and their validities in 2

usee. Then 8 usee is spent MACing these to the 8 rams. The program timing and
addressing to the 8 rams is fixed and set by the sequencer. See L031D32 in Volume
II for more detailed timing.

14 The VLBA Correlator Digital Filter Volume I

The actual sequencer code is in vlbsoft/pal_prom/proms/firfpc/pgO.wk3, a
Lotus worksheet. The worksheet is divided into 3 pages. Page 0 is test and
discrete functions. Page 1 is the main loop processing, defined above. Page 2 is
the validity loop processing.

The program fircode.c translates the printout of the above worksheet, fir.prn,
to the binary files to be downloaded into the discrete rams. The command line is:
fircode fir.prn. At the filter maximum input rate of 3.175 Mbytes/sec, it takes
542 ms, or 4.14 131 ms cycles, to fill a FIR ram bank of 1,720,320 bytes. Thus, if
the dump time is 4 cycles, the maximum input rate can be sustained for 4 cycles
without filling up the ram. Dump times of 4, 2, or 1 cycles will be allowed
through the filter. Longer dump times can be used in straight thru mode.

3.3 Straight Thru Mode
In straight thru mode, there are unity tap weights downloaded into the tap

weight ram, as specified by the microprocessor routine LDTWBYSA. Whatever goes
into ram bank 0, also is written to the output buffer. We do not need to worry if
the total dump is bigger than the output buffer size, since only a portion of it
can be read out each tic anyway. The specified LTA and DRAM baseline numbers,
being different, allows translating from the LTA memory bank, to the FIR memory
bank. An FIR memory bank is half the size of an LTA memory bank. The information
stored in the other eight, FIR DRAM banks, is of no interest in straight thru mode.

3.4 Backend Buffer
The output buffer to the backend consists of a 32 bit x 1 Meg DRAM. This is

divided into 2 banks. One is output to, while the other is read by the backend.
The bank switching occurs every 131 ms cycle, by PI.6 beBANK from the
microprocessor. For a 32 tap filter, the filter outputs every 4th 131 ms cycle, for
a 131 ms dump time from the LTA. The bank will switch, and the backend will have
the subsequent 131 ms cycles to read out these results. The bank will again
switch, and nothing new will be written. The bank will switch back, and results
could be read if they had not all been read out two tics ago.

3.5 Subarrays
To handle subarrays, using different dump times, the fastest dump time

subarray will be completely output each of its dump times. Portions of the slower
dump times will also be output. Example:
Subarray 0 is baselines 0-15, dumping every cycle.
Subarray 1 is baselines 16-46, dumping every 2 cycles.
Then successive cycles might be:
Cycle 0: output 0-15 of Sub 0, output 16-31 of Sub 1.
Cycle 1: output 0-15 of Sub 0, output 32-4 6 of Sub 1.
Then repeat.

Figure 3, which follows, shows another example of dividing the work of the
subarrays among the sequence of tics.

The VLBA Correlator Digital Filter Volume I 15

S U B A R R A Y E XAMPLE:
SUBARRAY 0 THRU S TAP FILTER
16 BASELINES, DUMPED EVERY 131 MS.
16*2049 RESULTS*® BYTES /.131 SEC - 2 MBYTES/SEC

SUBARRAY 1 STRAIGHT THRU
136 BASELINES, DUMPED EVERY 20 * 131 MS.
136*2049 RESULTS * e BYTES /20*.131 SEC - O.eS MBYTES/SEC
DUMP 6 OR 1 BASELINES PER CYCLE

4 MBYTES/SEC AVAILABLE FROM LTA.

DUMP SUB 0 BASELINES 0-15
DUMP SUB 1 BASELINES 0-5

DUMP SUB 0 BASELINES 0-15
DUMP SUB 1 BASELINES 6-10

DUMP SUB 0 BASELINES 0-15
DUMP SUB 1 BASELINES 11-16

DUMP SUB 0 BASELINES 0-15
DUMP SUB 1 BASELINES 17-2 3

DUMP SUB 0 BASELINES 0-15
DUMP SUB 1 BASELINES 24-30

DUMP SUB 0 BASELINES 0-15
DUMP SUB 1 BASELINES 31-35

DUMP SUB 0 BASELINES 0-15
DUMP SUB 1 BASELINES 36-42

DUMP SUB 0 BASELINES 0-15 OUTPUT INITIAL FILTERED SUB0 DUMP
DUMP SUB 1 BASELINES 43-49

1031d24.sch

Figure 3 FIR Subarray Example
A more comprehensive example can be found on 1031d23 in Volume II.
It does not matter that the portions move around in the buffer, since the

backend will figure it out. Since the output buffer and filter rams share an
address bus, the results must go in the same address, in the respective rams. In
the case where a subarray is in Straight Thru Mode, then the portion of the result
can be placed wherever desired in the output buffer, provided there is not a
conflict with other subarrays. For a subarray bigger than the half size output
buffer, the portion output each dump could be placed in the same spot in the output
buffer. The Real Time System (RTS) will have to keep track of which portion is
which. Note that unless we reload the result ram, the baselines must be placed in
spots designated for the correct subarray.

1,720,320 bytes represents 105 baselines of 2048 results. Since the bank
size is 2 Mbytes, 128 baselines could be stored if desired. Alternately, 256
baselines of 1024 results could be stored.

3.6 Validity Counts
V is the tape validity count on a baseline and channel basis. That is the

number of valid FFT cycles in a LTA dump. If either tape drive of the baseline was
bad, it inhibits the count. For a given baseline and channel, we can do all 256
spectral points, without this changing. The validity comes in from the LTA as IEEE
32 bit floating point numbers.

I is the sub-array integration count. That is the length of the LTA
integration time, in units of FFT cycles. V is the number of valid FFT cycles.
V=I if all test good. It is not necessary to multiply by I since it is a constant
for an observation.
Sx is the output of the short term integrator for a given spectral point x.
Normalized spectra = [Sx]*I/V = Nx
Filter Fx = Summation i=0 to 31 WiNxi
Where Wi are the 32 tap weights.
Nxi is subsequent dumps of a given spectral point x.
The validity counts come over the same 32 bit data bus as the LTA dumps.
This data bus has a max data rate of a complex point of 2, 32 bit values, every 2
usee. If the LTA is dumping at its maximum rate, there is not time to send over
the validity points. There is redundancy in the validity counts. For the tape
validity, each count is good for 256 spectral points. 8 channels * 256 points =
2048 results. Thus it pays to store the counts in a ram, to reduce data transfer
from the LTA.

16 The VLBA Correlator Digital Filter Volume I

3.6.1 Normalizing the Data, Using Validities
Dividing by validities is provided as an option for normalizing the data. A

TRW TMC3210 floating point 32 bit divide chip is used to do the floating point
divides for the validities. APPENDIX III TRW TMC3210 CMOS Floating Point Divider
contains the data sheet for the TMC3210. L031dl0 in Volume II shows divider
timing, and the block diagram. The divide chip has glue logic to convert its 16
bit bus to a 32 bit bus. Currently, the divide chip normalization function is not
used. Instead, the validities are filtered by the FIR.

If the lsb's of the validity count are thrown away (Ex. 20 instead of 24
bits), then the floating point representation will still not lose any precision
until the larger count. This is since 5 is represented .0100000000 (with a phantom
bit) where it does not matter how many zeros follow. For high validity counts, the
I/V factor is near 1 and does not change rapidly, so the loss of precision is
washed out.

If the validity count is 0, the divide chip will give a 1/V of infinite. A
Nan is desired for the final output. By setting the M5 bit on the 327 low, the
outputs for dealing with infinities become Nans.

3.6.2 The Validity Ram
The validity ram provides the storage for validities, so they can be reused

for all 256 spectral points. To load the validity ram, the LTA baseline is jammed
to 210, which is where the LTA stores the validities. The jamming is done by a
pal, on the output of the FIR address to the LTA. In the FIR, the LTA baseline
fifo and result counter increment the address, while the data comes from the LTA.
The output of the LTA baseline fifo is switched to the 8 msb's of the result field.
This picks out the validities for a specific baseline from the special LTA baseline
(210). See the block diagram L031D25. This result, with embedded baselines, also
goes to the DRAM addressing, to allow the filtering of validities while reading
them in.

To load all 1680 validities, at a rate of 1 per 2 usee takes 3.36 ms. That
is 2.6% of a 131 ms cycle. Time could be saved by loading only the validities
needed for that particular cycle. That is for only the baselines dumped.

While processing LTA data, to read the validities out of the validity RAM, the
delayed baseline from the LTA request forms part of the address. The remaining 3
bits use the 3 lsb's of the delayed LTA result counter. These 3 bits are now
indicating channel instead of result. A separate delay fifo is used for these 3
bits, in parallel with the delay fifo sending an address to the DRAMS. That is
because in the program loop, first the 4 validities are read into the 29C327 at 8
MHz, along with the 4 complex data points from the input fifo. Then, in doing the
filtering, the 4 DRAM addresses are accessed. Note each DRAM address is good for
16 cycles. That is 8 real macs and 8 imaginary macs. The IMAG bit from the
program sequencer toggles to show the difference. The baseline will not be
changing through all this, so a common baseline fifo could be used. However, a
separate DRAM baseline fifo is already used for reordering. If we are in less than
8 channel mode, duplicate validities will be in the validity ram, so the msb's of
the 3 bit field are don't care. The duplicated validities automatically come
directly from the Playback Interface (PBI).

3.7 Tap Weights
The tap weights are stored in the validity ram as well. There is a separate

Clear Accumulator (CLAC) Ram. The 64 tap weights, and CLAC Ram values, are loaded
by the microprocessor into the fifos. The address consists of the tap weight index
field from the fifo, and the 3 bit tap weight field from the sequencer. The 4 msbs
of the tap weight address will normally be 1111 for the upper part of the ram where
tap weights are stored. The PC will load all 64 tap weights. To read out the tap
weights, a mux will jam the 4 lsb's to 1. 3 lsbs come from the program sequencer,
and a 4 bit tap weight index field from a fifo. Each 131 ms., a set of 8 tap
weights, for each of 8 tap weight indexes, is loaded into the ram. Note the 4th bit
allows an additional 8 tap weight indexes if needed. Referring to Figure 2,
1031d38 Tap Weights, note that these 8 tap weights correspond to what each input
number is multiplied by, to be accumulated in the respective ram. The different

The VLBA Correlator Digital Filter Volume I 17

size filters can be automatically accommodated, based on what is loaded from the
microprocessor each 131 ms. The set of tap weights desired is based on tap weight
index. The tap weight index field chooses the correct set from the ram. The 4 bit
tap weight index field comes from a delay fifo, to allow for the time in the LTA.
The undelayed 4 bit, tap weight index field comes from the same fifo that contains
the result counter modulus field.

Note for straight thru mode, the tap weight can be 1 for one ram and 0 for all
the others.

3.8 Clear Accumulator (CLAC)
In the main program loop, in a single cycle, a DRAM input is added to a stored

normalized value times a tap weight. For a tap weight of 0, a DRAM input of 0 is
desired to clear the accumulator. The accumulator is cleared every n accumulations
for an n tap filter. The filter size changes as a f(tap weight index). The CLAC
function is implemented by means of the TSEL field of the 327 Floating Point Chip
(FPC) program word. A value of 0010 causes the DRAM input to be forced to 0. The
TSEL field normally comes from the program sequencer. A CLAC signal, from the ram,
throws a mux to give the 0010 input.

The CLAC signal is derived as follows. A CLAC ram has as an address, the 3
bit tap weight address from the program sequencer, plus the 4 bit tap weight index
field. CLAC\ from the ram will be a 0 when a tap weight 0 (which requires a CLAC)
is requested. CLACENBL from the program sequencer enables the CLAC\ signal, to
only allow an output when tap weights are being used. CLAC then throws the above
mux.

The CLAC ram also supplies the signals SNAPCE\ and SNAPOE\. These control the
snapshot register which chooses the appropriate ram bank signal to transfer to the
backend buffer. SNAPCE\ takes the snapshot. SNAPOE\ puts the snapshot on the bus
and WE\'s the DRAM. During a tic when nothing is written to the output buffer (as
in 3 of the 4 tics when there is a data reduction), no SNAPOE\ would be present.
The absence of SNAPOE\ is controlled by reloading the clac ram between tics.
For a tap weight index in a straight thru mode, each point can get a CLAC\ to have
nothing added to it, and a SNAPCE\ and SNAPOE\ to transfer it to the output buffer.
This could be on any one of the writes to the 8 ram banks.

3.9 Microprocessor Interface

3.9.1 Microprocessor Loading of Fifos
One task of the microprocessor is to load the fifo's which provide the 19

bit address for accessing the LTA. The baselines are stored directly in a fifo.
The faster changing, 11 bit result field is supplied by a counter. The RESCNT
signal, on Schematic 1031d01 in Volume II, clocks the result counter. RESCNT is
given 4 times, every 10 usee, at 2 usee spacings. This is due to the basic
software loop of skipping every 5th LTA request cycle. The RESCNT pulse is one 8
MHz clock wide. The 3 bit modulus is output by a fifo. Moduli of 2048, 1024, 512,
256, 128, 64, 32, and (2048 with LTABLRD's every 8), correspond to modulus field
values of 7,6,5,4,3,2,1, and 0, as implemented in a 22V10. The 0 value is used
during loading validities. That is since the full 11 bit count goes to the LTA,
while only the 3 lsb's are used by the validity ram. The LTA BL fifo is read every
8 times to get the validity ram's msb's. See 1031dl5, Figure 5, The Seven Bit
Modulus Counter Pal (Location 6E) for the block diagram and timing. This same pal
generates the clocks to read the baseline and modulus fifos. The positive read
pulses are 1 clock cycle wide. This allows the output of the fifo to not be high
impedance, when clocked by a 2 usee period clock. The fifo's are initially read
when the counter is cleared. Subsequent reads occur when the counter is the
highest number for the current modulus. The input RCO*RESCNT is gated in the 6E
pal to give a 125 ns read pulse. Thus, the frequency of the read pulse depends on
the modulus. The DRAM baseline read pulse is delayed an integral number of 2 usee
cycles. RS[0..3] come into the pal so it can act on the appropriate delay. That
is, generate the baseline read pulse when the msb's are zero, and the lsb's are the
appropriate value.

18 The VLBA Correlator Digital Filter Volume I

The same fifo that provides the counter modulus also provides the tap weight index
for the tap weight address logic. Also the STOPLOOP signal, from the fifo, tells
the sequencer when to stop a loop, due to reaching the designated output from the
fifo.

A conservative estimate of the time required to load the fifo's is as
follows. A MOVX takes 1.5 usee. Assume it takes 6 usee, per number to the
microprocessor. To load the fifos with 209 validity baselines, 210 LTA, and 210
DRAM baselines (for 629 numbers) should take 3.7 ms. There is 131 ms available, so
no problem.

3.9.2 Microprocessor DRAM Address Generation
The address for the drams is generated as follows. For storing the LTA data

in the FIR memory, the baselines are output by a separate fifo. The separate fifo
allows a rearranging of the storage locations of the baselines. This is necessary
since the LTA memory is twice as big as the filter ram banks. This allows separate
portions, of a large subarray from the LTA, to be subsequently stored in the same
filter locations. The resulting address field is delayed by a fifo and used for
the drams as well. A control bit, BLMSB, allows selection of throwing away either
the msb of the baseline or result field. This is necessary to reduce the 19 bit
address field to 18 bits. That is, the FIR memory can be partitioned with 128
baselines, or 256 baselines of 1024 results. A mixture of the two is also
possible, but care must be taken to not overlap a 1024 result baseline with the end
of a 2048 result baseline.

The microprocessor can be used to test the data path via the 32 bit read and
write registers. A write into the input fifo, can input into the divide chip, the
validity rams, or the 327 FPC. Values can be loaded into the fifo, 64 at a time.
This can give test bursts of high speed data, under microprocessor control. The
microprocessor read register is part of the data crossbar pals. It reads the S
bus, out of the 327 FPC. The cross bar can be positioned so the register reads the
F bus, the A ram bank bus, or the B ram bank bus. If the 327 is put into straight
thru mode, the R bus can be read as well. There is a straight thru window in the
main program. A 20 bit address would have been queued up. The software cycles 2
usee for inputting 4 points, then 8 usee for mac's. The 2 usee could be used for
microprocessor DRAM access as well as the backend reading the output buffer.
Output banks R8 & R9 can be read directly via the backend.

3.10 Dram Address Generation
The 20 bit DRAM address is fed as a 10 bit ROW and COL by the address mux, to

the 10 bit DRAM address input. The sources of address are related to the addresses
given to the LTA, the microprocessor, the backend access logic, and the refresh
counter. BLMSB and beBLMSB alter the ROW addresses, to tell whether to throw away
the MSB of the result or the baseline. In partitioning the DRAM among subarrays,
think of the DRAM as being a matrix 256 baselines by 1024 results. First assign
the baselines with 204 8 results. Since the msb of the result replaces the msb of
the baseline, pairs of 1024 result baselines are used. The pairing is baseline x
with baseline x + 128. The lower 1024 results go in baseline x, while the upper
1024 results go in baseline x + 128. In partitioning the DRAM among the current
subarrays, first assign all the 2048 RESULT BASELINES. These use the pairs of
baselines. Then fill in the remaining spots in the upper and lower halves of
memory with the 1024 result baselines.

Refer to 1031dl4 in Volume II for the data and addressing order to the DRAMS.
The address for the backend buffer, when writing to it, is derived from the delayed
LTA address. The LTA address is the same for the entire accumulation, to the 8 ram
banks. The address can be directly used, after both the real, and imaginary values
have been input. That is since the address is the same for all 8 values, there is
no need to differentiate it. The data changes, since it has been multiplied by
different tap weights. A snapshot of the chosen data for a subarray is stored in a
register. This snapshot is stored at the above address in the backend buffer.

The VLBA Correlator Digital Filter Volume I 19

3.11 DRAM Printed Circuit Boards
See 1031d03, the FIR DRAM PC Board Schematics. The DRAM Modules are

mounted on PC boards. There are two identical boards, that each hold eight DRAM
Modules. A third PC board is half the size, and holds four DRAM Modules. The PC
boards plug into the FIR Board.

3.12 Backend Address Generation
(See 1031d06.sch for the schematic, and 1031d07.sch for the block diagram)
We need to generate the address, for reading out backend buffers 8 and 9. A

baseline and its Backend Result Ram Index (BERRI) are sent to the fir from the VME.
BERRI is a number 0 to 15, specifying the table in the result ram to use. Upon
receiving the correct number of results for the baseline requested, the VME can
send the next baseline to be read.

Since the backend DRAM is read into the fifo, 7 values per 10 usee cycle, it
will take a non-integral number of cycles to read a baseline's results. The
backend fifo is 4K, so it will hold the largest baseline. At the start of a
baseline, RCNTCLRX clears the result counter and resets the backend fifo. EMPTY\,
from the backend fifo, has the VME only read the fifo when there is something in
it. Normally, the VME will read each 7 value burst as it is put into the fifo.
The counter in the 29MA16 counts down the number of results, based on VME
acknowledges to the fifo. When the count is done, the signal DONE inhibits fifo
reads, and shuts off the bus to the VME. Since there are no more reads, DONE
remains until a new baseline is requested.

The result ram supplies beBLMSB which specifies, use the MSB from the
baseline, and throw away the msb from the result field. The beBLMSB switching is
done at the ADDRESS MUX. The result ram determines the result ordering based on a
count, on a BERRI basis. The backend result counter gets its clear signal from the
logic that loads a new baseline from the VME. Thus, the new baseline counts from
result count 0. The counter will count until a new baseline is requested by the
VME. DONE prevents the VME from handshaking beyond the requested count. The
result counter counting beyond that count does not hurt anything. STOPLOOP stops
the main program loop, after all baselines have been requested from the LTA. The
VME could still be requesting baselines beyond the time of STOPLOOP. That is since
the backend is asynchronous with the frontend, but has to finish last.

In reading the LTA, the 3 lsb's of the incrementing result field are the
channel. This is used to determine validities. Having the ram for the backend,
allows flexibility in the order the results are output. The result ram allows 16
subarrays of 2048 results, specified by the BERRI. Spare subarrays could be used
for bank switching. A spare subarray could be used to regroup the results in the
validity baseline. This would allow the validities, for the baselines of interest,
to be grouped in the lower contiguous count.

The beBANKX bit determines which bank (8 or 9) is currently being output.
This is switched by the microprocessor every 131 ms. belMAG toggles to get the
real and imaginary half of complex words. belMAG is the lsb of the backend result
counter. belMAG, beBANKX, the baseline, and the result, all combine to produce the
20 bit, DRAM address.

In filtering, when an accumulation of values times tap weights is
complete, it is ready for outputting. Which ram bank is ready for outputting
rotates. The Real Time System keeps track of the baseline it wants to request, at
each point in the cycle. The selection is accomplished by means of a snapshot
register on the F bus. This takes a snapshot of the final sum of products on its
way to the ram banks. The ram banks written to are banks 0 through 7, one each
clock cycle. Using SNAPCE\ from the CLAC ram, to the snapshot register, the
appropriate bank can be captured.

The LTA Baseline and MOD fifos output once a baseline. This is accomplished
by generating DRMBLRD and LTABLRD in a 22V10, based on the baseline modulus and
result count. See 1031dl5, Figure 5, for a pal description. Refer to 1031dl4 in
Volume II and the block diagram. The row and column address to ram 89 is a delayed
version of that to the 57 ram bank. This allows time for the data to pipeline into
the snapshot register. The worst case is taking a snapshot of ram bank 7. The
bank switch bit comes via the beADR9 mux pal. This address, along with SNAP0E\, is
used to transfer the snapshot to the appropriate place in the 89 ram.

20 The VLBA Correlator Digital Filter Volume I

There is a 32 bit output data FIFO to the backend. The data is input into the
fifo in bursts of 7, during every 5th, 2 usee cycle. Since this cycle is used to
input data into the 327, the dram address bus is not being used. DRAM 89 can use
the bus to output its data to the backend.

3.13 Backend Interface via the Ironies Board

3.13.1 Hardware Interface Between the FIR and the Backend
The IRONICS IV-3272, with the IV-3272-PIO Parallel Interface Daughter Board,

is the interface from the FIR into the VME.
The PIO board provides a TTL interface at the VME P2 connector. (See

APPENDIX IV Ironies IV-3272-PIO Parallel Interface Daughter Board). This
transition module, in the rear of the VME chassis, provides a buffer module to
convert the interface to RS-485 differential. The RS-485 signals are carried on
two 25 pair cables, with 3M50 connectors, pin out as follows:

1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49

p i:
l
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49

The VLBA Correlator Digital Filter Volume I 21

CONNECTOR
SIGNAL

1
PIN SIGNAL

beD15 2 beD\15
beDl4 4 beD\14
beD13 6 beD\13
beD12 8 beD\12
beDll 10 beD\ll
beDIO 12 beD\10
beD9 14 beD\9
beD8 16 beD\8
beD7 18 beD\7
beD6 20 beD\6
beD5 22 beD\5
beD4 24 beD\4
beD3 26 beD\3
beD2 28 beD\2
beDl 30 beD\l
beDO 32 beD\0

REQ*
34
36 REQ*\

ACK*
38
40 ACK*\

ENDIR
42
44 ENDIR\

CONNECTOR
SIGNAL

2

46
48
50

PIN SIGNAL
beD31 2 beD\31
beD30 4 beD\30
beD29 6 beD\29
beD28 8 beD\28
beD27 10 beD\27
beD26 12 beD\26
beD25 14 beD\25
beD24 16 beD\24
beD23 18 beD\23
beD22 20 beD\22
beD21 22 beD\21
beD20 24 beD\20
beD19 26 beD\19
beD18 28 beD\18
beD17 30 beD\17
beD16 32 beD\16

CTRL4
34
36 CTRL\4

CTRL3 38 CTRL\3
CTRL2 40 CTRL\2
CTRL1 42 CTRL\1
STAT4 44 STAT\4
STAT3 46 STAT\3
STAT2 48 STAT\2
STAT1 50 STAT\1

Note:
There are 8 each control and
status bits available on the VME
P2 connector. The bits 1-4 selected
for use here correspond to VBUS
bits 9-12 and have been selected so
that the control bits in the P2 cable
that are next to REQ, ACK and DIR
are not active.

22 The VLBA Correlator Digital Filter Volume I

REQ* and ACK* are bi-directional, open-collector signals. The device
supplying the data (the source) drives REQ*, and the device receiving the data (the
sink) drives ACK*. ENDIR signals the direction of the data transfer. ENDIR in the
low state indicates a transfer from the FIR to the VME. ENDIR goes high if the
transfer is from the VME to the FIR.

3.13.2 Backend Data Transfer Example
The following sequence of events has the VME system request a DMA transfer

from the FIR: (See 1031dl6 for pal timing)
a) VME sends 2, 12 bit words using the 12 lsb's of the data line. The words
consist of: a baseline number, a subarray number aka BERRI, and a result count.

(ENDIR high causes the FIR to clock the word(s) in on the falling edge of REQ*
and to acknowledge the data with a pulse on ACK*.)

b) VME sets up to receive the response buffer. The fir writes data to the VME
with a falling edge on REQ* and waits for a falling edge on ACK* before writing the
next word;
(See the IRONICS IV-3272-PIO manual for details of the timing (page 2-11).)

There is the possibility that the fifo in the Ironies board might fill up
due to the VME not reading it out. The FIR should then stop sending data. Since
the backend fifo is 4K, it can hold a whole baseline without having to write to the
VME.

The lsb of the result counter is BEIMAG, which specifies the real or
imaginary word of a complex result. Note that this lsb is not sent to the result
ram, since the address out applies to both the real and imaginary values. In
loading the result ram, an initial value is loaded from the microprocessor. The PC
sequencer can increment the ram address by having RCNTENBL high for 2 counts.

4 Inputting and Filtering Validities

4.1 Validities Introduction
The path of the validities through the system is as follows:

To the left of this line | To the right of this line
frame based validities I FFT based validities
Track clocks— >TRC— >DEF---->MCC— >FFT
Data clocks \— >LTA— >FIR— >RTS

The TRC gets track data and track clocks. Based on CRC and such, it decides
if each track is valid on a frame by frame basis.

This goes to the DEF which apportions the validities on an fft cycle basis.
Also the delay, due to the various pipelines which the data follows in the DEF, is
inserted.

This goes to the MCC. There are input muxes analogous to the input muxes on
the FFT cards. There is then a delay inserted. This then goes to the FFT cards.
Each MCC handles two channels worth of validities. All 24 pbi's are input and 20
fft cards. The StarDiagram, which shows the 24 pbi to 20 fft interconnect, is hard
wired in the mcc for the validities.

In the MCC, after the input muxes, the validities are accumulated on a per
baseline basis. That is if either PBD of a baseline is bad, the accumulated
validity is bad. These accumulated validities go to the LTA. The LTA does long
term integration of the validities in Baseline 210, on a per channel basis. There
are pseudo baselines for the 210 real baselines. The FIR reads the validities out
of the LTA, and writes them in FIR baseline 127. The validities can be filtered,

The VLBA Correlator Digital Filter Volume I 23

with the unfiltered values placed in the real part of each complex word, and the
filtered in the imaginary part. The validities can also be inverted, and used to
normalize the data. The real time system reads the validities out of the FIR.

4.2 Filtering Validities
Filtering validities is viewed as a viable alternative to using the

validities to normalize the data in the FIR. Instead, the filtered validities can
be used to normalize the data in the post processing.

To filter validities do the following. Run a special filter program while
loading the normalized validities into the validity ram. The special program is a
separate page in the Lotus spreadsheet which represents the sequencer program. The
tap weights and CLAC ram for the tic would have to already be loaded. LOCK is a
control signal to jam the baseline request to the LTA to 210. The LTA BL FIFO
tells the baseline to the validity ram, and gives the sub-baseline portion of the
result field to the LTA, telling which sub-baseline in 210. This value also goes
to the DRAMs in the result field. The MOD FIFO specifies the subarray, so the
correct tap weights and clac could be used in filtering. The modulus out of the
MOD fifo is 0, which gives a count up to 2048 with a baseline read every 8 times.
The validities are stored 1 per complex value, since the result count to the LTA
also goes to the DRAMS. This requires a 2048 result baseline (as opposed to a 1024
result baseline) to store the 1680 validities. The FIR baseline to store the
validities, such as 127 is specified by the DRAM baseline fifo. Note this is a
2048 result baseline, so 127 is the highest baseline number available.

A validity comes in from the LTA approximately every 2 usee. The validity
is captured in the 327 math chip and the divide chip. The filtering is started,
while the divide chip is doing the inversion. The R bus is needed for tap weights.
One microsecond is needed to mac into the 8 ram banks. Validities are only updated
for the baselines at the end of their 32 accumulations (for a 32 tap filter). The
remaining baselines will have older values. The filtered results will be in the
real part of the words. The unfiltered validities will be put in the imaginary
part of the word in the output buffer and all the rams. This could be useful for
debugging. After accumulating the validities in the ram banks for the filter, the
R bus is used to write the normalized validity stored in the divide chip's buffer
into the validity ram. The R bus is available in the 2nd half of the 2 usee cycle,
since that is when the imaginary data is processed. Since the validities go
straight thru for the imaginary part, no tap weights are needed, freeing the R bus
for the transfer from the divide chip to the validity ram.

Refer to the block diagram 1031d25 in Volume II. Logic switches the LTA
baseline fifo output to the result field, so that only the baselines of interest
are processed. However, the timing still needs to allow for the worst case, of all
210 validity baselines being processed. Currently, the validity addressing to the
LTA is: The baseline is 210. The channel is the 3 lsb's of the result field. The
pseudo-baseline of the validity is the remaining 8 bits of the result field.

In the case where the dump time is greater than once per 131 ms, it is
necessary to not filter the validities every 131 ms. To do so would multiply the
filtered validity by a scale factor. The above switch, which routes the fifo
baseline into the result field for validities solves the problem. Only the
baselines requested are processed, so baselines are not processed more than once
per dump time. Also, this saves time, and makes the validity processing more like
the normal filtering.

For a 16, 32, or 64 tap filter, there is a data decimation. Have
something output to the output buffer every tic. Thus the backend will have to
know which tic to look for data, since there will be garbage other tics. This
is required since the actual validities are in the imaginary part each tic, even
though the filtered validities don't produce results every tic. Since this
requirement is imposed for validity filtering, it will be used for normal filtering
as well. This requires a SNAPCE and SNAPOE every tic. The fifo's must be loaded
with baselines and their associated subarrays before each validity filtering, just
as in a normal data filtering. For the case of a straight thru mode without

24 The VLBA Correlator Digital Filter Volume I

normalization, it is desired to not multiply by the normalized validity. When
loading the validities, there is a separate microprocessor/sequencer routine for
baselines in this mode. The routine used is specified by the function code of hcb
function 21 STARTMAINLP. The no normalizing, validity loading routine is on page 3
of the Lotus worksheet. The raw validity still goes to the DRAM as before. Unity
is stored in the validity ram, instead of the normalized validity. The unity comes
from the divide chip, by loading the same number as the numerator and denominator.

5 FIR Sequencer

5.1 Sequencer Overview
Refer to 1031d09 for a block diagram of the sequencer. The logic is on

1031d02. Both drawings are in Volume II. The sequencers are in levels. On the
LTA, there is an FFT cycle sequence repeating every 516 clock cycles. An LTA
integration cycle sequencer counts FFT cycles. The FIR sequencer counts the CK8, 8
MHz clocks.

5.2 LTA Interface to the Sequencer
The LTA FFT sequencer provides the signals CK16, CK8, and NEWPAGE, to the

FIR. The 4 cycle gap is omitted from these to allow staying synchronized with the
LTA. There is an FIR program step sequencer, initiated by the NEWPAGE signal from
the LTA.

The microprocessor gets INTRSTX, an asynchronous clear from the LTA, every
131 ms. This goes to the microprocessor INTO. Currently, INTO is not implemented
in software. Instead, FIRENA is read from the LTA on a poling basis to delineate
the tics. The microprocessor provides beBANK the backend bank (8 or 9) toggling
every 131 ms.

5.3 FIR Program Counter

The FIR program counter (PC) generates a 8 bit count, allowing a 256
step program. A 3 bit page allows selection of 8 possible programs. These combine
to give the 11 bit address to the program roms. The page comes from the
microprocessor. The page is written by WR\8302 to REGA. See 1031d09. This sets
WRS. The leading edge of NEWPAGE clocks WRN to generate PCCLR\. PCCLR\ clears the
PC counter and clock enables FIRPAL7, to update the page. The REGA to REGB
buffering allows for the microprocessor being asynchronous.

Within a program, it is possible to have branching either as specified by
the microprocessor, or the program. For program control there is an address
supplied by the PC rom. This supplies an address for branching from the PC
sequencer. This address can be branched to by loading it into the program counter
via PCLD\, from the PC rom.

An alternate branching address can be supplied by the microprocessor.
WR\8300 writes an 8 bit address to a register, which is wire ored with the address
from the PC rom. WR\8301 acts as PCINT\ (program counter interrupt\) to initiate a
branching to a microprocessor specified address. The PC could be in an infinite
loop specified by the PC rom address. A service routine could be in the
microprocessor branch register. Upon the microprocessor issuing a PCINT\, the next
time the PC rom issues TOGGLE, the microprocessor Branch Reg. will be output
enabled. The next PCLD\ will branch to that address. The service routine will
contain a DONE\ signal, from the PC ROM, to reset the PCINT register. At the end
of the service routine, a PCLD\ will get an address from the PC rom instruction
register.

The VLBA Correlator Digital Filter Volume I 25

5.4 Main Loop Structure
This presents the events of a typical 131 ms cycle. First, the

microprocessor loads the fifos and validities. Then, the main loop runs until
STOPLOOP from the MOD FIFO, at the last baseline in the fifo. See 1031d09, 1031d27
in Volume II, and Figure 13, The Sequencer Control PAL Description. The DRAM BL
fifo will empty after the wrap around, DRAM writes, at the beginning of the main
program loop. That is the DRAM writes complete in the beginning of the next loop
cycle. PCLD\ (Program counter load\) and SEQuPBR\ (Sequencer microprocessor
branch) being present at the same time, indicate check the STOPLOOP and INPUTAFE as
a condition for letting them through. If there is a STOPLOOP, then uPBR\ sets the
register to switch the branch register to the microprocessor branch register, which
will have been previously loaded to the branch routine. Also, a LOAD\ pulse is
generated. The branch routine then puts things in idle until the next 131 ms
cycle.

5.5 Tasks for the Sequencer to Do Broken up into HCB Tasks
I. Load the result backend ram. This is good till the setup changes. Load the
327 and divide chip mode words.
II. Do observation broken into 131 ms cycles Every 131 ms the microprocessor
toggles beBANK.
Then every 131 ms:
Ila. Input from the LTA, normalize, filter and store the validities in ram.
lib. Input the up to 128 tap weights and CLAC ram values (CLAC, SNAPOE\ & SNAPOE\)
and store in rams. In the microprocessor the whole table could be stored.
lie. Microprocessor Load the LTA BASELINE, COUNTER MODULUS, and DRAM fifos with
values from the RTS via the HCB. These could have been input on previous tics.
lid. Do the main filter loop with backend accesses.

5.6 How the Sequencer Tasks are Implemented

THIS RAM IS GOOD UNTIL THE SETUP CHANGES

AN ARBITRARY SECTION OF MEMORY CAN BE LOADED AT ANY ONE TIME.TO LOAD AND CHECK THE RESULT RAM
* - THE uP REGISTERS GET A BRANCH ADDRESS & PAGE.
uADR[0..15] PROVIDES DATA TO WRITE IN THE RAM.
SET TEST-1 (P1.7) (SES L031D21) SO THAT u A O R [16. .19} ALWAYS PROVIDES ADDRESS BITS A[11..14]

* - ON WRITING A NSW PAGE, NEWPAGE HAS PCCLR\ RESET THE PC COUNTER, STARTING THE PROGRAM IN IDLE LOOP 0.
b e R E S L D V <W R \ 810 7 THRU 2 REGS) LOADS u A D R [0..11) AS THE INITIAL RESULT COUNT THEN THE PC SITS IN IDLE LOOP 0.
* - BRANCH TO IDLE LOOP AT 8 WHERE P R E A S E L [0..2)* 3 OR 5 TO GIVE uADROE=l TO ENABLE uADR[0..15]
* - THE uP GIVES beRAMWEX(WR\6104) , THEN THE NEXT DATA V I A uA D R \0. .151____________
* - FCINT\ FROM THE uP, BRANCHES TO A ROUTINE 12 TO INCREMENT I
THE COUNTER VIA RCNTENBL, THEN THE PC IDLES AT 8. P I . 1=0.

* - uF INCREMENTS ITS COUNT AND ADDRESS BITA A [11..14j IF NECESSARY. IF < DESIGNATED NUMBER GO TO|
* - DONE WRITING TO CHECK RESULTS:
b e R E S L D V <WR\8107 THRU 2 REGS) LOADS u A D R [0..11] AS THE INITIAL RESULT COUNT THEN THE PC SITS IN IDLE LOOP 0.
uF REGISTER GETS A NEW BRANCH ADDRESS
u A D R [0..15] PROVIDES RAM ADDRESS A[11..14] SINCE TEST = 1

* - FCCLR\ RESETS THE PC COUNTER, STARTING THE PROGRAM IN IDLE LOOP 0.
FREASELI 0. .2]= 0,1,2, 6 O R 7 TO GIVE RSRAMOE

* - uF REGISTER GETS A NEW BRANCH ADDRESS FOR ROUTINE 15
* - RD\8 0 04 & 5 READ uADR[0..15] TO CHECK RESULTS.
* - FCINT\ FROM THE uP, BRANCHES TO A ROUTINE 15 TO INCREMENT
THE COUNTER VIA RCNTENBL, THEN THE PC IDLES BACK AT 0. Plil=0.

* - R D \ 8 0 04 « 5 READ uADR[0..15] TO CHECK RESULTS. 1
* - uP INCREMENTS ITS COUNT. IF < DESIGNATED COUNT GO TO I

Figure 4 Backend Result Ram Loading
I. This Figure shows details of loading the result ram. To load the mode words,
the microprocessor could load them in the input fifo, then a PC routine could read
them out of the fifo, and strobe them into the ram.
II. FIRENA is seen to change, indicating the 131ms tic. The microprocessor
requests the initialization page.

26 The VLBA Correlator Digital Filter Volume I

Ila. We input from the LTA, normalize and store validities in RAM.
See 1031dl0 in Volume II for the divide chip timing. The microprocessor

branch register specifies a routine to do the validity processing. On PCINT\, the
routine processes the validities, looping via the PC rom instruction register. The
validities could also be stored in a spare baseline in the 89 DRAM for later
retrieval.

The microprocessor branch register specifies the address of the routine to
escape from the loop. This is branched to when the STOPLOOP is received from the
MOD fifo.

The escape routine resets the fifo's, sends uPINT\0=0 to the microprocessor
to give the microprocessor back control, then idles. During the idle, the DRAM
should still be doing refreshes.
lib. We load the tap weights and CLAC data into the rams from the microprocessor.
The program counter (PC) starts at 0. The microprocessor page select register is
written to via WR\8302, then strobed in by WR\8303. The PC sequencer resets the
input fifo and CLAC fifo via FIFORST\, then goes in an idle loop, with refreshes,
by looping on its PC rom instruction register.

The microprocessor outputs up to 64 tap weights into the input fifo, via
WR\8000,1,2,3. Up to 64 corresponding CLAC's are written into a fifo via WR\8005.

The microprocessor performs this loop once for each subarray. Reset the
MODULUS/subarray fifo via WR\8006. A subarray is written, by the microprocessor
via WR\8203, into the modulus/subarray/outbank fifo. The microprocessor branch
register specifies a routine to transfer the tap weights into the validity ram.

On PCINT\, the PC seq routine is started. RESCNT simultaneous with RESCLR\
will give an LTABLRD to read the subarray from the fifo (see L031D15, Figure 5).

The subarray delay fifo is reset by ADRFRST\, clocked by LDLYLDCK, then
unclocked by SUBAUNCK. FIFOSO reads the tap weight from the input fifo, and also
reads the CLAC fifo. QWE writes the tap weight into ram. CLACWE\(ps5) writes the
CLAC into its ram. Repeat the read and write instructions, only with an
incremented tap weight, for the 8 tap weights of the subarray. Send uPINT\0 = 0 to
the microprocessor in an idle loop. Send the done message. The microprocessor
will return for the required number of subarrays.
lie. The microprocessor resets and loads the LTA BASELINE, COUNTER MODULUS, AND
DRAM BASELINE fifos. Note, the MOD fifo provides STOPLOOP to allow stopping the
PC.
lid. The microprocessor branch register is loaded with the escape routine address
for the main filter run. The microprocessor starts a new page for the main filter
run. It is necessary to initially have the input fifo precharged with the first 4
complex points. 1031d27 in Volume II shows how, by having the fifo precharged with
1 dummy value, 8 more values (4 complex numbers) cause INPUTAFE to toggle, allowing
the loop to proceed.

The filter loops using the rom PC address. When the fifo is empty the
escape routine is branched to. The escape routine sends uPINT\0 to the
microprocessor then idles. During the idle, backend accesses should continue, in
case the previous cycle had a lot to transfer. See
/vlbsoft/pal_prom/proms/firfpc/pgO.wk3, a Lotus worksheet, for a listing of the 327
instructions for the main filter loop. The microprocessor idles until the next
INTRST\ to the microprocessor. It could need to shut down the backend accesses
before transferring back to the initialization page.

5.7 Detailed Sequencer Main Filter Loop Structure

5.7.1 PROM Addressing Structure
Refer to 1031dl4 in Volume II. This shows the actual steps of the main filter

loop. There is one row per 8 MHz clock cycle.

The VLBA Correlator Digital Filter Volume I 27

The column labeled PROM ADDR is the address to the sequencer PROM. Recall the
sequencer is divided into pages, with each page having up to 256 instructions.
PROM ADDR is presented as a hex number in the range 00 to FF.

The main loop timing is divided into 2 microsecond sections. Each section
contains 16, 8 MHz clock cycles, corresponding to 16 sequencer instructions. On
1031dl4 in Volume II, the horizontal lines divide the table into the 2 usee
sections. Notice the most significant digit of the address increments for each 2
usee section.

5.7.2 The Idle Loop
The bottom two sections, CO thru DF, represent the idle loop. The sequencer

loops through these two sections, when there are no other filtering tasks.
Filtering Task refers to a list of baselines to filter, read from the fifo. The
reason we need this activity when there are no current filter tasks is to allow
backed access to continue. The backend buffer can be read out, whether or not a
filtering task is going on.

5.7.3 The Main Loop
Refer back to 3.2, the Basic FIR Program Loop. This also shows the main loop,

grouped into the 16 clock sections. The filter main loop consists of five, 2 usee
sections. These correspond to PROM ADDR 60 through AF. The sequencer loops
through these five sections, until the STOPLOOP signal indicates there are no more
baselines from the fifo, to process. STOPLOOP is a bit from the fifo, indicating
the end of the list. If STOPLOOP is not yet encountered, the sequencer branches
back to the beginning of the loop. If there is a STOPLOOP, then the sequencer
continues without branching, and ends up in the idle loop.

1031dl2 in Volume II shows the detailed timing of the initialization of the
Main Loop.

5.7.4 DRAM Addressing

5.7.4.1 DRAM Addressing Basic Operations
1031dl4 in Volume II shows the timing and functionality of the DRAM addressing.

The five DRAM banks are shown as the columns 02, 13, 46, 57, and 89. 89 is the
backend buffer.

The basic operation at a DRAM address is a multiply/accumulate. That is read
the address, add something to the value, then write the sum back into the address.

Each DRAM bank is divided in half, and used as two banks. For example 02 is
bank 0 and bank 2, all in one physical DRAM.

The 20 bit DRAM address is delivered over a 10 bit address bus in two pieces,
called a row and column.

The sequence of operations at a fixed DRAM address is as follows (DRAM 02 is
used in the example):

RR0 Read Row Bank 0
RC0 Read Column Bank 0
RR2 Read Row Bank 2
RC2 Read Column Bank 2
WR0 Write Row Bank 0
WCO Write Column Bank 0
WR2 Write Row Bank 2
WC2 Write Column Bank2
Thus it takes 8 clock cycles to process an address in 2 ram banks. However,

this is going on simultaneously in all 4 pairs of banks, 02, 13, 46, and 57. Thus
in 8 clock cycles we are able to process all 8 ram banks. Back in the main loop
description in Section 3.2, it was shown that 8 clock cycles are allowed for the 8
multiply/accumulates to the 8 ram banks.

28 The VLBA Correlator Digital Filter Volume I

5.7.4.2 Data Path to the DRAMs
The two DATA columns, on the left side of 1031dl4, show the data to and from

the floating point chip (FPC). The IN column is the FPC input, the OUT column is
the FPC output. There is a four clock, pipeline delay in the FPC, between the
input and output. The FPC input is read from the DRAM. The FPC output is written
back into the DRAM.

Each value is actually a complex number, consisting of a real and imaginary
part. These are each multiply/accumulated. Thus it takes 16 clock cycles to
process a complex value through the four main DRAM banks. This again is our basic
2usec period.

5.7.4.3 Generating the Addresses for the Main DRAM Banks
The block diagram, 1031d25 in Volume II, shows that the DRAM addresses for the

different ram banks are generated by a series of delays from the address out of the
8 to 1 MUX. 1031dl4 shows a column with the output of the 8 to 1 MUX. Since the
Write address is always the Read address, delayed four clock cycles, there is the
Four Cycle Delay Fifo. This splits the address bus into two, with one delayed four
cycles. There are multiplexers into the DRAMs, that switch every four cycles, to
pick off the Read and Write addresses. The sequencer signal deltoa, can be seen on
1031dl4. This signal toggles the multiplexers every four clock cycles.

Ram bank 4 6 is generated by using a multiplexer 180 degrees out of phase with
the multiplexer for bank 02. This has the effect of a four cycle delay.

A single register delay generates the address bus for DRAM Bank 13, from that
of Bank 02. Similarly, the address bus of DRAM Bank 57 is one cycle delayed from
that of Bank 46.

5.7.4.4 Generating the Address for Writing into the Backend DRAM Buffer
For the DRAM address for the backend buffer, the object is to be able to write

into the backend buffer results that have been completely filtered. The snapshot
register will have taken a snapshot of the value from the appropriate bank. The
value is then written from the snapshot register to the backend DRAM buffer. The
worst case is getting the value from the last DRAM bank written. Thus we take the
backend address from bank 57, then delay it an additional clock cycle, due to the
delay of the snapshot register.

The timing of which value is captured in the snapshot register is specified by
SNAPCE\ and SNAPOE\ which are from the CLAC ram. Of course, the CLAC (Clear
Accumulator) signal is also from the CLAC RAM. The timing for all these is shown
on 1031dl4. The CLAC ram is loaded by the microprocessor, along with the Tap
Weight Ram.

5.7.4.5 Generating the Address for Reading the Backend DRAM Buffer
The same DRAM address bus is used in the reading out of the backend. See

1031d07, the Backend Block Diagram. Referring back to Section 3.2, on the basic
FIR loop, we see that in the beginning of the loop the data is being read in from
the LTA and multiplied by normalized validities. The DRAM bus is not being used
then, so it is available for backend access.

On 1031dl4, beO through be6 to DRAM bank 89, represent the 7 backend accesses
available per loop. Each address is present for 2 clock cycles to represent a row
and column. The data output from the backend goes into a fifo, to allow for the
asynchronous nature of the sequencer writing the data into the fifo, versus the
data being read by the Ironies Card.

In the Idle Loop, the backend access is the only demand on the DRAM address
bus. Thus in the Idle Loop, the backend can be read at a higher data rate.

5.7.4.6 Refresh Cycle Address Generation
The backend is read seven times, instead of eight times, to allow time for the

refresh cycle. This is marked RFR on 1031dl4. The refresh cycle gets its address
from the refresh counter. This systematically accesses all the Rows in all the
DRAMs. The DRAMs are required to be regularly accessed, so they don't forget their
contents.

The VLBA Correlator Digital Filter Volume I 29

5.7.5 Additional Signals on 1031 d14
The columns of 1031dl4 show many additional signals, not previously

discussed . The number in parentheses, by the signal name, tells the bit number in
the 103 bit sequencer word. Among the signals are:

5.7.5.1 vadroe(65) The Validity Ram Address Output Enable
vadroe acts as a switch for the source of the address to the Validity Ram. See

the Block Diagram 1031d25. vadroe=l has the address come from the Baseline and
Channel Fifos, for reading validities from the Ram. vadroe=0 has the address
source come from the Tap Weight Address from the Sequencer and Tap Weight Index.

The validities are read at the beginning of the main loop. See Section 3.2.
Notice vadroe also is 1 for B1 thru B4, since that is part of the main loop. The
loop goes back to address 66.

5.7.5.2 rcntenbl(69) Backend Result Counter Enable
See the Backend Block Diagram, 1031d07. This increments the Result Count used

in reading the backend buffer.

5.7.5.3 preasel(8-10) Pre 8 to 1 Multiplexer Address Select (3 bitfield)
This signal is buffered by a pal, then provides the 8 to 1 Mux address

selection. This decides which function the DRAM address bus will be performing.
1031d25, the Block Diagram, has a table of the choices.

5.7.5.4 we\ 4 and 0 DRAM Write Enable\ for Banks 46 and 02
These are the DRAM write enables. Banks 0 and 2 are in one physical DRAM, so

there is only one write enable. we\l, we\5, and we\8 do not come directly from the
sequencer. we\l and we\5, are we\0 and we\4, delayed one 8 MHz clock cycle. we\8
is a buffered version of the SNAPOE\ signal, which enables the output of the
snapshot register, to be written in the output buffer.

5.7.5.5 precas\ 0,1,4, 5, and 8 Pre DRAM Column Select
These signal are buffered by a pal (see Figure 14, The CAS Handling PAL, based

on 1031dl7). 1031d08 shows the detailed DRAM timing. The pal gates the precas
signals with casws. casws is a version of the 8 MHz clock. The result is cas
signals with the required 75% duty cycle, as shown on 1031d08.

5.7.5.6 dlyrc(71)
See Figure 14, based on 1031dl7. dlyrc is used to derive beDINCLK, which is

used to clock data into the fifo, when reading out the backend buffer. The pal
gates with casws, which is an 8MHz clock, and with beLAST.

See 1031d07, the Backend Block Diagram, for the enabling signal beLAST. This
is based on the LASTRES signal from the Result Ram, indicating all the results have
been read out.

The dlyrc signals occur in conjunction with the be addresses to the DRAM
address bus.

5.7.5.7 10ustic(70) Ten Microsecond Tic
See Figure 12, The Ironies Handshake Pal Description, based on 1031dl6. This

signal goes high once per 10 usee Main Loop Cycle. lOustic must equal 0 to enable
a handshake and transfer of data to the Ironies Card. IOuSTIC prevents starting a
backend request in the middle of a 7 RCNTENBL string, since the address pipeline
needs to be filled correctly ahead of time. See 1031d07, the Backend Block
Diagram.

30 The VLBA Correlator Digital Filter Volume I

5.7.5.8 clacenbl(3) Clear Accumulator Enable
See Figure 17, The CLAC PAL, based on 1031d39. CLACENBL is gated with CLAC from

the CLAC RAM, to do the clear accumulator function.

5.7.5.9 tw(0-2) Tap Weight Selection
This selects which of the eight tap weights from the Tap Weight Ram to use.

5.7.5.10 preaenb\, prebenb\(11-12)
These are buffered in the PAL at U41. Then these two bits control the

selection of the DRAM Data Crossbar. See Figure 9, The DRAM Data Crossbar PAL,
based on 1031d22, for the implementation.

5.7.5.11 rescnt(57) Result Count
See the Block Diagram, 1031d25, in Volume II. Resent provides the count pulse

to the Counter which counts the result for the main filter loop. Resent increments
the counter every 2 usee in the last 8 usee of the 10 usee Main Loop.

5.7.6 For More Detail Than Shown on I031d14
The fir card sequencer is programmed via the file
/vlbsoft/pal_prom/proms/firfpc/pgO.wk3, a Lotus worksheet. On this worksheet, page
0 is miscellaneous functions, page 1 is the main loop, page 2 is the normalized
validity loop, and page 3 is the non-normalized validity loop. The macro alt-p
generates the print file fir.prn. The file fir.prn can be used as the ultimate
reference as to the sequencer functionality.

6 FIR Microprocessor Software
The 87C51 microprocessor on the FIR card has a 32K X 8 main memory RAM. The

main program for the FIR microprocessor is downloaded by the RTS into this memory.

6.1 Brief Descriptions of the Software Modules
Below is a brief description of each of the modules listed in the chart.

(Memory allocations seen below are as of 3/31/98)

The VLBA Correlator Digital Filter Volume I 31

k k k k ' k ' k ' k ' k k k ' k k ' k ' k ' k k k k ' k k ' k ' k k k ' k ' k ' k k - k k k k ' k ' k ' k k k k k k k - k ' k ' k k k i e ' k k ' k k k k k ' k ' k ' k k ' k ' k k k k ' k k k ' k ' k ' k ' k ' k k ' k ' k k k ' k k

* L O A D M A P *

* Section Name Starting Address Ending Address Size ** ★★■A:
* master.obj★ master_section 0000 0001 0002 ★
* into section 0003 0005 0003 ★
★ timerO section 000B 0010 0006 ★
•k inti section 0013 0015 0003 •k

k timerl section 001B 0020 0006 k

k uart section 0023 00A5 0083 k

★ monitor.obj ★
★ monitor section 00A6 0491 03EC *
★ romhcb.obj *
★ romhcb section 0700 07A2 00 A3 ★
★ test.obj ★
* test section 0800 0F27 0728 *
★ ram. obj k

★ ram section 2000 2013 0014 ★
* ramtest.obj ★
★ ramtest_section 2100 26F7 05F8 *
* ramhcb.obj ★
* ramhcb section 2800 2C57 0458 ★
* help.obj k

★ help section 2C58 335A 0703 k

★★

6.1.1 MASTER. ASM
MASTER.ASM has the software executed after a hardware reset to the

microprocessor. This software will initialize the card and initialize
microprocessor functions like the interrupt logic, the serial port, etc. This
module also has the interrupt vectors. After a reset, the microprocessor will
execute from an idle loop in MASTER.ASM, awaiting instructions from the terminal or
RTS, conveyed by interrupts.

6.1.2 MONITOR.ASM
The monitor software package has various terminal options supported by the

FIR microprocessor, such as display and modify memory, etc.

6.1.3 ROMHCB.ASM and RAMHCB.ASM
ROMHCB.ASM and RAMHCB.ASM handle the microprocessor communications with the

RTS, over the HCB. Some of the basic functions, such as memory load, are handled in
the ROM based software, but most protocol support is executed out of the RAM based
RAMHCB.ASM program.

6.1.4 TEST.ASM and RAMTEST.ASM
The TEST.ASM module has a number of hardware test functions that allow an

operator to test the FIR card either in the FIR test fixture or in the system.
Hooks are in place so that software tests can be written in RAM in the RAMTEST.ASM
module. This capability allows the generation of new tests without changing the FIR
microprocessor ROM.

6.1.5 RAM.ASM
RAM.ASM is mainly used for linking the ROM and RAM based programs of the FIR

together. It is not desirable to have to change the microprocessor ROM on the FIR
cards, because of a change in a RAM based program. Thus direct linking of the ROM
and RAM based modules is not possible. The strategy used in the FIR software is to

32 The VLBA Correlator Digital Filter Volume I

always link from the ROM software into the RAM software via jumps to locations that
are on page boundaries in the RAM modules. These jumps will not change memory
locations as software changes are made to the main bodies of the RAM modules. Hence
the link address in the ROM modules will not change because of a change to a RAM
subroutine.

6.1.6 HELP.ASM
This module contains ASCII terminal help screens. MONITOR.ASM has an option to

display the help screen.

6.2 Microprocessor Interrupt Structure
Almost all of the functions provided by the FIR software are accomplished in

interrupt routines. There are several interrupts, and a summary is given in the
following table.

interrupt function priority

SERIAL terminal low
INTO INTRST\ high
INTI HCB communication medium
TIMERO not used
TIMER1 not used -

The serial port interrupt is not normally used during an observation but
supports a terminal and provides the functionality of the MONITOR.ASM software.

The microprocessor gets INTRST\, an asynchronous clear from the LTA, every
131 ms. This goes to the microprocessor INTO. Currently, INTO is not implemented
in software. Instead, FIRENA is read from the LTA on a poling basis to delineate
the tics.

The INTI hardware interrupt is used for RTS HCB communications with software
support provided by the ROMHCB.ASM and RAMHCB.ASM software.

7 FIR PAL Descriptions

7.1 PAL File Locations
The PAL files are located in vlbsoft/pal_prom/pals/fir/SCCS. The file names

are firpal*.abl. Unless otherwise specified, all PALs are 22V10s.

7.2 FIRPAL1 7 Bit Modulus Counter PAL
See 1031dl5, Figure 6 on the next page, for the PAL logic. The PAL is 6E on

the lower middle of schematic 1031d01.
This PAL counts out the number of results per baseline. The number of results

is defined by the 3 bit modulus MOD which comes from the programming FIFO, as shown
on 1031dl5.sch, Figure 6.

A 74ALS163 is used as the 4 lsb's of the count. The pal provides the upper 7
bits, to allow up to 2048 results per baseline.

The VLBA Correlator Digital Filter Volume I

is

i
l i

lib iiiiiii

I j !!
§5 il* I s58.

IP |

BI
T

CO
UN

TE
R

i- 3

li i«|S!

a
l i

ills111

Figure 5 The Seven Bit Modulus Counter Pal

34 The VLBA Correlator Digital Filter Volume I

The signals LTABLRD and DRMBLRD are generated, to read out the next LTA or DRAM
baseline from the instruction FIFOs. For all but MOD equals 0, the signals are
simultaneous. MOD 0 is used while processing validities. For MOD 0, the DRAM
baseline is left as a fixed number, while the LTA baseline is read from the fifo
every 8 results, as pseudo baselines. That is the validity baseline consists of
256 pseudo baselines of 8 results each. All the validity baselines are stored in
one DRAM baseline.

Figure 6 Baseline and Result Count Switch from Block Diagram

7.3 FIRPAL2A & 2B Baseline and Result Count Switch
The PALs are 7E and 8E in the center of schematic 1031d01. The 29MA16's

provide the routing of the Baseline and Result Count. See the above section of
1031d25, the block diagram. The box labeled 29MA16 shows this switch. The diagrams
in the lower left show the switch signal paths for the two modes. Lock=0 is the
normal mode. Lock=l is the validity mode.

The LTA Baseline Request is switched between coming from the LTA Baseline
Fifo, or being jammed to 210 for Validity processing. In validity processing mode,
the output of the LTA Baseline Fifo is routed to the 8 msbs of the Result Field
request to the LTA. This forms the pseudo baselines to the LTA. Normally, the 8
msbs of the result field come from the Result Counter.

The Result field also goes to a delay fifo, then on to form the addressing
to the DRAMs. There are separate outputs from the 29MA16, since the LTA request
goes off the card.

The VLBA Correlator Digital Filter Volume I 35

7.4 FIRPAL3A & B & C 8 to 1 Mux PALs
These PALs are used to generate the ten bit address MUX to the DRAMs. Each

PAL supplies two bits of the MUX. See the right side of 1031d01 for the schematic.
Chips 9H, 10H, and 10G use FIRPAL3A. 11H uses FIRPAL3B. 11G uses FIRPAL3C.

SEE SDT\FIR\FIRPAL3A.ABL

IN FIRPAL3A
112

ROWO11a4 A02 2
COLl^a4 A1ROWObe4 A34 4

ASE L O 8
ASEL2 10

RFRSH5 B 7 11
FREAENBVi~3

U41
Il/C
12 —
13 —
14 —
15 —
16 —

ON SHT 1

A02 DO,2
A34 D3, 4

REPLACE 2 74F251'S

IN FIRPAL3B
09
SDO

ASELO
ASEL1
ASEL2

ASELO
ASEL1
ASEL2

ASELO
ASEL1
ASEL2

ASELO
ASEL1
ASEL2

Î CKK
TO DIVIDE CHIP

D |REG REG REG

MGBA\ 22V 0

SEE L031D21 FOR FIRPAL3C

111-1112--1

.2 3 A ADRM4

.2 2 B02~ ROW Q 11
COLIraS

'.2 0 B34 ROWObe5
.1 9 B5 ROWu 5

COLuS
AD RMS

:i6 PREBENB\
T5~ AENBL\
T4~ b e n b l \

REG BUFFER FOR PWR UP RESET

VLBA CORRELATOR PROJECT

6 TO 1 MUX PAL
Size Document. Number

56000L031 (L03ID20.SCH)
May 22. 1998lShaet 20 o:

Figure 7 The 8 to 1 MUX PAL
See Figure 7, The 8 to 1 MUX PAL (1031d20) for FIRPAL A & B.

5 use FIRPAL3A. Note the two extra registers provided as buffers.
FIRPAL3B is used for bits 6 and 8. The extra registers are used in

association with divide chip timing.
A discrete 74F251 is used for bit 7.

Bits 0 through

36 The VLBA Correlator Digital Filter Volume I

SEE S D T \ F I R \ F I R P A L 3 C .A B L
ON SHT 1 L O W E R R I G H T

N O T E , R O W O L T A 9 = O U T B A N K IF A N E X T R A P I N IS N E E D E D

R E G I S T E R E D
REG1 REG3
REG2 T E S T “ 0

S I M I L A R T O 74F351

NOT E b e B L M S B = A 5
P R E A S E L [0..2]
6 RQST_____ A D R SELE C T A S E L f 0. .21

B L M S B = 0 ROWO L T A 0
C OL L T A 1

B LMSB=1 ROW1 L T A 2
b e B L M S B » 0 ROW 0 b e 3
b e B L M S B - 1 ROW 1 b e 4

R O W uF F O R R A M W R . 5
COL uF W I R E 6
COL b e □ O R E D 6
R OW afresh

S A
R D
A R
M O
O E
E 0
\

U A U T E S T = 1
B D B

R O W O I t a 9 A O 2 DO , 2 b e B A N K . DO, 2
C O L l t a 9 A1 D 1 T D 1
O U T B A N K A j 4 D$, 4 1 r- D3, 4 Y
R O W u 9 AS D5 D5
C O L u 9 A 6 D 6 D 6

Y A A D R M 9
AS E L O A S E L O A S E L O A S E L O
ASEL1 ASEL1 ASEL1 ASEL1
A S E L 2 A S E L 2 A S EL2 ASEL2

BtoeADR9

0 OUT F O R A S E L = 7

N O T E R O W u 9 - A 5 » a A D R 1 9

T H I S E N A B L E S uP C O N T R O L OF THE

O U T B A N K

F R O M PC SEQ

V L B A C O R R E L A T O R PRO J E C T
N A T I O N A L R A D I O A S T R O N O M Y O B S E R V A T O R Y
C H A R L O T T E S V I L L E - V A ________________________

3 TO 1 M U X P A L FOR BIT 9
Document. Number*

5 6 0 0 0 L0 31 (L 0 3 1 D 2 1 .SCH)
December* 18. 199!lSheet

Figure 8 8 to 1 MUX PAL for Bit 9
FIRPALC is used for bit 9. See 1031d21 shown above. Bit 9 is handled

differently, in that there is a separate bit 9 for the backend buffer address. The
other 8 bits are shared between the backend buffer and the rest of the DRAMs. For
the backend, bit 9 toggles between the two backend banks, every 131 ms. For the
main DRAMs, bit 9 controls the bank 0 vs. bank 2 selection.

The VLBA Correlator Digital Filter Volume I

7.5 FIRPAL4A Data Crossbar

37

OF THESE REPLACE
8 74ALS244
3 74F2S7
4 74ALS574

NEED EXTERNAL 24 4 FOR OE TO uP

BENBLX AENBL\ UTOTT
HIZ F
F HIZ

HIZ HIZ

FSTB\ IS A GATED CLOCK SO IT CAN RUN AT 32 MHz
WHEN DOING MAC'S HAVE CONSTANTLY RUNNING.
OTHERWISE IT CAN BE A STROBE FOR A uP READ.

VLBA CORRELATOR PROJECT

DRAM DATA CROSSBAR PAL
Dcur.enl Nurr±jer

56000L031
December

(L031D22.SCH)
1991ISheet 22 o:

Figure 9 The DRAM Data Crossbar PAL
1031d22.sch presented here, shows the PAL logic. This uses the AMD29MA16 PAL,

to take advantage of the 16 outputs available. The block diagram, 1031d25, shows
the function of the crossbar. The upper left of 1031d06 shows the schematic. Chip
locations are 24E, 25E, 26E, 27E, 28E, 29E, 30E, and 31E. The crossbar routes the
32 bit F bus output from the floating point chip (FPC). The output can go to the A
or B busses to the DRAM banks, or to the input of the FPC via the S bus. The A or
B busses from the DRAM can also go the S bus. The S bus can be read by the
microprocessor via a 2 bit address, to select one of the four bits.

The 32 bit, crossbar is implemented in 4 bit slices, using 8 identical PALs.
This makes an 8 bit bus to the microprocessor.

38 The VLBA Correlator Digital Filter Volume I

7.6 FIRPAL5 Address Multiplexer

SEE FIRPAL5.
ON SHT 6

CK8 ? ADRDO__
ADRD1
ADRD2
ADRD3_
ADRD4_ ADRMO_
ADRM1_
ADRM2__
ADRM3 10
ADRM4 ll

FTOA* ~"T5

.2 3 ADRAO
\22 ADRA1
ZTT" ADRA2 f?r~ADRA3
fTT~ ADRA4

ADRBO
CTT~ ADRBI
>16 ADRB2 lT5~ADRB3
fT4~ ADRB4

25Vio---
THE DELAYED VERSION

_ADRAO
.ADRBO

ADRDO,
ADRMO.X AD RAO

ADRBO

VLBA CORRELATOR PROJECT

CHARLOTTESVI
le

ADDRESS MUX PAL DESCRIPTION
• Document Nuinbcr

5 60 00L0 31 (L031DI6.SCH)
e: June 11. 1991lSheet. 18 ot

Figure 10 Address Mux PAL Description

See 1031dl8.sch above in Figure 10, for the PAL logic. The Address
Multiplexer can also be seen above in Figure 11, as the MUXs labeled ADRA and ADRB
before the DRAMS.

The schematic 1031d06 shows the PALS in the upper left as chips 13G and 13H.
The MUX switches between the address, and the address delayed four clock cycles.
The Delay is needed, since writes occur four cycles later than reads. One DRAM
bank is being read, while the other is being written to.

The VLBA Correlator Digital Filter Volume I 39

7.7 FIRPAL6B Ironies
This PAL handles the handshake for data transfers with the Ironies card. See

Figure 12, below, for logic and timing. See the center of schematic 1031d06, chip
17B.

Figure 12 The Ironies Handshake PAL Description

40 The VLBA Correlator Digital Filter Volume I

7.8 FIRPAL7 Sequencer
See Figure 13, which is below. This is derived from 1031dl9. Also see

1031d09 in Volume II, the Sequencer Block Diagram. The pal is on schematic
1031d02, Chip 11C, right center. ATOB and MEMOE\ are standard microprocessor
control signals. They are independent of the rest of the PAL. The Page logic
synchronizes the selecting a new Page of sequencer instructions. The Page request
initially comes from the microprocessor, so is asynchronous to the sequencer.

INPUTAFE GOES LOW WHEN THERE ARE 9 WORDS IN THE FIFO
ONLY LOOK AT STOPLOOP WHEN NOT DOING LTABLRD,
SINCE IT GOES KIZ THEN SINCE IT COMES FROM THE MOD FIFO.
LTABLRD COMES DELAYED A 8 MHZ CYCLE FROM RESCNT
UPSTPLP CAN CAUSE A uP ERROR MESSAGE
IF THE TIC COMES AND THE ASSIGNED FILTERING IS NOT YET COMPLETE.

IN
OUT
MODE 0
MODE 1
MODE 2
MODE 3
MODE 4

MODE 0 12 3 4
PCLDN 0 10 0 1

SEQUPBRN 10 0 0 1 uPSTPLP X X 10 X

uPSTPLP
NO uPSTPLP
NO ACTION

STAIGHT THRU
LOAD ADR REG SET
STAIGHT THRU

GETS RID OF HIZ SECTION FOR GOING TO u P .

STOPLOOP D Q uPSTPLP

SYNC RESET
SO THAT LOOP NOT START WITH STOPLOOP SET.

SEQ BRANCH TO uP SPECIFIED ADDRESS.
IF PCLDN AND SEQUPBRN OCCUR AT THE SAME TIME,

CHECK THE LTABL FIFO STOPLOOP SIGNAL

RESULTS ARE PLACED IN THE INPUT FIFO BEFORE STARTING THE MAIN LOOP.
AT THE END OF THE LAST BASELINE, STOPLOOP GOES HIGH.
THE 4 RESULTS PIPELINED IN THE INPUT FIFO STILL

PIPELINE STOPLOOP ABOVE GIVES AN EXTRA PASS THROUGH THE MAIN LOOP
AT THE END OF THE TASK.

beFHF\ - BACKEND FIFO HALF FULLN
THIS COULD BE USED FOR A POSSIBLE STRAIGHT THRU MODE
THIS COULD CAUSE A BRANCHING IF THE BACKEND FIFO GETS TOO FULL.
IN THE NORMAL BASELINE AT A TIME MODE, THE FIFO SHOULD NEVER FILL UP
SINCE IT IS 2K, THE LARGEST BASELINE SIZE.

CK8? 1
A1S
Rd V 3
PSENN 4

5 ---------- T
SEOuPBRX 8

PREPAGE0 $
PREPAGE1 Id
PREPAGE2 ii
PCCLRN 15

ACTS AS A CEN

^23 ATOB uP CONTROL
Z22 MEMOEN
121 PCCLRN *

beFHF\ BACKEND FIFO HFN SEE L031D27
?19 LOAD N
118 uPBRN SEE L031D09
17 uPSTPLP READ BY uP
ul6 PAGEO
ZlS~ PAGE1 CLOCK ENABLED
114 PAGE 2 PAGE REG

SEE FIRPAL7
ON SHT 2, RT CENTER

PCLDN or SEQuPBR\ I I COULD BE FROM PREVIOUS PAGE, CAUSING HAVOC
LOADS OR uPBRN WOULD BE

PCCLRN-7 I I HAVE ENABLE LOAD', AND UPBRN

CK8 | I I | | I

PCLDN or SEQuPBRN I I COULD BE FROM PREVIOUS PAGE, CAUSING HAVOC
IF IN PREVIOS POSITION, PCCLRN HAS PRIORITY TO CLEAR THE COUNTER.

LOADN OR uPBRN WOULD BE I I
PCCLRN I I HAVE ENABLE LOADN AND uPBRN
THUS HAVE PCCLRN I PCCLRN* ENA3LE LOADN AND UPBRN

PCCLRN & PCCLRN' 1________ |

Figure 13 The Sequencer Control PAL Description

The VLBA Correlator Digital Filter Volume I 41

7.9 FIRPAL8 CAS

The figure above shows the CAS PAL logic. See 1031d02, the lower right
corner, Chip 22C, for the schematic. This PAL provides the buffering to generate
the asymmetrical CAS pulses to the DRAMs. See 1031d08 for more details of the DRAM
timing. The beDINCLK logic provides for writing data into the backend fifo, from
the Output DRAM. See the backend block diagram, 1031d07.

The OEMUX logic selects the device to drive the R Input Bus of the FPC. See
the block diagram, 1031d25. The choices are the Input Fifo, the Validity/Tap
Weight Ram, or the Divide chip. The OEMUX address comes from the sequencer.

42 The VLBA Correlator Digital Filter Volume I

7.10 FIRPAL9A & B VME BL & Subarray Register/ACK Counter

TO 9 TO 1 MUX

belNl 13beIN2 14
beIN3 23

RCO WHEN CNT10..5]

ACKCLK 1
FIRP AL 9 A . ABI

H E
10 I/OFO
11 I/OF1
12 I/OF2
13 I/OF3

I/OF4
1/00 I/OF 5
I/O! I/OF6
1/02 I/OF7
1/03
__ 1/04

I/OE 1/05
1/06

CLK 1/07
29MA16H-25PC
12E

3 beBSLINEO /

10 beBSLINE3 J
15 be5SLINE4 /

CNT2
~CNT3
*CNT4
~CNT5

beIN9 23

< SUBOS
OE FOR SUBARRAY OUTPUT ACKCLK 1

SEE FIRPAL9B.AB1

10 I/OFO
11 I/OF1
12 I/OF2
13 I/OF3

I/OF4
1/00 I/OF5
1/01 I/OF 6
1/02 I/OF7
1/03
__ 1/04

I/OE 1/05
1/06

► CLK 1/07
29MA16H-2SPC

3 beBSLINEG /

beBSLINEf 0. .71
beBSLINE(0..7]

beBSlINE 7 /
beSUEO
'beSUBl
"beSUB2
”beSUB3 TO uP TO SEE IF VME STILL READING FIFO.
beDONE i
_beINl 1 090056

CNT6 IN INTERNAL REGISTER OF I/OF7
CNT7
CNTfi
” CNT 9
’CNTIO

NEVER OUTPUT ENABLED.

A COUNT UF TO 4K FOR

belNll SOURCE 18A9 069002

VLBA CORRELATOR PROJECT

VME BL 6 SUBARRAY REG/ ACK COUNTER
i Document. Number

56000L031 (L031D28.SCH)
Date: November 14. 19911Shee,

Figure 15 VME Baseline and Subarray Register / ACK Counter PAL

The figure, above, shows the PAL logic. See the Backend Block Diagram 1031d07.
The schematic is on 1031d06, Chips H E and 12E, on the lower center.

The 29MA16 PALs receive the 12 bit commands from the Ironies Card. The first
12 bit word is a result count. The second is an 8 bit baseline, and 4 bit subarray
(aka BERRI).

The PALs count down the results, based on ACKCLK. The beDONE signals all the
results have been received.

The requested Baseline and Subarray go to the address generation logic.

The VLBA Correlator Digital Filter Volume I 43

7.11 FIRPAL10 Clear Accumulator (CLAC)

TSEL OF 0010 FOR CLAC FORCES 0 ELSE STRAIGHT THRU
1 2 C __________ 23 FP13 (TSELO)22 FP14 (TSEL1)21 FP15 (T S E L 2)

20 FP16 (TSEL3)19 VRAMO V R A M [0.18 VRAMl17 VRAM2

VRAMrO. .6.1_< VR AM r 0. .61 >
V R A M IS THE ADDRESS BUS TO
THE VALIDITY RAM. IT IS TRI-STATED WITH THE VALIDITY ADDRESS ON S H T . 1

.2]=TW[0..2] WHEN TWADROE=l
ELSE HIZ

CLACP\
< S N AP OEM REG GIVES DLY AND PW R UP 1

22V10 SEE FIRPAL10 SNAPOE\ IS ALWAYS 1 LATER THAN A SNAPCE\ F OR RAM BANK 7
REGISTER IN CLAC COMPENSATES FOR PIPELINING
OF THE

CLAC RAM
CLAC 1 REG

1 3PS3 CLACENBL 2

VRAMOVRAMlVRAM2

(TSELO) (TSEL1) (T S E L2) (TSEL3)

ESNAPOE REG SNAPOE

Figure 16 The CLAC PAL Logic

The figure, above, shows the PAL logic. The PAL can be found on the upper
right of the schematic 1031d02, Chip 12C.

The CLAC signal functions by manipulating the 4 bit TSEL signal to the floating
point chip (FPC). Normally the TSEL command, from the sequencer goes straight
through the PAL. If CLAC and CLACENBL are asserted, the TSEL signal is jammed to
0010. This causes the FPC to add in zero, instead of the accumulated value.

For the TW[0..2] function, see the Block Diagram, 1031d25. The PAL provides
the tristate buffering for the Tap Weight Address from the Sequencer, to the
address bus of the Tap Weight/Validity Ram.

7.12 FIRPAL11 HCB Control
This is the standard 16L8 HCB Control Pal. See schematic on 1031d04, Chip 2C.

44 The VLBA Correlator Digital Filter Volume I

7.13 FIRPAL12 Delay beLAST

See the figure, pictured above. The Delay PAL, 28B, is to the right. See
schematic 1031d02, chip 28B, in the lower left. This PAL delays the signal to
inhibit writing into the backend fifo.
is a

The delay is needed to beLAST, since there
7 cycle delay between RCNTENBL and DLYRC.

8 File Locations

SCHEMATIC
TOP LEVEL

r
HCB

3 ^ P 0 1 .a

L031D02.«ch L031D04.

PALS
PALI

L331D15.sch FIRPAL3A&B
ISTOlj 6TQ1 j
L031C20.SCHFIRPA1
I9T01I
L031D21
FIRPAL4.
IDATA I
IXBAR I

m
L331D20.sch FIRPAL10QLC31D39.sch

LAYOUTL̂AYOljT
2016d01.lay

SOFTWARE
LOADING SOFTWAREQ ‘

L031D41.SCH

MISC
BASIC FIR STRUCTURE

L031D40.SCH

TRANSITION MODULE FOR IRONICS

LO 31D05.sch 103^06. »ch

DRAM PCB*S

L044C01.SCH

L031D03.SCH

BLOCK DIAGRAMSTOP BLOCK b€ BLOCK SEQ BLOCK

L031D2 5.sch L031D07.SCH L0 31D0 9.SCH

LINE TIMING
DRAM TIDING

DIAGRAMS
L031E06.SCH DIVIDE TIMINGI J
LO 31C2 6.SCHSTRAIGHT THRU LOOP TIMINGI I

L031D32.SCH VALIDITY LOOP 5PI .J
LC31D35.SCH

DRAM CYCLES
L031D33.SCH TIC TIMINGI IL031D37.SCH

TEXT TABLE TIMING CHARTS
PRAM, APR TAPS SUBARRAY TIMING SUBARRAY EXAMPLE

L031D14.SCH 1031d3 8 .sch L031D23.SCH L031D24.SCH

Figure 18 FIR Oread Drawing Menu

The VLBA Correlator Digital Filter Volume I 45

The figure, on the previous page, shows the organization of the Oread drawings.
The Oread drawings are in /home/azalea/corrdwgs/fir/sch/SCCS.
The file /vlbsoft/firasm/d023fir.hcb contains the heb protocol at the
microprocessor level. Also in Appendix I.
The file vlbsoft/hcb/hcbFir.c contains a prototype program for the operation of the
filter card.
The file vlbsoft/hcb/hcbFirCore.c contains c functions for interfacing with the
above heb routines.
The file /vlbsoft/ironics/irFir.c contains irFirReadO for reading the ironies
card.
Copies of the fir 87 51 microprocessor assembly language code are in
vlbsoft/firasm/*.asm.
The fir card sequencer is programmed via the file
/vlbsoft/pal_prom/proms/firfpc/pgO.wk3, a Lotus worksheet. On the worksheet, page
0 is miscellaneous functions, page 1 is the main loop, page 2 is the normalized
validity loop, and page 3 is the non-normalized validity loop. The macro alt-p
generates the print file fir.prn. Executing a c program as "fircode fir.pm",
causes the 13 binary files to be generated for the roms. Running "seq" in
E:\allpro.v22\jg sets up the prom programmer for these files.
The abel files for the pals are firpall.abl thru firpalll.abl in
vlbsoft/pal_prom/pals/fir . Running "allpro 29mal6, 122vl0, or ti22vl0" in
E:\allpro.v22\jg sets up the prom programmer for these files.

9 Software for Exercising the FIR

9.1 firSST
firSSTO, in hcbtest/hcbFirTest.c, runs a multiple subarray, multiple tap

weight, filter. The different tap weight indexes are made to represent different
filter sizes. The output of 1024 tics are stored. Random data was written into the
LTA each tic. An fft, done on the output 1024 tics, reveals the filter
characteristics. Summing the ffts from multiple spectral points together gives less
noisy results. The file firout in the delivery area is generated. firout is the
file of 5 graphs intended for xvgr. In the joeenv/firasm, run diff
/deliver/jgreenbe/firout firoutstd, to check for correctness. Note, the filter
shapes plotted need to be shifted by the decimation factor, for 16, 32 and 64 tap
weight filters.

9.2 firValSST
Also in hcbtest/hcbFirTest.c is firValSST(outputdata). If outputdata is 1,

output data, otherwise output validities. firValSST runs a multiple subarray,
multiple tap weight, filter. The file firout in the delivery area is generated,
firout contains the outputs which are the fixed data or validities multiplied by
incrementing tap weights. This gives the output of, validity or data value times
the summation of the tap weights. In the joeenv/firasm, run diff
/deliver/jgreenbe/firout firoutval.

9.3 bldbsln
In the startup script, /home/ccc/vlb/vwlog/jgreenbe/hcbtst.both, call the

routine bldbsln(), to define the array bsln[][] which gives the baseline based on
two stations. I call the routines defstatlwrO and defstatupr() which are in
hcbFir.c, to initialize the array statno[20] with the stations of interest.

46 The VLBA Correlator Digital Filter Volume I

9.4 firRun
firRun runs a typical filter sequence and prints out results.

firRun(task,numstn,channel,tap weight index) in hcb/hcbFir.c
task - If task<2, this does functions that have to be done at least once, and
writes the output.dat files. if taskcl, this writes a sequence of number's in the
LTA via the hcb. Thus, in the correlator a value might be 1, so as not to alter
the LTA.

numstn - The number of stations to generate pairs of baselines from. These
are the first numstn values in the array statno[20], which was defined by
defstatlwrO & defstatupr().

In firRun, channel and tap weight index will be the same for all baselines.
The ext variable incorr should be set to 1 for use in the correlator. It

specifies, use the semaphore generated tic's, as opposed to the test fixture
waiting for firena to change. The test fixture method wastes cpu time waiting in
loops. Note incorr affects ticfc going to HCB21. The external variables, busnr
and targetnr, should be set to the appropriate bus number and target numbers.

The external variable firrptcnt set equal to 1, caused endtic, 131 ms tics
to be performed then the loop exited. If firrptcnt=0, blocks of endtic tics are
performed indefinitely. Spawning firRun with firrptcnt=0 can have the job
terminated by setting firrptcnt=l.

The function RRXlate in hcbFir.c loads the result ram so as to translate the
fir output into spectral point order. The results are read from the LTA with the
channel as the lsbs.

The function firdump in hcbFir.c reads the ironies card, and writes a file
for a pair of stations, in Chuck's backend processor format. The function syncdump
in hcbFir.c is meant to call firdump from command level, while firRun is spawned
looping with firrptcnt=0.

Now, I'll talk about the features of firRun, the main routine for operating
the fir. This document is meant as an overview instead of supplying all the
details.

Tap weights are included for testing 8,16,32, and 64 tap filters. Only the
lower halves of the tap weight arrays are initialized. The function mirror,
defined in hcbFirTest.c, fills in the upper tap weights with the reflection of the
lower array half. firlnitOnStart defined in hcbFirCore.c initializes the
microprocessor. Dividend is the dividend value to be used in normalizing
validities.

All the tap weights are downloaded to the microprocessor memory, and have
their checksums calculated, by the function DwldCkTaps, which is defined in
hcbFirTest.c. The different size filters go in different tap weight indexes.
Notice in tap weight index 0, saying nt, the number of taps, = 0 gives straight
thru mode. li = LTA integration time of 1,2, or 4 tics. li does not matter for
straight thru mode.

Each tic, the fir control fifos need to be downloaded, for both processing
the validities, and the main baselines, to be filtered. Information in the fifos
is the LTA baseline, the modulus, the tap weight index, the dram baseline, and
stoploop. Since the LTA has 210, 2048 result baselines, and the fir has 128, 2048
result baselines, dynamic baseline allocation is necessary.

The validities are always processed first. In processing the validities,
LOCK=l sets the baseline to the LTA to 210, and routes the baseline from the LTA
baseline fifo to the result field. See 1031d25, the FIR Block Diagram. The dram
baseline is set to 127. In firRun, the fifobufs are defined initially, then
identically downloaded every tic by firLdFifosO in hcbFirCore.c. This assumes the
amount of work to be done is small enough, to all be done each tic. More complex
schemes could download different baselines each tic.

The VLBA Correlator Digital Filter Volume I 47

The routine firStartMainLp(ticfc,busnr,targetnr) is defined in d023fir.hcb
as HCB21. It starts the processing for each tic's worth of baselines, having been
loaded into the fifos. One function of the argument ticfc, is to say if the fifo
list contains all normalized or non-normalized validities baselines, or lists of
both. Baselines with validities to be normalized have the validity divided into
the dividend, and stored in the validity ram for later use. If a baseline is to be
non-normalized, unity is stored in the validity ram. valfifobuf contains all 210
baselines and can be used to make all the baselines normalized or non-normalized,
determined by ticfc. If a mixture of normalized and non-normalized baselines is
desired, place the baselines to be normalized in val2fifobuf and the non-normalized
baselines in val3fifobuf. ((ticfc & 6) == 6) says to then expect and process the
two fifobufs. In firRun, the even baselines went in val2fifobuf and the odd in
val3fifobuf. For validity fifo buffers, the first byte is the dram baseline to
hold validities of 127. Then are the pairs of LTA baselines, and the byte with tap
weight index, mod, and stoploop. mod is always 0 for validities.

fifobuf is generated to give the instructions for processing the main
baselines, that is baselines other than the validities. Each baseline has a set of
3 bytes. The first byte is the LTA baseline. Second is the memory mapped dram
baseline number. Third is the byte with tap weight index, mod and stoploop. A mod
of 1,2,3,4,5,6, or 7 specifies 32,64,128,256,512,1024, or 2048 results per
baseline, respectively. Remember that the 0,1,2 bits (or 3 lsb's) of the result
number are the channel number. The assignment of the lsb's is determined in the
LTA ram tables. See vlbsoft/ltaasm/d0241ta.hcb. The stoploop bit is always
automatically assigned by the microprocessor software in HCB16, firLdFifos.

The loop with the index of looping is the main filter loop. The inner
loop processes endtic tics at a time. When filtering, it is important to end
after a number of tics equal to an integral multiple of the number of tap
weights, so that the correct value is read out. Since the filter reduces the
data output rate, erroneous values will be present for tics that are not supposed
to generate an output.

Doing a semTake (tickExtern.bigTick, wdog_cnt), when incorr==l, makes the
software wait until the beginning of a tic, without wasting cpu time. After the 2nd
semTake, firuPStatus uses hcbl7 to read uPINT\0. uPINT\0 equals 0 while the fir
sequencer is processing the baselines loaded into the fifos. When done, the
sequencer goes into an idle loop, and it sets uPINT\0=l. If the next tic comes
around and uPINT\0 (a.k.a. statusptr[1]) != 1, then too much work was given to the
fir to be done in a single tic. This condition could also set bit 1 of errorcode,
returned by hcb21.

firStartMainLp is defined more fully in d023fir.hcb, in Appendix I, as
HCB21. It returns an errorcode which should be 0 for no error. The appropriate 8
tap weights, for each tap weight, index are downloaded from the microprocessor
memory. Stored up sections of result ram data could be downloaded.

Once firStartMainLp has started the fir sequencer working on the baselines
in the fifo's, other tasks can be done by the real time system, while waiting for
the next tic. An essential task is loading the fifos with the baselines for the
next tic. Since the fifo is only reset in hcb20, this does not effect the current
tic's usage of the fifos. Optionally, hcblO and hcbll can be used to download new
tap weights into the microprocessor memory, on the fly. Also, optionally hcbll and
hcbl2 can be used to download a section of the result ram into the microprocessor
memory, on the fly. HCB21 transfers the result ram data automatically from the
microprocessor memory to the result ram. The transfer takes place in the pause at
the beginning of a tic. Be sure to complete these tasks before the next tic
starts, or the next call to efcPend could cause a whole extra tic to be waited.

9.5 Backend Access
firRun, or a similar task, should be spawned to keep the fir busy every tic.
Reading the backend via the ironies card can be run fairly

independently. The function syncdumpO can be run while firRun is spawned in an
infinite loop with firrptcnt=0. semTake (tickExtern.bigTick, wdog_cnt) syncs to

48 The VLBA Correlator Digital Filter Volume I

the beginning of a tic. firdump() calls irFirReadO which gives a pointer to
the data from the ironies card. The backend has been described in detail in
Section 3.12.

10 Transition Module for the Ironies Card
The transition module provides the drivers to drive the long cable between

the Ironies card and the FIR. The transition module is located in the back of the
VME chassis, in back of the Ironies card. See the schematics in Volume II.

J1 and J2 connect to cables to the FIR Card. J3 connects to the Ironies
card. There is a connector for power. There is a ground strap provided.

The spare card is used as a hot spare in the back of the v47a VME chassis.

11 The Ironies Card

11.1 Ironies Hardware Description
See the description in APPENDIX IV Ironies IV-3272-PIO Parallel Interface

Daughter Board. This is a daughter board on the Ironies board. This document
provides a detailed description of the data exchange handshake.

11.2 Ironies Software Description
The ironies software is under the vlbsoft/ironics directory

11.2.1 *irFirRead(firstbsln,nrbslines,nrresults,subarray)
in hcb/hcbFir.c

int firstbsln; /* first baseline */
int nrbslines; /* nr of sequential baselines */
int nrresults; /* nr of complex results */
int subarray; /* sub-array affiliation for these baselines */{

This Function reads a section of the backend buffer, and returns a
pointer. The calling function must free the pointer. A fir task must have
previously written the data into the backend buffer.

11.2.2 irReset()
In irResetO, a control word with the RESET stop format will be written
to the Ironies control register, followed by a STOP command to the Ironies
start/stop register.

CONTROL REGISTER BIT DEFINITIONS:
D15 D14 D13 D12 Dll DIO D09 D08 D07 D06 D05 D04 D03 D02 D01 D00

0x00 (any value desired) | 0 0 | 0 | 1 0 | 1 | 1 0 | = 0x0016

CONTROL BYTE PASSED TO
DAUGHTER BOARD

TIMEOUT | RELEASE |
VALUE | MODE |

TIME | FIFO
OUT | SIZE
ENA

16us after 16
burst bit

enabled

START/STOP
FORMAT

reset
and
status
dump

The VLBA Correlator Digital Filter Volume I

11.2.3 irStartDma()
In irStartDma(), a control word with the proper start format will
be written, then the START/STOP register will be given a start.

CONTROL WORD BIT DEFINITIONS

D15 D14 D13 D12 Dll DIO D09 D08 D07 D06 D05 D04 D03 D02 D01 D00

0x00 (any value desired) | 0 0 | 0

CONTROL BYTE PASSED TO
DAUGHTER BOARD

TIMEOUT
VALUE

16us

1 I 0 0 | = 0x0014

RELEASE
MODE

TIME
OUT
ENA
I
I

after
burst

enabled

11.2.4 Other Ironies Control Words
SOURCE/SINK ATTRIBUTE WORD BIT DEFINITIONS

FIFO
SIZE

16
bit

START/STOP
FORMAT

new TPB
in FIFO

D15 D14 D13 D12 Dll D10 D09 D08 D07 D06 D05 D04 D03 D02 D01 D00

|0 0 | 0 1 I 0 | 0

ADR
MODE

I I
normal VME AM EXT SUP DATA

Thus, TOFIR = 0x0dl30d0d
FROMFIR = 0x0d0d0dl3

I 0
I

1 I 0
0 I 1

1 |VME = 0x0dl3
1 |FIR = OxOdOd

I
ADDRESS MODIFIERS I BURST SIZE

I I
BUS
SIZE

SRC/SNK
LOCATION

BLK
XFR
I

not
enabled

8 xf rs
per burst

VME BUS (01 for FIR)

D32 and
disable
address
pipeline (11 for FIR)

INTERRUPT VECTOR WORD BIT DEFINITIONS

D15 D14 D13 D12 Dll D10 D09 D08 D07 D06 D05 D04 D03 D02 D01 D00

I 0 0 0

6 5 4 3 2
INTERRUPT LEVEL

1 | 0 |
I I

not
used

1 I 0
0 I

I

0 | 0 |DONE
I |ERROR
I I

5 MSBs of INUM

level 1 DONE INUM= 11101001=233
ERROR INUM= 11110001=241

MAILBOX
INTR
ENA
I

I
disabled

I
I
I

VME
INTR
ENA
I
I

disabled

The interrupt number released by the Ironies card to the VME bus in

50 The VLBA Correlator Digital Filter Volume I

response to an interrupt acknowledge, is composed of the 5 bits
from the interrupt vector word in the 5 MS bits, and the three bit
interrupt level code in the 3 LS bits. Thus the two interrupt numbers
233 and 241 above are what this test plans to use when VME interrupts
are enabled. We will start without enabling the interrupts.

DONE = 0x02e8 ERROR = 0x02f0 for interrupts not enabled
DONE = 0x02e9 ERROR = 0x02fl for interrupts enabled

Thus, NODONEINTR = 0x02e802fl
DONEINTR = 0x02e902f1

LINK ATTRIBUTE WORD

D15 D14 D13 D12 Dll DIO D09 D08 D07 D06 D05 D04 D03 D02 D01 D00

|0 0 | 0

ADR
MODE

ADDRESS MODIFIERS

1 I 0 | 0 I I 0 | 0 0 | 0 1| I______ I I
I BURST SIZE BUS LINK

BLK
XFR

normal VME AM EXT SUP DATA not
used

SIZE OPERATION I
link to
next tpb

not
enabled

D32 and
disable
address
pipeline

bits= OxOdOl

I/O CONTROL WORD

These bits are for use with the interface daughter board and are defined
by the daughter board's specifications. The exception is bit 1. This bit
set (equal to 1) defines this TPB as tagged. A tagged TPB indicates that data
is to be processed by a downloaded user program.

No reference to this field has been found in the PIO manual, so set all = 0.

Thus the following assignments are used:

testtpb.law_iocw = OxOdOlOOOO;
testtpb.reserved = NULL;

12 The FIR Test Fixture

12.1 Introduction
The FIR Test Fixture provides an environment for testing an LTA and FIR wired

together. The Test Fixture has its own power supply, and a single control board.
Connectors are provided for interfacing with the HCB and the Ironies Board. Serial
port connectors are provided to allow terminals to talk to the LTA and FIR
microprocessors.

Note the newer Testbed allows testing the LTA and FIR together also. The only
advantage the FIR Test Fixture offers is it allows easier probing of the cards.

The VLBA Correlator Digital Filter Volume I 51

12.2 FIR Test Fixture Control Logic
See 1045d01.sch in Volume II. The Control Logic Card has a 32 MHz Oscillator

to provide a clock. There is a sequencer for providing control signals. A jumper
cable connects to the HCB connection at the top of the LTA. There is a MAX232 to
drive the RS232 lines to the terminals for the LTA and FIR.

12.3 FIR Test Fixture Wiring
See 1045d02.sch in Volume II. The LTA and FIR are interconnected as in the

system, as are the Ironies and HCB Cables. In the correlator, the interface is
identical for the FIR, since the FIR only talks to the LTA, HCB, terminal, and
Ironies Card. The Test Fixture Control Logic Card supplies timing and the RS232
interface.

A jumper plug is provided to allow Test Fixture use without an LTA being
plugged in. The plug goes on the 10P1 slot. This routes signals, which are
normally supplied by the LTA, from the Test Fixture Control Logic.

12.4 Using the FIR Test Fixture
Connect the Test Fixture to a v47a HCB. Connect the Ironies cable from the

transition module to the front of the Test Fixture. On v47a, initialize with the
cload.tstfix script. Then initialize the test fixture with the <ldlf.cmd script.
The standard RTS software for the FIR can then be run.

13 Troubleshooting the FIR
This section describes tests to determine if the FIR is working properly.

13.1 Microprocessor Based Tests

13.1.1 Rom Based Tests
These tests are in the routine test.asm. They are stored in the

microprocessor onboard rom. They are accessed from a terminal hooked to the
microprocessor.

TM - test ram memory. Display 00 RAM ERRORS in a successful test.
TO - Display a selected portion of DRAM. To use, store the desired 20 bit DRAM
address in microprocessor addresses 7001, 7002, and 7003.
T2 - Test result ram. Loops and should give messages RESULT RAM WRITE COMPLETE and
RESULT RAM ERROR CHECK COMPLETE.
T4 - Do division on the value in 7000,1,2,3, and display the results. Results are
the inverse, and the product of the inverse times the original which should give 1
(3f800000)
T5 - Test validity ram straight thru the fifo. Reads VALIDITY RAM TEST COMPLETE.
T6 - Test validity ram using a queue in the fifo. Reads FIFOED VRAM TEST COMPLETE.
T8 - Test tap weight ram. Reads TAP WEIGHTS COMPLETE.
TA - Full test of 8 DRAM banks. Says DRAM TEST COMPLETE, after about 4 minutes,
then loops again.
TC - Display LTA contents for the baseline in 7000. The first 0x16 results are
displayed.

13.1.2 Microprocessor RAM based tests
These tests are in the routine ramtest.asm. They are stored in the

microprocessor external ram. (Need to have the ram downloaded by cldlf.cmd) They
are accessed from a terminal hooked to the microprocessor.

52 The VLBA Correlator Digital Filter Volume I

TF 0 - Run page 1 main loop in a tight loop.
TF 1 - Run page 1 and look at results. See corrdwgs/fir/doc/product.txt for a
version of the output expected. Needs some translation.
TF 7 - Straight thru mode. Displays some results.
TF 9 - Validity filter test. Display 46000000's.
TF A - Display validity/tap weight ram contents.

13.2 Tests via the Real Time System
The following Real Time System routines can aid in troubleshooting

the FIR.

13.2.1 firTestTaps
void firTestTaps(sa,nt,li,busnr,targetnr)
int sa; /* Subarray number 0-15 */
int nt; /* Number of tap weights, allowable values:

0 for straight thru mode 8, 16, 32, or 64 */
int li; /* LTA Integration time. 1,2, or 4 tics. */

This downloads test tap weights to the microprocessor memory, then reads it
back and calculates a checksum.

13.2.2 firTestRRLd
firTestRRLd (fc, busnr, targetnr) /* fc=0 for immediate compares. */

This downloads random numbers into the result ram, then reads back a
checksum.

13.2.3 firSST
See Section 9.1 for more information.
firSST() in hcbtest/hcbFirTest.c

This runs a multiple subarray, multiple tap weight, filter. The file firout
in the delivery area is generated. firout is the file of 5 graphs intended for
xvgr. In the joeenv/firasm, run diff /deliver/jgreenbe/firout firoutstd. Note,
the output waveforms need to be shifted by the decimation factor for 16, 32 and 64
tap weight filters.

13.2.4 firValSST
See Section 9.2 for more information,

firValSST(outputdata)
int outputdata; /* if 1, output data, otherwise output validities */
in hcbtest/hcbFirTest.c

This runs a multiple subarray, multiple tap weight, filter. The file firout
in the delivery area is generated. firout contains the outputs which are the fixed
data, or validities, multiplied by incrementing tap weights. This gives the output
of, validity or data value, times the summation of the tap weights.

In the joeenv/firasm, run diff /deliver/jgreenbe/firout firoutval.

The VLBA Correlator Digital Filter Volume I 53

13.2.5 firRun
See Section 9.4 for more information,
int firRun(task,numstn,channel,subarray)

int task; / * 0 for first call. 4 for later */
int numstn; /* number of stations */

in hcb/hcbFir.c
This is the prototype filter package for in the system.
To test, command firRun 0,4. Then in the delivery area:

cmp sl012.dat statl0_12.dat.
This looks at a binary file in the format for Chuck's backend processor.

13.2.6 hcbTestLtaFir
hcbTestLtaFir(nrbls,nowrlta)

int nrbls /* Number of lta baselines, max 210 */
int nowrlta /* If !=0, don't write the lta again. */
This provides a good comprehensive test of the lta and fir. The lta and fir

are tested by writing a sequence of numbers into the lta, and reading them out via
the fir and ironies. It works in either the test fixture, the testbed, or system.
The function without arguments performs the complete test. However, it takes a
long time to write all the baselines into the LTA. Specify a smaller number of
baselines, such as 15, to give a good abbreviated test

13.3 How to Read an LTA Baseline Via the FIR

13.3.1 How to Read an Fir Baseline
The backend, via the Ironies card, only reads FIR baselines. It is

important to remember that the FIR baselines are assigned independently of the LTA
baselines. If we want to read an LTA baseline, it must be first transferred to an
FIR baselines, then read out.

To read out an FIR baseline use the function:

int irFirTest(firstbsln,nrbslines,nrresults,subarray,dsplyflag,rsltflag)
int firstbsln; /'
int nrbslines; /
int nrresults; /'
int subarray; /'
int dsplyflag; /'
int rsltflag; /'

r first baseline */
r nr of sequential baselines */
r nr of complex results */
r sub-array affiliation for these baselines */
r 0= Normal output. 1 = outputs additional information */
r 0= dsply no results, !=0 dsply this many result. Note
normally this number is nrbslines * nrresults. */

Example: irFirTest(0,3,4,0,0,12) will display 4 results from each of
baselines 0, 1, and 2.

13.3.2 How to Read LTA Baselines via the FIR
In this example it is assumed the LTA and FIR have been loaded by using the

ldlf.cmd script. Ldlf.cmd is in the vlbsoft/diagnostics directory under SCCS, and
is delivered to the delivery area. If the testbed is being used, the scripts
load.tstbed, followed by ldtstbed.cmd, are used to initialize the testbed, before
the ldlf.cmd script.

To specify the LTA baseline to be read, use the function
defstatlwr(s0,sl,s2,s3,s4,s5,s6,s7,s8,s9)
This function specifies station numbers 0 through 19.

54 The VLBA Correlator Digital Filter Volume I

See the figure v0304b.blk for a table of Stations vs. LTA Baselines.

The Function: firRun(task,numstn,channel,tap weight index), in hcb/hcbFir.c, will
be run to transfer the LTA results. For the arguments, task will be 0, numstn,
number of stations, numstn reflects how many stations, defined in defstatlwr,
starting with sO, should be looked at. The program looks at the baselines,
reflecting all combinations of the stations considered, including self products.
Example:
defstatlwr 5,6,7 This says consider stations 5, 6 , and 7.
firrun 0,3 This says consider the first 3 stations from defstatlwr.
v47a-> firRun 0,3
The Real Time System outputs:
subarray=0
val2fc 14,mainfc 4,mod 7,task 0,stbl 0,endbl 70,
actticfc 4,
2048 results
Result ram loaded in spectral point order
drambl 0, ltabl 90, stations 5 & 5
drambl 1, ltabl 91, stations 5 & 6
drambl 2, ltabl 92, stations 5 & 7
drambl 3, ltabl 105, stations 6 & 6
drambl 4, ltabl 106, stations 6 & 7
drambl 5, ltabl 119, stations 7 & 7
beBANK=FF, uPINT0=01, Reg8001=F9
Baselines 0-2, 4 results each

9.000000e+01 42 B4 00 00 9..000000e+02 44 61 00 00
9.800000e+01 42 C4 00 00 9.. 800000e+02 44 75 00 00
1.060000e+02 42 D4 00 00 1.. 060000e+03 44 84 80 00
1.140000e+02 42 E4 00 00 1.. 140000e+03 44 8E 80 00
9.100000e+01 42 B6 00 00 9..100000e+02 44 63 80 00
9.900000e+01 42 C6 00 00 9.. 900000e+02 44 77 80 00
1.070000e+02 42 D6 00 00 1..070000e+03 44 85 CO 00
1.150000e+02 42 E6 00 00 1.. 150000e+03 44 8F CO 00
9.200000e+01 42 B8 00 00 9.. 200000e+02 44 66 00 00
1.000000e+02 42 C8 00 00 1..000000e+03 44 7A 00 00
1.080000e+02 42 D8 00 00 1..080000e+03 44 87 00 00
1.160000e+02 42 E8 00 00 1..160000e+03 44 91 00 00

Note the dram baselines are assigned consecutively, while the lta baselines
are based on the pairs of stations.

firRun performs a irFirTest (0, 3, 4, 0, 0,12) command at the end, to give the
first four results of dram baselines 0, 1, and 2. Each line represents the real
and imaginary part of the number, along with a hex representation.

The values in the baseline were written by firRun, using the routine
wrfirtst, defined in vlbsoft/hcbtest/hctLtaTestFix.c:
int wrfirtst(bsline,nrresults,offset)
int bsline; /* LTA baseline at which to write some values */
int nrresults; /* starting at result nr zero, write this many values */
double offset; /* convert this to a float and write a sequence as follows:
* /

/* * (result).real= resultnr + offset */
/* * (result).imag= resultnr + offset * 10 */

A value of offset equal to the LTA baseline number is used.
Having the task argument, in firRun, equal to 1, will prevent writing to the

LTA from occurring. This could be useful for seeing what was already in the LTA.
Example: firRun 1,3.

The VLBA Correlator Digital Filter Volume I

Subsequent irFirTest commands can be issued for further results.
Example:

-> irFirTest 1,1, 6,0, 0, 6
9.100000e+01 42 B6 00 00 9.100000e+02 44 63 80 00
9.900000e+01 42 C6 00 00 9.900000e+02 44 77 80 00
1.070000e+02 42 D6 00 00 1.070000e+03 44 85 CO 00
1.150000e+02 42 E6 00 00 1.150000e+03 44 8F CO 00
1.230000e+02 42 F6 00 00 1.230000e+03 44 99 CO 00
1.310000e+02 43 03 00 00 1.310000e+03 44 A3 CO 00

57

APPENDIX I FIR HCB Protocol
FIR HCB PROTOCOL NRAO DRAWING #A56000D023
TEXT FILE In component firasm: file d023fir.hcb
VLBA CORRELATOR PROJECT
NATIONAL RADIO ASTRONOMY OBSERVATORY
CHARLOTTESVILLE, VA 22903
I) SUMMARY OF ALL FUNCTION CODES
All function codes below are in HEX:

TRANSFER TYPE PROTOCOL
NOP: 00 ZZ (ZZ = RQRD DUMMY BYTE)
WRITE MEMORY: 01 00 00 AA AA CC CC DD----DD
READ MEMORY: 02 00 00 AA AA CC CC
CALCULATE CHECKSUM: 03 00 00 AA AA CC CC

FREQ OF OCCURRENCE
TEST
INIT
TEST
INIT

DWNLDTAPS
CALCTWCHECKSUM
LDRESULTRAM
CALCRRAMCS (FC=0)
CALCRRAMCS (FC=1)
LDALLRRAM
LDVRAMONE
LDFIFOS (FC, bit3=l)
LDFIFOS (FC, bit3=0)
UPSTATUS

10 TWI NT LI AA AA AA AA BB BB BB BB ------ OBS
11 TWI (2 bytes returned, msbyte 1st) OBS
12 NN BERRI FC AA AA BB BB ----------------OBS
13 NN BERRI FC (Two byte CS CS returned) TEST
13 NN BERRI FC CS CS OBS
14 ZZ TEST
15 ZZ TEST
16 FC NN VD LA MA LB MB ------------------ OBS
16 FC NN LA DA MA LB DB MB ----------------OBS
17 (3 bytes returned) OBS

INITONSTART
STARTMAINLP

20 AA AA AA AA
21 FC (1 byte error code returned)

OBS
OBS

Checksum is of the form:
AAAAAAAA AAAAAAAA

+ 00000000 BBBBBBBB
ACCUMULATED SUM
CURRENT BYTE BEING SUMMED INTO CHECKSUM

AAAAAAAA AAAAAAAA NEW ACCUMULATED SUM

FUNCTION DURATIONS
The below table shows the name for the function code in the include file
hcbFuncCodes.h. Also shown are the times in milliseconds from a survey of how long
the functions take. Approximate data rates in KBytes/second are shown. There are
potential problems for functions that have an equivalent transfer rate of less than
50 KBytes/sec, and take more than 10 ms. For a detailed explanation of the
measurements taken see /home/azaleal/staff/jgreenbe/notes/survey.txt. Functions
labled INIT below are only used during initialization, where timing is not critical.
The timing of functions labeled TEST is not of concern when observing. Data rates
are not give where minimal data is transferred.

58 APPENDIX I FIR HCB PROTOCOL

INCLUDE FILE FC
NAME

Straight Through Mode
DWNLDTAPS 0x10
CALCTWCKSUM 0x11

TIME RATE
(ms) (KBytes/sec)

0.170
0.128

8 Tap Filter - Times vary with the number of tap weights downloaded
DWNLDTAPS 0x10 0.598 53.5
CALCTWCKSUM 0x11 0.285
64 Tap Filter
DWNLDTAPS 0x10 2.988
CALCTWCKSUM 0x11 1.895

85.6

For a 512 byte section
LDRESULTRAM 0x12 15.6
CALCRRAMCS 0x13 7.6

32.8

LDALLRRAM
LDVRAMONE

0x14
0x15

TEST
TEST

Loading fifos for 210 Validity Baselines
LDFIFOS 0x16 4.4 96.1
Loading fifos for 254 Main Baselines
LDFIFOS 0x16 9.3 81.9
UPSTATUS 0x17

INITONSTART 0x20
STARTMAINLP 0x21

Fast reading of three bytes.
0.338
This depends on the quantity of instructions loaded into the fifos,
The fir sequencer is what is then busy.

II) DETAILED DESCRIPTION OF EACH FUNCTION CODE
C functions for calling these routine are mentioned and are in
VxWorks/hcbus/hcbnew/hcbFirCore.c All function codes below are in HEX:
1) NOP and MAIN MEMORY OPERATIONS, FUNCTION CODES 00, 01, 02 and 03:

NOP: 00 ZZ (ZZ = REQUIRED DUMMY BYTE)
WRITE MEMORY: 01 00 00 AA AA CC CC DD DD
READ MEMORY: 02 00 00 AA AA CC CC
CALCULATE CHECKSUM: 03 00 00 AA AA CC CC (2 bytes returned, msbyte 1st)

WHERE
00 00 AA AA is a 32 bit start address and CC CC is a transfer count with
MS byte first.

2) LOAD FIR ON BOARD RAMS AND FIFOS
**
Func 10 = Send Tap Weights (single tap weight index)

DWNLDTAPS 10 TWI NT LI AA AA AA AA BB BB BB BB --
The tap weight table in the microprocessor has room for sixteen sets of up to 64 tap
weights. The tap weight index identifies which of the sixteen sets is referred to.
It is assumed that the section referred to by the tap weight index, being loaded is
not currently being used for observing. This table of tap weights will be stored in
the uP RAM. The uP will select the correct tap weights for each tic. Tap weights
can be sent for 8, 16, 32, and 64 tap filters. The tap weight index can be later
switched to by referring to the tap weight index field in the command fifos (See
function 16, LDFIFOS).

TWI = Tap Weight Index number being sent (0-15)
NT = Number of tap weights

0 - straight thru mode. If NT=0, unity tap weights are automatically sent to
the fir, independent of the values sent by this function.

8 - 8 tap filter
16 - 16 tap filter
32 - 32 tap filter

APPENDIX I FIR HCB PROTOCOL

64 - 64 tap filter
FF - DO NOT LOAD ANY TAP WEIGHTS. COULD BE USED FOR UNUSED TAP WEIGHT INDEX

LI = LTA integration time. 1,2, or 4 tics. Not matter for straight thru mode
AA AA AA AA = First of NT, 32 bit, IEEE Single Precision tap weight

(ie. TO). MSByte first.
STORE THE TAP WEIGHTS IN 0-FFFH, AS 16 TAP WEIGHT INDEXS OF 64 TAPWEIGHTS. 16*64*4=4K
7100-710F NT - NUMBER OF TAP WEIGHTS FOR EACH TAP WEIGHT INDEX
7110-711F LI - NUMBER OF 131 MS PERIODS PER DUMP TIME FOR EACH TAP WEIGHT INDEX
7120-712F ID - INDEX TELLING PLACE IN TAP WEIGHT CYCLE AS A FUNCTION OF TAP
WEIGHT INDEX. ZEROED WHEN THE VALUES FOR THAT TAP WEIGHT INDEX INITIALLY LOADED.

The tap weight sequencing is initially zeroed when the tap weights are loaded by HCB
Function 10 DWNLDTAPS. There is the assumption that DWNLDTAPS will not be called for a
tap weight index (TWI) currently used for observing. There is no double buffering. HCB
Function 21 STARTMAINLP is called each tic. STARTMAINLP downloads the eight tap weights
for each active TWI, then increments the counter which keeps track of the tap weight
cycling for that TWI. Thus it is critical for the RTS to keep track of during which tic
DWNLDTAPS is executed, to know where the FIR is in the tap weight cycle for that TWI.
Since the two heb functions DWNLDTAPS and STARTMAINLP cannot be called at the same time,
there will be no conflict. The first call to STARTMAINLP after DWNLDTAPS will be the
beginning of the tap weight cycle for that TWI.
Called by c function:
void firDwnldTap (twi,nt,li,buf,busnr,targetnr)
int twi; /* Tap Weight Index number 0-15 */
int nt; /* Number of tap weights, allowable values: 0 for straight thru mode

8, 16, 32, or 64 */
int li; /* LTA Integration time. 1,2,or 4 tics. Not looked at in straight thru mode.*/
unsigned char *buf; /* the actual incoming tap weights */
int busnr, targetnr;

Func 11 = Calculate Tap Weight Checksum (single tap weight index)
CALCTWCHECKSUM 11 TWI (2 bytes returned, msbyte 1st)
TWI = Tap Weight Index number (0-15)

The number of tap weights for that tap weight index is looked up in the uP RAM. The check
sum is done on the data from the uP RAM. The TW ram is not checked, since only 8
TW's/TWI go into the TW RAM each tic. A 2 byte check sum of the tap weight bytes is
calculated and returned. This does not have to be done during the 20 ms gap.
If this tap weight index has 0 tap weights for straight thru mode, 0 is returned as the
checksum. However once filtering has begun, straight thru mode might return an
erronious checksum, due to ff being stored as the number of taps. ff signals that
the unity tap weights have already been downloaded and do not need to be
redownloaded each tic. The checksum does not have much meaning for straight through
mode anyway, so it is not advised to call this functions for a straight through mode
tap weight index. If you do, it won't hurt anything as long as filtering has not begun.
firTwCksumErr below will immediately return if the number of taps (nt) equals zero,
indicating straight through mode.
Called by c function, which compares the uP supplied checksum to the checksum of the
buffer data:
int firTwCksumErr (twi,nt,buf,busnr,targetnr) /* return 1 if checksum error, else 0 */
int twi; /* Tap Weight Index number 0-15 */
int nt; /* Number of tap weights, allowable values: 0 for straight thru mode

8, 16, 32, or 64 */
unsigned char *buf; /* the actual incoming tap weights */
int busnr, targetnr;

Func 12 = Load Result Ram (Single Section for a single backend result ram index)
LDRESULTRAM 12 NN BERRI FC AA AA BB B B --

The result ram is loaded in sections during the 20 ms pause each tic. The sections
are stored in the uP RAM, to be transferred to the result ram during the 20
ms pause in the next 131 ms interval. This call just affects the uP RAM. The
total ram consists of 16 backend result ram index sections.

NN = Section 0-7 of 256, 16 bit results. 8 * 256 = 2048 results. Store in 7134.
BERRI = Backend Result Ram Index is 0-15. FF Means no data to download at the

next tic. After downloading the data, substitute FF here. Store in 7135.
Note, each BERRI consists of 2048 independent results.

60 APPENDIX I FIR HCB PROTOCOL

FC = 0 load data now - Immediately transfer data into the result ram
1 load data later - wait until 20 ms gap in tic to download the data.

AA AA = First of 256, 16 bit values, MSByte first (512 bytes).
Store in 7200-73FF as 16 bit words, MSbyte 1st.

Called by c function:
firLdResultRam (nn, berri, fc, buf, busnr, targetnr) in hcbFirCore.c

int nn, berri, fc, busnr, targetnr;
unsigned char *buf;

Func 13 = Calculate Result RAM Checksum
CALCRRAMCS (FC=0) 13 NN BERRI FC (Two byte checksum CS CS returned immediately)
CALCRRAMCS (FC=1) 13 NN BERRI FC CS CS
NN = Section 0-7 of 256, 16 bit results. 8*256=2048 results. Store in 7136
BERRI = Backend Result Ram Index is 0-15. Store in 7137. After comparing

the checksum, CALCRRCS stores FF here.
FC = 0 means return a 2 byte check sum CS CS immediately

1 means wait until 20 ms gap in tic to down load the data.
During the next 20 ms gap. Read the Backend Result Ram Index BERRI, Section NN of
the result ram and calculate a 16 bit checksum of the 512 bytes in Section NN.
Compare that checksum with CS CS stored in 7139-713A. For a checksum error, set
error bit 2 sent in function 21. CS CS = 16 bit checksum, msbyte first. This is the
summation of both the ms & Is bytes.
Called by c function, which compares the uP supplied checksum to the checksum of the
buffer data:
int firCalcRRamCS (nn, berri, fc, buf, busnr, targetnr)

/* return 1 if checksum error, for fc=0 */
int nn,berri,fc,busnr,targetnr;
unsigned char *buf; /* 512 bytes of result ram data */

Func 14 = Load entire result ram. ZZ = dummy value.
LDALLRRAM 14 ZZ

This provides a default, result ram loading. The result output is set equal to the
count address in. Bits 14-11 output are set equal to the backend result ram index
address input. Since the value stored equals the address, the lsb of the BERRI (bit
11)= beBLMSB. The 2nd bit of the BERRI (bit 12) = LASTRES. LASTRES indicates the
last result of section indicated by BERRI. LASTRES is used to sense an error
condition 1 sent by Func 20.
Called by c function:
void firLdAHRRam(busnr, targetnr)

int busnr, targetnr;

Func 15 = Load validity ram with IEEE Floating Point 1.0 in all locations.
LDVRAMONE 15 ZZ ZZ = dummy value

This provides a default loading of the validity/tap weight ram.
Called by c function:
void firLdVRamOne(busnr, targetnr)

int busnr, targetnr;

Func 16 = Load Mod, LTABL, and DRAMBL Fifo's
LDFIFOS (FC, bit3=l) 16 FC NN VD LA MA LB M B --
LDFIFOS (FC, bit3=0) 16 FC NN LA DA MA LB DB M B --
FC = Function Code.

bit 0 - If this bit is a 1,
reset the fifos initially, plus provide an initial write,

bit 1 - If this bit is a 1,
place an initial header of 16 fifo values for the tap weights.
This header is used in loading the correct values in the tap
weight and clac rams.

bit 2 - If this bit is a 1,
add an extra baseline at the end of the fifo with stoploop = 1.

bit 3 - If this bit is a 1, we are doing validities, so the format is:
LDFIFOS 16 FC NN VD LA MA LB M B --
Note we do not load multiple DRAM fifo values, but a single

APPENDIX I FIR HCB PROTOCOL

value of VD. If this bit is a 0, we are doing the main
loop, so the format is:
LDFIFOS 16 FC NN LA DA MA LB DB MB --

Typical usage might be FC=14 for processing the validities,
the FC=4 for doing the main loop.

NN = Number of baselines not including the extra one at the beginning or end
for stoploop. Each baseline consists of the 2 or 3 bytes Lx Mx or
Lx Mx Dx defined as below.
0 gives the max # of 256. There can be multiple calls for >256.

VD = Single validity DRAM baseline, typically 127 as a 2048 result baseline,
loaded if bit3=l.

Lx = 8 bit baseline to be sent to the LTA.
Dx = 8 bit baseline sent to the DRAM modules.

The 9th bit of Dx, BLMSB will be automatically set to 0 by the uP
when MOD=7 OR 0, so no action is required by the RTS.

Mx = STOPLOOP(MSB), TWI3, TWI2, TWI1, TWIO, MOD2, MODI, MODO
STOPLOOP - Signals the end of the list of baselines for a given tic.

It requires an extra pad baseline value at the end as
signaled by FC bit 2.

TWI[0..3] Tap Weight Index affiliation of that baseline. This
corresponds to a section of the tap weight table loaded by
function 10, DWNLDTAPS.

MOD[0..2] Modulus to tell number of results per baseline, defined:
MOD[0..2] | *0 1 2 3 4 5 6 7

RESULT/BASELINE | 2048 32 64 128 256 512 1024 2048
* MOD 0 is used only for loading the validity baseline, #210.

Called by the c function:
firLdFifos (fc, nn, buf, busnr, targetnr) /* nn = 1 to 256 */

/* buf consists of VD LA MA LB MB ... if bit 3=1 or LA DA MA LB DB MB if bit 3=0 */
int fc, nn, busnr, targetnr;
unsigned char *buf;

Func 17 Read uP Status bytes
UPSTATUS 17 (AA BB CC returned)

AA = beBANK 0 or FF to indicate backend bank selected.
BB = uPINT\0 0 when processing data. 1 when idling.
CC = Reg 8001 contents where

bit 0 = FIRENA from the LTA. 0 during the pause for not observing,
bit 1 = uPSTPLP for determining if the main loop reached stoploop.
bit 2 = beDONE requested backed count completed,
bit 3 = uPbeLAST tells last result of baseline,
bits 4-7 are spares

Use uPINTXO to know if FIR is reading LTA or in idle.
Called by c function:
firuPStatus(statusptr,busnr, targetnr)
int busnr, targetnr;
unsigned char *statusptr; /* points to 3 bytes returned */
★★
Func 20 Initialization on Startup

INITONSTART 20 AA AA AA AA
Reset the baseline and mod fifos, since in tic mode hcbl6 will not do the reset.
Initially set NT=FF for all 16 Tap Weight Index locations. This says no action will
be required for that TWI.
7100-710F NT - 0,8,16,32, OR 64. NUMBER OF TAP WEIGHTS FOR EACH TAP WEIGHT INDEX

FF CAUSES NO ACTION .
HCB 10 Downloads actual tapweights for use later.

Put FF in 7135 and 7137 to say there is no result ram section there to store.
Put FF in the error byte in 713B.
Initially set beBANK backend bankswitch bit in 7138.
Note the tic count ID was zeroed by hcblO, when the tap weights were downloaded.
Load the divide chip control word.
Load AA AA AA AA as the divide chip dividend. AA AA AA AA is a IEEE floating point
number, MSBYTE first. 8192 (AA AA AA AA = 46 00 00 00) would be a typical value.
Called by c function:

firlnitOnStart (dividend, busnr, targetnr)
int busnr, targetnr;
float dividend;

62 APPENDIX I FIR HCB PROTOCOL

Func 21 Start main filtering loop
STARTMAINLP 21 FC (1 byte error code returned)

Before any calls here:
Call Func 20 at least once for initialization.
Multiple calls to Func 16, LDFIFOS, to store the baselines, moduli, TWIs, and
stoploops in the fifo's for normalized validity loop, non-normalized
validity loop, and main loop filtering.
Call Func 10 & 11 to download the tap weights for the current Tap Weight Indices.
Call Func 12 & 13 to load the result ram for backend result mapping.

Alternately Func 14 could give a default result ram loading.

FC is the tic function code.
bit 0 = 1 for non-tic, asynchronous test mode, 0 for normal tic mode,
bit 1 = 1 for validities to be normalized having been loaded into the fifo.
bit 2 = 1 for validities to not be normalized having been loaded into the fifo.

Note: Both bits 1 & 2 being 0 is an error state.
If both bits 1 & 2 are 1, have the 'validities to be normalized' loaded first, by
calling HCB16 with a fc of 1110B. Then load the validity baselines, which are the
'validities not to be normalized', by calling HCB16 with a fc of 1100B. If there
are only normalized or non-normalized validities, have a single call to HCB16 with a
fc of 1110B. The main loop baselines are then loaded by HCB16 with a fc of 0100B.

bit 3 = 1 for the correlator using semaphores to synchronize tics.
Otherwise use FIRENA to synchronize tics

as in the test fixture. See the flowchart of HCB21 following.

SET PAGE 0 ANC OBSERVE-0 F OR A CALL T O 5E BELOW.
TOGGLE b«BANK BIT (ORIGINALLY 1 FROM HCB2S)
LOAD THE TAP WEIGHT ANC CLAC RAMS

SALP 5E CLEARS RESULT COUNTER TO READ SUBARRAY FROM FIFO.
|”“ CALL LDTWBYSA TO LOAD TAP WEIGHTS FOR SUBARRAY
I INCREMENT ID TIC COUNT
I LOOP FOR ALL 16 SUBARRAYS
IF 7135J-FF SUBROUTINE LCRRSECT LOACS RESULT R AM SECTION.

DORCSJM IF 7137!—FF SUBROUTINE RRCSERR DOES THE RESULT RAM CHECKSUM CALCULATION.
RECALL HCB13 SUPPLIED CHECKSUM AND COMPARE.
SET BIT 2 OF ERROR BYTE IF CHECKSUM ERROR.

RETURN FROM SETUP]STAY HERE UNTIL FIRENA-1 (PAUSE OVER)ILCALL DOVALS, WAITING UNTIL SEQUENCER CONE. OBSERVE-1.
SET PAGE 1, DOING MAIN LOOP.IRETURN FROM INTERRUPT WITHOUT WAITING FOR SEQUENCER TO FINISH.

Figure 19 HCB21 Flowchart

APPENDIX I FIR HCB PROTOCOL

Func 21 will be called once per tic, sometime before the 20 ms pause. The 20 ms
pause may actually be more or less than 20 ms. The pause allows the LTA to do
maintenance functions without being accessed. If Func 21 is called during the
pause, bit 3 of the errorcode will be set, and the uP will wait for the next 20 ms
pause. The 20 ms pause is defined by FIRENA from the LTA going low. Note, the
microprocessor waits for FIRENA without returning from the interrupt. Thus, the hcb
bus is not available for other functions to use. In a given tic, STARTMAINLP should
be the last function called, since it will keep the bus until after FIRENA goes low.
First, return the stored error byte from the previous tic. The error byte is stored
in uP memory 713B. The uP outputs OBSERVE, equal to FIRENA, going low in the 20 ms
pause to inhibit backend activity. In the pause, the uP routine SETUP is called.
When FIRENA goes high, have the sequencer do the validity loop or loops, then the
main loop. The main loop returns from interrupt while the sequencer is still
working. The RTS, while the sequencer is doing the main loop, can call HCB10,
HCB11, HCB12 or HCB13, to download tap weights and result ram values to the uP RAM,
and calculate checksums. Do not exceed the time remaining in the tic. Note the
next call to an HCB function is not acknowledged until the previous call is done.
This provides a way to keep the RTS synchronized with tics. That is the next tic's
call to HCB21 cannot start until the previous tic's call is done. Since HCB21 waits
for the pause, it synchronizes to the tics. The first call to Func 21 (after
HCB20 did an initialization) returns the error byte of FF stored by HCB20. This
first call stores a garbage errorcode from the nonexistent previous tic. The second
call to Func 21 returns this garbage errorcode, and stores the error byte from the
first tic. The third call returns the errorcode for the first tic.
On calls to HCB21 when FC = 1: (Non-tic asynchronous test mode)
Initiate the main filter loop based on no tics from the LTA. That is: Call SETUP.
Initiate the validity and main filter loops immediately, without any waiting for
the 20 ms pause. Return the error byte, to indicate the processing is done.
The uP routine SETUP performs the following in this order:
Zero the stored error byte from the previous tic. The error byte is stored in 713B.
The bits in the error byte are as follows: (a set bit indicates an error)

bit 0 = The list of baselines did not finish processing by the end of the tic.
This is sensed by STOPLOOP from the DRAM fifo not occurring.

See Figure 13, The Sequencer Control PAL Description.
uPSTPLP is read at the beginning of SETUP. This bit is 1 if fc bit0=l,
since STOPLOOP has not yet been set, since SETUP is called at the beginning,

bit 1 = The backend did not finish reading all the data by the end of the tic.
This is sensed when uPbeLAST is not set by LASTRES from the result
ram. (see 1031dl6) uPbeLAST is read at the beginning of SETUP.
Specifically, the backend did not finishe writing the baseline into the backend
fifo.

bit 2 = a checksum error generated when the checksum supplied from the RTS via HCB13,
does not compare to that obtained by reading the section of the result ram
specified by HCB13. The reading occurs in SETUP,

bit 3 = The call to HCB21 (FC bit0=0) occurred with FIRENA already low.
This bit will be returned immediately.

bit 4 = After the bit 1 error condition above occurred, where the backend did not
finish writing a baseline into the backend fifo, the software waits for uPbeLAST to
go high. uPbeLAST going high indicates the backend finished writing that baseline
in the backend fifo. If FIRENA returns high, indicating the end of the LTA pause,
and uPbeLAST still hasn't returned high, bit 4 is set. The writing of the baseline
into the fifo should take less than the time of the FIRENA pause. The most likely
cause of uPbeLAST not ever returning high, is that LASTRES was not set
correctly in the result ram, for the size fft used.

The software will wait for FIRENA = 1, before proceeding.
Read uPSTPLP (bitl) and set error byte bit 0 if uPSTPLP != 1.

uPSTPLP signals the end of the main loop.
That means the next tic started before the baselines were all processed.
See Figure 13, The Sequencer Control PAL Description.

Read uPbeLAST(bit3) and set error byte bit 1 if uPbeLAST !=1.
That means the backend had not finished reading a baseline when the next tic
started. See L031D16. Note beDONE could be read by HCB17 to see if the
IRONICs supplied count has been met with.

When FC = 0: (Tic mode for use with the correlator)

64 APPENDIX I FIR HCB PROTOCOL

Toggle the backend bank switch bit.
Load the tap weight and CLAC rams by calling LDTWBYSA then, increment the Tap Weight
Index tic counts (ID). See the following flowchart of LDTWBYSA. HCB10 has previously
downloaded all the tap weights for each active Tap Weight Index to the uP RAM. The uP
routine LDTWBYSA downloads the 8 appropriate tap weights for each Tap Weight Index to the Tap
Weight Ram. This happens once per tic. The tic count (ID) keys which tap weights to
download each tic. The tap weight ram only holds 8 tap weights per Tap Weight Index at a
time. Transfer the result ram section data previously stored in the uP ram by HCB12, to
the result ram. Read the specified result ram section, calculate a checksum,
compare to value stored from HCB13, set error bit 2 if error.

Figure 20 LDTWBYSA Flowchart

When FIRENA returns high, or if FIRENA is already high, do the following:
Using the baselines in the fifos, load the validity ram while filtering validities,
Initiate the main filter loop to process the baselines in the fifo until STOPLOOP is
encountered.
Called by c function:
unsigned char firStartMainLp (fc, busnr, targetnr) /* returns errorcode */

int fc,busnr,targetnr;

APPENDIX I FIR HCB PROTOCOL 65

(E N A I I OBSERVE P A R A L L E L S L
|lST firStartMainLp (HCB21)
|returns dummy error byte immediately

0 SETUPO
Q d o v a l

fob MAIN LOOP IPAGE 1 IDLE LOOP I
|HCB21 done so interrupts enabled.

^]RTS downloads next tics FIFO's via HCB16 firLdFifos
Note the RTS was idle waiting for the response to the HCB16 interrupt.

I* I RTS downloads tw# s and result ram data to uP memory via HCB 10,11/12,13
I 1RTS reads backend via ironies
Note having the ironic read as the last task is more efficient,
since the page 1 idle loop allows a faster data xfer than the main loop.

I I Wait until in page 1 idle, then write new LTA data.
Give message if firena goes low without page 1 idle.

Note in the correlator, the LTA will bankswitch, so there can be simultaneous reading and writing.
|2nd firStartMainLp (HCB21)
|returns error byte generated in SETUPO immediately

Note this contains dummy data from the pre zero tic.
□ SETUP1

□ DOVAL
IPO MAIN LOOP IPAGE 1 IDLE LOOP
|HCB21 done so interrupts enabled.
I IRTS downloads next tics FIFO'

I IRTS downloads tw's and result rare data
I IRTS reads backend via ironies

I 1 Wait until in page 1 idle,
then write new LTA data.

(3rd firStartMainLp (HCB21)
|returns error byte

This contains the errors from TIC 0,
8 TAP FILTER recorded by SETUPl

|TIC 0 |TIC 1 |TIC 2 |TIC 3 |TIC 4 |TIC 5 |TIC 6 |TIC 7 |TIC 8 |TIC 9 |TIC 10 |TIC 11 |TIC 12 |TIC 13 I
* * * * * # * * * * * * * * *

32 tap filter
|TIC 32 |TIC 33 |TIC 34 |TIC 35 |TIC 36 (TIC 37 |TIC 38 |TIC 39 |TIC 40 |TIC 41 |TIC 42 |TIC 43 |TIC 44 |TIC 45 |TIC 46 |
1ST OUTPUT WITH A FULL 32 TICS WORTH OF DATA

*** EQUALS READ VALID DATA

Figure 21 Tic Timing

The above figure shows the timing of the first two tics.

67

APPENDIX II FIR Memory Allocations
THE FOLLOWING MEMORY LOCATION ASSIGNMENTS ARE FOR 87C51 MICROPROCESSOR.
LOC FUNCTION
00 REGISTER o, BANK 0
01 REGISTER 1, BANK 0
02 REGISTER 2, BANK 0
03 REGISTER 3, BANK 0
04 REGISTER 4, BANK 0
05 REGISTER 5, BANK 0
06 REGISTER 6, BANK 0
07 REGISTER 7, BANK 0
08 REGISTER o, BANK 1
09 REGISTER 1, BANK 1
0A REGISTER 2, BANK 1
0B REGISTER 3, BANK 1
OC REGISTER 4, BANK 1
0D REGISTER 5, BANK 1
0E REGISTER 6, BANK 1
OF REGISTER 7, BANK 1
10 REGISTER 0, BANK 2
11 REGISTER 1, BANK 2
12 REGISTER 2, BANK 2
13 REGISTER 3, BANK 2
14 REGISTER 4, BANK 2
15 REGISTER 5, BANK 2
16 REGISTER 6, BANK 2
17 REGISTER 7, BANK 2
18 REGISTER 0, BANK 3 USED IN HCB INTERRUPT
19 REGISTER 1, BANK 3 USED IN HCB INTERRUPT
1A REGISTER 2, BANK 3 USED IN HCB INTERRUPT
IB REGISTER 3, BANK 3 USED IN HCB INTERRUPT
1C REGISTER 4, BANK 3 USED IN HCB INTERRUPT
ID REGISTER 5, BANK 3 USED IN HCB INTERRUPT
IE REGISTER 6, BANK 3 USED IN HCB INTERRUPT
IF REGISTER 7, BANK 3 USED IN HCB INTERRUPT
20 BIT ADDRESSABLE (BITS 00 THRU 07)
21 BIT ADDRESSABLE (BITS 08 THRU OF)
22 BIT ADDRESSABLE (BITS 10 THRU 17)
23 BIT ADDRESSABLE (BITS 18 THRU IF)
24 BIT ADDRESSABLE (BITS 20 THRU 27)
25 BIT ADDRESSABLE (BITS 28 THRU 2F)
26 BIT ADDRESSABLE (BITS 30 THRU 37)
27 BIT ADDRESSABLE (BITS 38 THRU 3F)
28 BIT ADDRESSABLE (BITS 40 THRU 47)
29 BIT ADDRESSABLE (BITS 48 THRU 4F)
2A BIT ADDRESSABLE (BITS 50 THRU 57)
2B BIT ADDRESSABLE (BITS 58 THRU 5F)
2C BIT ADDRESSABLE (BITS 60 THRU 67)
2D BIT ADDRESSABLE (BITS 68 THRU 6F)
2E BIT ADDRESSABLE (BITS 70 THRU 77)
2F BIT ADDRESSABLE (BITS 78 THRU 7F)
30 START OF STACK
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F
60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
7B
7C

FUNCTION

APPENDIX II FIR Memory Allocation

INTO INTERRUPT VECTOR
INTO INTERRUPT VECTOR
TIMO INTERRUPT VECTOR
TIMO INTERRUPT VECTOR
INTI INTERRUPT VECTOR
INTI INTERRUPT VECTOR
TIM1 INTERRUPT VECTOR
TIM1 INTERRUPT VECTOR
UART INTERRUPT VECTOR
UART INTERRUPT VECTOR

TEMPORARY STORAGE, LDTWCL
TEMPORARY STORAGE, LDTWCL
TEMPORARY STORAGE, CALCRRCS ALSO IN LDTWCL
TEMPORARY STORAGE, TEST 2, CALCRRCS, LDTWCL
LAST TERMINAL KEY
MONITOR ADDRESS SHIFT IN
MONITOR ADDRESS SHIFT IN
MONITOR ADDRESS SHIFT IN
MONITOR ADDRESS SHIFT IN
MONITOR SHIFT IN INDEX
LAST MONITOR FUNCTION
MONITOR TEMP STORAGE
MONITOR TEMP STORAGE

APPENDIX II FIR Memory Allocation 69

THE FOLLOWING BIT LOCATION ASSIGNMENTS ARE FOR THE FIR
87C51 MICROPROCESSOR.

BIT FUNCTION
DISPLAY,PAGE, TEST FLAG 1
NIBBLE FLAG
DISPLAY,PAGE, TEST FLAG 2
DISPLAY/PAGE INTERNAL,EXTERNAL MEM FLAG
D ONLY AND P ONLY FLAG
MODIFY FLAG

HELP FLAG
clear= send only c/r when c/r hit; set= continue last dsply

09
0A
OB
0C
0D
0E
OF
10
11
12
13
14
15
16
17
18
19
1A
IB
1C
ID
IE
IF
20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35

7F

00 MONITOR FUNCTIONS
01 MONITOR FUNCTIONS
02 MONITOR FUNCTIONS
03 MONITOR FUNCTIONS
04 MONITOR FUNCTIONS
05
06

MONITOR FUNCTIONS
07 MONITOR FUNCTIONS
08 C/R ONLY FLAG

70 APPENDIX II FIR Memory Allocation

FIR MICROPROCESSOR RAM STORAGE ALLOCATION IN HEX
0-FFF TAP WEIGHT TABLE STORAGE
1000 3FFF PROGRAMS
7000-70FF MISCELANEOUS TEMP LOCATIONS
7100-710F NT - NUMBER OF TAP WEIGHTS FOR EACH SUBARRAY 0,8,16,32, OR 64. FF CAUSES NO
ACTION .
7110-711F LI - NUMBER OF 131 MS PERIODS PER DUMP TIME FOR EACH SUBARRAY. 1,2, OR 4
7120-712F ID - INDEX TELLING PLACE IN TAP WEIGHT CYCLE BY SUBARAY. ZEROED WHEN SUBARRY
INITIALLY LOADED.

INCREMENTED EACH TIC.
7130-7133 DIVIDEND FOR DIVIDE CHIP, IEEE 32 BIT #. MSBYTE 1ST.
7134-7135 NN AND SA FOR RESULT RAM DOWN LOADING
7136-7137 NN AND SA FOR RESULT RAM CHECKSUM CALCULATION
7138 LSB IS BANK SWITCH BIT beBANK
7139-713A CHECKSUM STORAGE FOR RESULT RAM CHECKSUM COMPARISON
713B HCB21 ERROR BYTE IMAGE
713C HCB21 FUNCTION CODE IMAGE
7200-73FF RESULT RAM TEMPORARY BUFFER

71

APPENDIX III TRW TMC3210 CMOS Floating Point Divider

■spnpojcj 3fiauiipi.iv paaueApvJg

j > \ *

t t y * * -

T I
s s

~ y * >

&

L

» •

I

n s
i

i

o

s>

i

■

i

i

c
o

p

§ 2.
o =

5 09 *r
5 ■§ s.a 2 o

*£ s; co -CO Q- S'
“ £■« E

£ (j q) (O «

I I
8>

■o
:s
o

E
?co

I a .
0) 0

lZ!

8 ^ E
CO

> .=r — ,« ; > Jc o> •- c rr-

__ t s o
41 5 •£ "5> 9* « g

?• ~ •§ «*» ~
£ a .E ® o q
i g a s i s f

t s o c > ® C D
CO _
g e i

.o <2 I
>

p w to 7; r
® "2 *£ SB o
~ £ ‘i g s g

4>
CO* o>

i 2
^ ‘E
* o CO
5 5
5 £

■o»<c js3 CV 0 2 00 -a
•- G 5

! * I I

a>> "O
“ -5

1 | r
3-1 £ <

9E c

e T Z -g
CO jp O UJ

^ S 05 _ -= = 2?

L O
csi

•e e
! S. I—f= CO
: ° 2 U ““

a?
oi9> C ̂ ?e 5 S 5 5 s o -£n r> £ h -Q O r- T3 '-= A%o a.S O.cr co

13 ?
9. §

s f = £ CO -o 5
0 ® o S R « •- 2 "o S 2«— r— o “■ U X} O) r c CO =

~§ § s 5 i S -s *2 cj

. r cn s CJ cW CD
S ■ o ̂

o c O ® Q J c*t~ CO Q3 Q- 01 •“* ••
' S CO w * =.t; III. n CD 1*= m ?S a>

£ =5 > 1
£ uj co_ w U_»

c o — CO
® c: tr . _ y q> o a)CC a a

CD

I I

S i S | =
g. ■§ = 1 o0 S co gj

£ a — ^
— 3- S ^ 8>m1 i" " OT = -S

„ „ „ § 1 H« §i§
I I I ° ! » - g . § * -

(X Q-
-r-i *0m 09 C C w

2 *0 ® ^ <^ O 0 *S>£ s « = 3

£

C '5. GO x JS - o ^ o S , 0 0 ^ ^
" 5 0> U J 3 C 2 - 2 O < £ LD • §i s £<§1 M ? n s .

s
§}■* =
""Si?J -
©§I

2»8

»3

ai as ^ -= u

spnpoj<j 3{tfuii|)ijv paoueApyis

CSI8s

I
11l i

? lif
3 O) O)
I E -O ̂CO _̂

 .82
c g e

- 2 <5 S
| 8 s

.!§ E 2 ;= "o c

s & |■§ "O:gu g
° o «
c *
<B C
<55 •=;■

O * ® " ♦
.C > (O

^ w. ■§

.5= © ̂
i » “ i— E co
H“ !
I l l^ O □)
g - 5 J£

o a ®
- e » .V O) u
s<

o>

| O C » — o

£ .S § ̂ *S .S

: eis
o o 5"o

« e * * S 9 0 S « R » R K » X R » R R R R R R R S’

rfffffffiiiiiif8 J “sis

C M

s

€ 5

e 'l |
“ ■5 -2

t i l5 S _
6 a) §L
•s a §
2 o ° “ t3 2
g " " 1-51
§ “ " M C ̂o I o
£ a s

CJ ® "OSfS s i
I •'io .3 M

o o >
s © e ,,

*- 0 ffi
.ill
I s - 2

I & l

E
_ O * 0 so) > c •£E 2 ® ®
s s I E

I § ,1.^ -O -o © © g-

8 « g

° e ®
o ? €
g
. 2 __i a>

I
i | °** & k CD tt
1 - s.E a» «
a> o -e g
K 3 S B

«® ■“ » 2
- M s |

■£« =« =»
■o 2 o _ — e fi 5 o u a.I ° 5 .ET5 2 *9 m

. 81 Ei
— ■§ i u ” =

S. . I 2 “ S »° G I » ^„ 5 5 g E Sd
5 E ._ 2 «s s g .5 g

< r s

i . i

E 2 - S
-8 «=*= C O
l e g

I S - i S i s

CD OJ
j = S'
s S «» ■§

cd a>
2 * 5 S ■§ ®
* ? : s^ O 2 = S 2- " 1 S =-e
S 3 -S E ;

G-a ^ — _l 2 ® S S § ° |
= S -g ~ _-& »- e 15 © ~

S S -S * 0® •— m a. o co
JZ .£ .g © fc o iSS

s

op
er
at
io
n,

fa
ci
li
ta
ti
ng

re
pe
at
ed

di
vi
si
on
s

by
or

int
o

a
co
ns
ta
nt
.

15

spnpojd agauupuv paoueApy
" 2 O.S °■8 r- E p =
g E ° - g S
° -g-£ H -
» § ~ § «

S t o _ 2 - o _m tt u ̂ <D ®- S £ i : ; d 1 g s ff i «g ofI|f 'l°'i
2 S -3-5 e g J i . S S - s . g S

m *?r *" O __ ^ J <** ®
i •£*

3 -3
Jk 5 t= = . Sf“ ® - o E = . a

■ g CD - ° >. g s ■*- CO ' S

n S P . c o <°; g o» &f= ai w E 5 ° . « o
i o c j <5 ^ **""!«s“ id I '^5|!Is

t -0 o> ^ O
8 3 *_ "O .
: CL _J o O © £5
! .S u — s •« 81 a "g s 03 3? „£ S ® J= ® S=

Q) ' O f £ O c < 0 - l ^
S ” 8 ^ S ° 8 i | l |
g “ - o 5 - f S l * l « s
§ £ » u 2 | ± „ S. .E »
is ^ £ H. M ^ £ ?? m "O

1 lIft!lli
5 “■ £ t . 0 -2 5

“ J= s- e S ^ s- j i ! | 5 :5 £ = S cj -g g-.S § i :

£ i s « “ I! ° £ o
" f fe-S
■ i B - f *
f f a an 3?

: § s «
| § S E

5* if
T - B ^ i
lie

c n S e
fill cn ? S
e S- fc ° "if i s af ! ||is s

II

5a. » b i « i sfjl U a < =|
a> C — '

(£ ^ a &

c o S €
<o - ° —

f . | #
£ | n k :

C =tf °’<-J
d « : § €

I s I I illss *3 ■S s s

O ^ r g

♦ t o o .CO o S ® (flO
— *•“ •«
l ° ? > 3 *S O A
^ S ° -o60 C _0D

o . 2 - or s <d ̂£ 4§a> x _■T5 Q> ^■g c
j S ^ CD

~ : s eiS
- _ I “ o .sCBS~f£-5€iStis-fg3 o S » - S « g

m £ ® . 2 € eo i

I ~ “j s ° s j I
‘g j C » Q) ^ O ^
m " 2 <i , u <n

- s - s - i■ H -o _I | •-
O S ® o

1 15 &.f

S’ « £2 <Dr I ~
5 (/y

f e
•£ .» - o» . n «Ite o“

'• - s

S g f »
g 5 i ° a: o>

■o o> ~ • = . "O o> ”® ! « i

Q O o !(i
CD o>U^ PO c £ € ? ® ® w ■£f S ~ -2 £ • »- — »

\ £ Jj 5 i:’ 2 *£ w 52
■ M a) a
* . (O C 0

a> Q) ‘g *5
T3 o 3 W'
I e r ° o -^ c: ^ © jj o■s ̂ :| s.
• s s ^ i . S

3 " . TO. ̂3 — ’
M ”O a>£ S .s»-S’l 2 g

o> —j u= a> $ k a

IS

r“ J! I° e s0) 0 7;
OJ.̂ *S 1 *° .2 ̂

1 s.a>̂
 Z

« O

® I
I s i s i.»ix»*
0 I ̂ ■§ e

s g
■ s i

i : u(O
S SI*
s i

**!c •*. &® 0 2
s g ? .12 2 s
! • «

| * l l
5 3 3 .2 .= _ .fi

a I
g i E S S

E
w■S S w oi
&£.!S S

>5 S ZJS tJ* «. X a
K s £
•g W CO
V c (9M CD5 g >O m c 1 IC5 £

g c .5 ®S g> 11!

CO 03 S0 ® S -ss & * s
| 5 3 5
2 | S S
a » g o
| € « » |

m '£ . aj ai -o rr ar
=S S

<0 .S M sss a s s g
® S s- „ „
£ 3 o -E s

a-

> g S' S-o c
g . S I 1

-

itligl i s M ■- & s,
s | £ “ S „« 5 .g -o * - --
J * S S € c - e <t s-̂

Sf S- oO • o o £ ifl 8
I s 5

a S ® ® _q
5 s ° a l l s
^ S.EU

m u
i i i i i

IMii
g S X g i

ill

s .1 « I1 S «E
“ ■ g i Sa = = e
:i|°
2 c *S
3 CD m0 E .1CD

.S’
E 1

S 1 a> —
Q>

> a>
! S »
i ^ E

•s - s
S »
“■ ff E S'p c 3 c
« to c a>
> . - 0
S ° S■o ff w § c E1 5

c o E

g S S."Ii
* c fe ^

-S s i o g« 2 w' H» c J
"O « 03 O

J?
« ss -o jg .gO) Ol ®

* 0 cd _ —
e

5 S <g E t— a ra sS?|5I.E
u. xg a» a> co
-£ 3 co co E

s

sp n p o ij o^auiipuv paaueApy
:K
IS

" O k . ; • CD« " 1 f g i l l S E ~ £ E =>Q T3 ̂O CM C=> a:*7 ®: S ' o
32 . aO)

*> C c £ -o eo9S5c 2E"oQ*2I “ S = | g S =g ” 5 I 'E c co 53 s _ ̂ .? £ ' —> t> ® P w .2* os ̂ !2 IB -O 5 . M r-i :;E^-3 M _I ® Pi :n I ;
C I T3
£ & CDfc S «5 2s ® _

I 09.!S *o -a ?s To £ c c S re «® E li^ c § o o o ̂“ — -- g *■ £s v e w a a c c c £ S -S CA >c><a3.s>s> r - J s * o .5 2 03 09 " O t / i 55

- s ! f* S *?'„ "O > _ f2 ^ 09 1a s « -S S * J ~?! CO ® Ot<=> 03 "
■£ -g I f ! s f•- J 3 S | =S 1 —~ 9- S a ̂ CD iz Q- —'1 ! ” s f - i l |Q} •» S 09 x e JO C ̂ -0 * 09 _ C C®^c.ep €Su. §G *o «) -Q_• .S ^-=* e *o O SCD p c | ~ 5 ® csj •= -S ̂ g s«= ~ a> s >5 *

-Q QJ .S

CM3

S3 E ?■ § |S.CK
« 5 _jc o p“= «= m

■° . ® g> .e£ g-S-i,*5
1 ° I ® fg3 I x S i * i <=> £ _■s “ §.£-e-eN,cl,"s " "8 I 2 g S'S53 ° ° § 8 S c “I ° S « g* §■— S. 8

CM > > m • W g or ~ £-| cmlB-SomSS”
w G CS cr co O u-

I §

i i 1

g «
•is.*.

I II

i g «| I s l l s

f 3S' » Sf

II

iJ I!

is

J- jrfe 8 jr*

I

O CD 09 —S i l 2 e .2

I 2 o[g ® e
cni § -2

•— .1

'** S '
52 ” E

!1 C o ff L
C/5 * C 09

- . 095 1 *
CD *— S i

£ 2 09

PS I a I “ is.52 O u _— J£ = o « o ̂

n sE
•= 5 a cm

S -a * =*• p i t2- » S = -
c Sv i 2«
g o » *g

i t s S <6i * . Z N 09

_ ̂ * Iff
S s ° ^ Srr, g

a 2 2 —S £ | | gI I » 5 I
w _£ " E
o . ■£. m s<=» .« .5* 2 ° £ ® » fe
•g f S *3 g
> S -S ?3 | rsf *s w ® *n * s £ m

■S -I » » s
£ o cd S 1I'fiia

a -o c ̂3si ° £

-o ® »g g t Sg|_ m in _ c ̂~ i ~ I • 1 — a s g =»3 So g .2 -c

<D _ « = = § 5 * ^ „f i i i , r ^ « s s 1 | jo-= _ cvi 'goffi E
j i n s H ^ n ss - s -g~ 1 I e | t |
09*5 TK.M *<
g ®
09 +*■e-s
52 S
“ 5

*.ss

.12 40

co 5
09*g O

£ CO $ £

CO

M .82 I'S
2 jq r g <£ E | a (^ i J g iS H 2 Ji l -S !

Eg---
i f - i 2 1 f g l i f e •ff
8 M | .I -i ̂ s |

ii S -S12 S o• ? ° I ■ s t 6!o E coS:

,s» B

■a'5

n " ̂ K
ss'i 1«.&
z - Z lit

g-<S = - s
8■s = j ° - 82

i l E l E l
co CO

UJ £ 2 S » S s- - i s S a
<D E ” as s &i2 o -s g & K w

S si
CD £^ 1

52 O O CO ^o « g .!2 g
11 s

i t15

£
3

spnpo-y paoueApv 8

f
111

I?-"li 3

. t 111Hi

p s s
a
8

ss
Z * 8
n i f *1 3 f

!».*»*»

1
1

£ 3 5

i 3

i 5 f

1
i

i s *
i a
i 5 -

i

s

f !ij i i
! £

it

f

I- Til

*

l f l

T

^ u r t f r
- H *

S k i .

55

^hr

h— 2

I — 2

V *3

8

■!

is

sp n p a y aoauiqiijv paaueApy

C M

8

£
23S

■£

(•

C Mss

1

i i i i

11

j

t *

i !
I l l
III
mKJ f*J /T
£ • & I i! i!

« i

f !
Si

l l

1

£
i

i t ~
■ !< s»

ii
i
i

H

2

8

73

APPENDIX IV Ironies IV-3272-PIO Parallel Interface Daughter Board

IRONICS
In c o ip a a te d

IV-3272-PIO
VMEbus Parallel I/O

Daughter Board

USER’S MANUAL

Copyright ©Ironies, Inc., 1991
All rights reserved

Board Etch: 1.10Manual Version: 1.400Manual Part Number 700061
Release Date: Dec-31-91

Revision History
Manual IV-3272-PIO 1.200 15-M-87Manual IV-3272-PIO 1.300 29-Apr-88Manual IV-3272-PIO 1.400 3 l-Dec-91

ii W-3272-PIO Daughter Board User's Manual

Copyright© 1991 by Ironies, Inc.
Ironies’ Quality Assurance, Publications, and Technical Support Groups exercise a multi-staged program in an effort
to achieve the highest quality possible in all our products and accompanying documentation. All board products are
burned in for a minimum of 48 hours (RAM for 96 hours) at 50 degrees Celsius. All system-level products are run for
a minimum of 48 hours in addition to the board-level bum-in. All board, software, and system documentation is
reviewed and approved prior to printing.
Please read and abide by the following paragraphs. Questions and comments should be directed to your Ironies sales
representative, or to Ironies directly at the address below.
Ironies, Inc. does not recommend the use of its components in life support applications where failure or malfunction
of the component may result in injury or death. In accordance with Ironies, Inc.'s terms and conditions of sale, the
user of Ironies, Inc. components in any and all life support applications assumes all risks arising out of such use and
further agrees to indemnify and hold Ironies, Inc. harmless against any and all claims of whatsoever kind or nature
(including claims of culpable conduct [strict liability, negligence or breach of warranty] on the part of Ironies, Inc.) for
all costs of defending any such claims.
Ironies, Inc. makes no warranty of any kind with regard to this material, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. Ironies, Inc. assumes no responsibility for any errors
that may appear in this document. The information in this document is subject to change without notice.
IV-3272 Full Speed Data Transporter is a trademark of Ironies, Inc.

Ironies Incorporated Technical Support Services 798 Cascadilla Street Ithaca, New York 14850

IV-3272-PIO Daughter Board User's Manual lii

iy fV-3272-PIO Daughter Board User's Manual

TABLE OF CONTENTS
Chapter 1 General Description...1-1
Chapter 2 Theory of Operation..2-1

2.1 Standard Firmware...2-1
2.2 Programmers Model...2-2

2.2.1 Daughter Board Interface Port...2-2
2.2.2 Status Information..2-2
2.2.3 Control Information...2-2

2.3 Data Interface...2-3
2.3.1 I/O Data Size Control...2-3
2.3.2 I/O Data Multiplexing..2-3
2.3.3 I/O Data Handshaking..2-4

2.4 Status and Control..2-10
Chapter 3 Service and Repair..3-1

3.1 Unpacking Instructions...3-1
3 2 Inspection...3-1
3.3 IV-3272-PIO Daughter Board Installation...3-1
3.4 Getting Technical Assistance...3-1

Appendix A Connector Pin Assignments...A-1
Appendix B Support Information..B-1

B. 1 Component Layout Diagram..B-1
B.2 Schematics..B-l

Appendix C Parts List.. C-l
C.l Core Assembly...C-2

C.1.1 Sockets... C-2
C. 1.2 Integrated Circuits.. C-2
C.1.3 PLAs... C-2
C.1.4 Resistor Networks.. C-2
C.l.5 Resistors... C-3
C.1.6 Capacitors... C-3
C.1.7 Miscellaneous... C-3

IV-3272-PIO Daughter Board User's Manual v

LIST OF FIGURES
Figure 2-1 Conceptual Block Diagram - Point to Point Connection...2-5
Figure 2-2 Logic Analyzer Traces...2-6
Figure 2-3 External Timing.. 2-9

vl IV-3272-PIO Daughter Board User's Manual

LIST OF TABLES

Table 1-1
T n k U O 1

... i O

...2 - 1

l d u i C Z * 1

........................... 2-3
l a o i c z * z

T « k 1 a O 1
.. 2 - 1 0

l a D I C Z " j

Table A-1 A-1
Table A-2 A-2
Table C-1 C-1

IV-3272-PIO Daughter Board User's Manual

LIST OF TABLES (continued)

viil IV-3272-PIO Daughter Board User's Manual

1

General Description

The IV-3272-PIO Parallel Interface Daughter Board provides a 32-bit-wide data connection
between the VMEbus P2 user I/O interface and the IV-3272 Full Speed Data Transporter (FSDT).
The interface is general enough to allow a wide variety of devices to be connected with little or no
modification. Data transfers can occur at a rate of up to 10 million transfers par second.
The IV-3272-PIO daughter board provides the following features:

• Attaches to IV-3272 Full Speed Data Transporter
• Provides I/O capability at up to 40 Mbytes per second via P2 interface
• Provides 8/16/32-bit I/O parallel data transfer mechanism
• IV-3272 Digital Signal Processor (DSP) port connects to data lines for programmed I/O
• Data multiplexing between I/O and VMEbus implemented in hardware
• Easy to use REQ*, ACK*, and ENDIR data transfer handshake
• Optional status/control signals

The interface is controlled by circuitry on the IV-3272-PIO and firmware resident on the IV-3272.
The standard IV-3272 firmware implements a specific subset of the possible I/O configurations. A
user has the option of writing TMS320 DSP code for execution on the IV-3272 that operates the
IV-3272-PIO interface in a different manner.
The IV-3272-PIO provides a parallel data interface and three handshake signals. The parallel data
interface is composed of the I/O data lines which are used for 8,16, or 32-bit transfers. The IV-3272
can be programmed to supply a 16 or 32-bit VMEbus data path. The daughter board interface (DBI)
port on the IV-3272 connects directly to the data line latches (IOBUS) to facilitate programmed I/O.
The three handshake signals generated are request (REQ*), acknowledge (ACK*), and direction
(ENDIR). REQ* is always generated by the source, and indicates that data is ready to be received.
ACK* is generated by the sink, or destination, and indicates that data has been received. REQ* and
ACK* are driven when the transfer actually begins. ENDIR indicates the direction of the data
transfer. ENDIR in the low state indicates a transfer from I/O to VME; ENDIR goes high if the
transfer is from VME to I/O.
Data multiplexing is provided in the circuitry of the IV-3272-PIO. This feature allows 16 or 32-bit
data to be transferred from the VMEbus to the P2 I/O as either 8,16, or 32-bit data. Conversely, 8,
16, or 32-bit data from the P2 I/O can be transferred to the VMEbus as 16 or 32-bit data. The data
sizes of the source and destination are specified in the IV-3272 transfer parameter block (TPB) and
are implemented by the standard firmware.
The IV-3272-PIO drives eight control lines and receives eight status lines. The status and control
lines are designed to facilitate communication of control information separate from data
information. The control lines are driven by either

• a write to the IV-3272 control register from the VMEbus

IV-3272-PIO Daughter Board User's Manual 1-1

Chapter 1 General Description

• through the DSP by writing to Data Memory at address COO
The status lines are read by either.

• reading the IV-3272 status register over the VMEbus
• through the DSP by reading Data Memory at address COO

Connection of two IV-3272-PIOs status and control lines must be done in the connecting cable. The
IV-3272 standard firmware does not utilize the status or control lines.
Table 1-1 shows the IV-3272-PIO daughter board interface signals. Table A-1 and Table A-2 list the
IV-3272-PIO signal names associated with the VMEbus P2 connector.

1-2 TV-3272-PIO Daughter Board User’s Manual

Table 1-1 Daughter Board Interface Signal List
=> Out, to interface (daughter board)
<= In, to IV-3272 FIFO (VMEbus)
<=> Bidirectional

Name Direction Function
DMA Data Transfer Signals

DBACK* => acknowledge transfer between FIFO and DB latches
DBSTB* <= request data transfer between FIFO and DB latches
DBSTB2* request data transfer between FIFO and DB latches
DIR transfer direction: 1 is VME to P2; 0 is P2 to VME
l/OSTART* control signal enabling data transfer (reflects flag status)
IBC2-0 ==> I/O cycle burst count
IBLT => I/O block transfer enable
IOBUS31 -00 <=> data lines 31 through 00
ISPARE2 <= I/O data port size (from TPB)
ISPARE3 <= I/O data port size (from TPB)
VLWORD* => VMEbus data port size (from TPB)

Status Una (VMEbus Master) Signals
CRWR* => control write signal
SRST* => system reset (VMEbus)
STRD* status read signal
SYSCLK* VMEbus system clock
VBUS15-8 VMEbus data lines (15 through 00) -

IV-3272 control/status port
Onboard 32025 DSP Signals

D AU I/O* I/O chip select from 32025 to read IOBUS
DAUMEM* => memory chip select
DCLKIN DSP clock in
DCLKOUT => DSP clock out
DSPA11-0 address lines
DSPD15-0 <=> data lines
INT1 interrupt
IOTO toggle successive I/O port accesses between

D31-D16 and D15-D00
IS* => I/O strobe - DEN signal (data enable)
PS* => program strobe - MEN signal (program memory)
R/W* => read/write

IV-3272-PIO Daughter Board User's Manual 1-3

Chapter I General Description

1-4 W-3272-PIO Daughter Board User's Manual

2
Theory of Operation

The IV-3272-PIO is operated by a combination of the circuitry on the IV-3272 and the control of the
DSP software. A user has the option of using either the Ironies standard IV-3272 firmware or of
generating DSP software. The following sections discuss each of these options. It is recommended
that the user gain a thorough understanding of the information outlined in chapters 7 and 8 of the
IV-3272 VMEbus Full Speed Data Transporter User’s Manual.

2.1 Standard Firmware
Ironies supplies standard firmware in EPROMs that reside on the IV-3272 and provide instructions
for the DSP chip. All of the functions of the standard firmware are detailed in the IV-3272 VMEbus
Full Speed Data Transporter User's Manual. Those features of the firmware which operate the
IV-3272-PIO circuitry are discussed in this section.
The operation of the IV-3272 is controlled by software which executes on a CPU board resident on
the VMEbus. The controlling software loads a Transfer Parameter Block (TPB) into an idle IV-3272
FIFO and asserts the Start bit in the start/stop register. The firmware moves the TPB from the FIFO
to the DSP data RAM, interprets it, and performs the specified transfer.
A TPB contains two attribute words describing the source and destination for the data transfer. These
attribute words implicitly indicate the transfer direction. Bits D00 and DO 1 of the attribute word
specify whether the transfer is to use the VMEbus, the DSP onboard RAM, or the IV-3272-PIO (see
Table 2-1).

Table 2-1 Attribute Word Location Setting

D01 D00 Mode
0 0 Onboard DRAM
0 1 I/O Type 1
1 0 I/O Type 2
1 1 VMEbus

I/O transfer types indicate IV-3272-PIO transfers. I/O Type 1 directs the DSP to perform transfers
between the IV-3272-PIO and the VMEbus in a concurrent and asynchronous fashion. That is, the
FIFO is filled and emptied on both the VME and I/O side at the same time. I/O Type 2 directs the
DSP to jump to a user program that has been previously loaded into DSP RAM. The user DSP
program must perform all data transfer control. This feature is provided to allow data to be collected
and processed by a user DSP program as it passes through the board. I/O Type 2 transfers result in
an error if the user has not loaded DSP code into the onboard RAM.

IV-3272-PIO Daughter Board User's Manual 2-1

Chapter 2 Theory of Operation

Programmers Model
The programmer accesses the IV-3272-PIO interface by referencing one of four possible access
points; two access points exist for the IV-3272 DSP and two exist for the VMEbus. DSP I/O port 6
is designated as the daughter board interface port The status and control signals are accessed by
reading and writing the program memory map, respectively. The status and control signals are also
accessed by reading and writing the IV-3272 VMEbus status and control register, respectively.
Subsection 2.2.1 through Subsection 2.2.3 discuss each programming reference and the IV-3272
and IV-3272-PIO responses.

2.2.1 Daughter Board Interface Port
A DSP port (PA6) is designated as the daughter board interface (DBI). The DBI allows the software
to read or write the 32 I/O data signals on the IV-3272-PIO. The DBI is a 16-bit port which uses the
I/O toggle function to access the upper 16-bit word (IOBUS16-31) on the first read and the lower
16-bit word (IOBUSO-15) on the next read. The word alternates with each access. Writing the status
latch (STL) with the DSP software resets the toggle to the upper word.
Writing the DBI port causes the data written to be latched by the IV-3272-PIO and asserted on the
I/O data lines. This mode operates only if the IV-3272 is not performing a DMA operation to or from
the IV-3272-PIO. Reading the DBI turns off all output latches set by the previous write and provides
the data that is present on the I/O data lines.
Ironies supplies an optional control PLA which provides a different DBI interface mechanism. This
mechanism is intended to provide a dedicated 16-bit output port and 16-bit input port to facilitate
users interfacing to D/A controllers, A/D controllers, or other devices where programmed I/O is
desirable.
Using this optional PLA, the upper word (IOBUS 16*31) is a dedicated output port Data written to
that port remains latched and asserted. The data may be changed by subsequent writes. Subsequent
reads to that port do not disable the latch and the data does not represent the incoming data I/O lines.
This mechanism stops operating as soon as the IV-3272 begins a DMA transfer involving the
IV-3272-PIO.
The lower word is accessed in the same manner as the standard PLA implementation. Data written
is latched and remains asserted; a subsequent read turns off only the lower output latch so the data
on the I/O lines is read. The upper word latch status does not change.

2.2.2 Status Information
The IV-3272 decodes DSP program memory addresses from COO to FFF as daughter board memory.
Accessing that address range in the DSP software asserts the DAUMEM* and the R/W* signals to
the IV-3272-PIO. When the IV-3272-PIO senses DAUMEM*, and R/W* indicates a read, the status
byte data is presented on bits D08 - D1S. These signals are connected to P2 C32 - C25 (see section
2.4). Also, during this read access, bit D00 indicates the state of the LBG* signal, D01 indicates the
state of the ACK* signal, and D03 indicates the state of the LREQ* signal; for each signal, 0 means
asserted, 1 means not asserted.
This status port can also be read from the VMEbus via D08 - D15 of the IV-3272 status register.

2.2.3 Control Information
There are two control byte latches, one written to by the DSP and one written to via the IV-3272
VMEbus control register. Either (Hie can be strapped to connect to the P2 lines (P2 C24 - C17) on an

2-2 TV-3272-PIO Daughter Board User's Manual

23 Data Interface

individual basis (see section 2.4). Writing via the DSP, DAUMEM* is asserted and the R/W* signal
indicates a write. The data is presented on DSP data lines D08 - D15 and is captured in the DSP
control byte latch.

2.3 Data Interface
2.3.1 I/O Data Size Control

The parallel data interface between the IV-3272-PIO and the P2 connector is implemented using four
F543 octal latching transceivers. Data width is specified using IV-3272 signals VLWORD*,
ISPARE2, and ISPARE3. VLWORD* reflects the size of the VMEbus data; 0 (asserted) indicates a
32-bit VMEbus transfer, 1 indicates a 16-bit VMEbus transfer. VLWORD* is set by the DSP
software in bit D03 of the AWL port (attribute word latch). The ISPARE1 and ISPARE2 signals
indicate the I/O transfer size, as described in Table 2-2. These signals are set by the DSP software in
bits D03 and D02 in the STL port (status latch) and are interpreted by PLA 5A2.

Table 2-2 I/O Data Size Control

ISPARE2 ISPARE3 I/O Size
0 0 -
0 1 8
1 0 16
1 1 32

NOTE:

The transfer of one 32-bit datum will not operate. The 32-bit datum may
be multiplexed to 16-bit or 8-bit I/O and transferred, but a single 32-bit
transfer is illegal.

2.3.2 I/O Data Multiplexing
Data size multiplexing is performed using FCT245 bidirectional transceivers. PL As SAO and 5A1
provide size control signals. PLA 5A2 clocks transfers and controls the strobe generation. Because
of the time required to capture and multiplex data, the use of this feature prevents the maximum
transfer rate of 10 MHz from being achieved.
Legal, bidirectional multiplexing modes include:

• I/O 8-bit to VMEbus 16-bit
• I/O 8-bit to VMEbus 32-bit

I/O 16-bit to VMEbus 32-bit
One multiplexing mode is illegal. The IV-3272 and the IV-3272-PIO cannot perform I/O 32-bit to
VMEbus 16-bit multiplexing. Transfers employing this multiplexing parameter will not function
properly.

IV~3272-PIO Daughter Board User's Manual 2-3

Chapter 2 Theory of Operation

2.3.3 I/O Data Handshaking
Handshake is provided by three signals: ENDIR, REQ*, and ACK*. REQ* and ACK* are
bidirectional, open-collector signals. The device supplying data (the source) drives REQ*, and the
device receiving data (the sink) drives ACK*. ENDIR signals the direction of the data transfer.
ENDIR in the low state indicates a transfer from I/O to VME; ENDIR goes high if the transfer is
from VME to I/O. In the idle state, ENDIR is 0 and the data buffers are disabled (see Figure 2-1).
To initiate a transfer, the IV-3272 is programmed via a TPB. To send data to an I/O device, the source
attribute word (SRCA) should indicate VMEbus (D01, D00 = 1,1), and the sink attribute word
(SNKA) should indicate VO type 1 (D01, D00=0,1); see Table 2-1 outlining attribute word location
settings.
When the start bit in the VMEbus start/stop register is asserted, the IV-3272 reads the TPB from the
FIFO and begins the transfer. The IV-3272 requests the VMEbus and begins filling the onboard
FIFO with data. When the FIFO becomes half full (256 transfers), the IOSTART* signal requests
use of the daughter board data transfer bus (IOBUSOO - IOBUS31). When the IOBUS is granted
(LBG* = 0), ENDIR goes high (1) indicating a VMEbus to I/O transfer. The first data are read from
the FIFO using the FIFO handshake signals DBSTB*, DBSTB2* and DBACK*; the data is latched
by the IV-3272-PIO. The IV-3272-PIO asserts the REQ* signal indicating data is valid. The
destination device asserts ACK* after it has received the data. The receipt of ACK* by the
IV-3272-PIO causes REQ* to be released. The FIFO handshake loads the next data and the process
continues until the FIFO is empty as signaled by the release of IOSTART*. The rate at which ACK*
is returned by the destination device paces the transfer.
If the total transfer length is less than 256 transfers, IOSTART* is asserted after the VMEbus has
been released by the IV-3272. If the transfer length is greater than 256, the FIFO behaves elastically,
with transfers occurring simultaneously on both sides of the FIFO. If the IV-3272-PIO side is
considerably faster than the VME side and the FIFO empties, IOSTART* goes inactive (1) until the
FIFO reaches half full or the transfer ends. If the IV-3272-PIO side is considerably slower than the
VMEbus and the FIFO fills, the IV-3272 VMEbus request is withheld until the FIFO is emptied to
half.
To receive data from an I/O device, the source and sink attribute words are reversed. When the start
bit in the VMEbus start/stop register is asserted, the IV-3272 reads the TPB from the FIFO and
begins the transfer. The IV-3272 asserts IOSTART* (0), and the IV-3272-PIO waits for the source
to assert REQ*. When REQ* is received by the IV-3272-PIO, the data signals information is latched
and the IV-3272-PIO asserts ACK*. The FIFO handshake signals are asserted by the IV -3272-PIO
to transfer the data from the IV-3272-PIO latches to the FIFO. This process is the reverse of sending
data out After the source releases REQ*, the IV-3272-PIO releases ACK*.
The count programmed in the TPB is the number of VME transfers. Note that when inputting data
to the IV-3272, the user must keep count if this information is important to the application. If the
actual amount of data coming into the interface is greater than the transfer count programmed in the
TPB, the difference is lost (but the expected data is transferred to the destination). If the actual
amount of data coming into the interface is less than the programmed transfer count, the
IV-3272-PIO must interrupt the DSP chip to indicate that it is finished with the transfer, otherwise
the IV-3272 will stay busy, waiting for more data.
Figure 2-2 shows logic analyzer traces of two IV-3272-PIO connected together transferring data
between two VME systems.
Figure 2-3 shows the timing requirements of data with respect to the handshake signals.

2-4 IV-3272-PIO Daughter Board User's Manual

Figure 2-1 Conceptual Block Diagram - Point to Point Connection
FIFO Handshake
Signals User Handshake

Signals

DATA OUT:
DATA IN:

REQ* ACK*

driven received
received driven

Idle state is DATA IN

ENDIR
1
0

IV-3272-PIO Daughter Board User's Manual I S

: Chapter 2 Theory of Operation

Figure 2-2 Logic Analyzer Traces

S=0160 CLK=0010 NS HA6=1 TRI6=00175 Ci=0l97 C2=0213 C2-Cl=0001e

T 1 2 ______

DBSTB ---------- — ----- --------- ---------- ----- ----- —
DBSTB2---------- — ----- --------- ---------- ----- ----- -
ENO --- -------------- ------------------------- ------------ -----------
EN1 --- --- ------------
EN2 --- ------------------------------- ------------------- -----------
EN3 --- --------------------- --

IV-3272 FIFO => IV-3272-PIO => P2
32 bits 32 bits

5=0160 CLf=0010 NS TRI5*0C1?5 Ci=01" Cl-CCi* O C is,/Wl?
T i ;

REQ ---------- ---------- -------- ---------------- ----*---------- ----
ACK ------------- ------- ------- -------- ------- -------- ------- --- --

ENO -- -------------
EN1 ------- --- - _

EN3 ------------------ ------- -------- ----------------------- -------

IV-3272 FIFO => IV-3272-PIO => P2
32 bits 16 bits

2-6 W-3272-PIO Daughter Board User's Manual

23 Data Interface

S=0160 CLK=0010 NS HA6=1 TRIG=00175 Cl=0197 C2=0213 C2-Cl=00016

T 1 2

REQ —
ACK —
DBSTB
DBSTB2 —
ENO
EN1
EN2
E N 3 --

IV-3272 FIFO => IV-3272-PIO => P2
32 bits 8 bits

S=016B CLK=0010 NS HA6-1 TRI5=00i75 Cl=0177 C2=0226 C2-C1=000<<>

T 1 2

DBSTB2------------------------------ ------------------------------- ----

LEBA3 ---------------------- -------------------- --------------- ----

IV-3272 FIFO <= IV-3272-PIO «= P2
32 bits 8 bits

IV-3272-PIO Daughter Board User's Manual 2-7

Chapter 2 Theory of Operation

5=0ie»c :u*0010 NS n«B*l TR!S*0C175 Cl=0205 22=0231 C2-Cl=0002c

REQ* -----_
ACK* ------
DBSTB ------
DBSTB2 ------
LEBAO ______
LEBA1 ______
LEBA2 ------
LEBA3 ------

IV-3272 FIFO <= IV-3272-PIO <= P2
32 bits 16 bits

S=0096 CLK=0010 HS HAG=1 TRI6=00175 Cl=0ii7 C2=0132 C2-C1=00015

1--------------------------- 2 T

REQ* ------------------ ---- ---------- ------------- -------------
ACK* ---
DBSTB ---.
DBSTB2---_
LEBAO ___
LEBA1 ___
LEBA2 ___
LEBA3

IV-3272 FIFO <= IV-3272-PIO <= P2
32 bits 32 bits

TV-3272-PIO Daughter Board User's Manual

2J Data Interface;

Figure 2-3 External Timing
Data in from P2

Data out to P2

IV-3272-PIO Daughter Board User's Manual 2-9

Chapter 2 Theory of Operation

2.4 Status and Control
Eight status and eight control signals may be received and sent by the IV-3272-PIO. These signals
are intended to provide a control mechanism without using data lines. These signals may be used in
systems where the control signals are routed via the cabling to the status signals of a second
interface. Because of the crossover requirement, these signals are not ideal for connection of more
than two IV-3272-PIOs. They can be used to facilitate software handshaking between two
IV-3272-PIO interfaces or may be adapted to connect to a proprietary interface.
Two 8-bit latches are available for holding a control byte. One latch may be set by writing to the
IV-3272 VMEbus control register, bits D08 to D1S. The other latch may be set by writing to the DSP
program memory at address COO using bits D08 to D1S. The individual outputs of these latches are
connected to P2 via a set of three-position shunts, J1 through J8. Is a shunt is in the 1-2 position, the
DSP latch is connected to P2. If the shunt is in the 2-3 position, the VMEbus latch bit is connected
to P2. The ability to mix and match latch drives which signal provides flexibility as to the source of
individual control bits.
The status input signals (P2 C32, lsb to C25, msb) are routed to two buffers. These buffers are read
by the DSP at program memory location COO and by the IV-3272 VMEbus status register. Status
input information is presented in bits D08 - D15.

Table 2-3 Control Byte Shunts

Bit Shunt P2 Pin
D08 J8 C24
D09 J7 C23
D10 J6 022
D11 J5 C21
D12 J4 C20
D13 J3 C19
D14 J2 C18
D15 J1 C17

2-10 IV-3272-PIO Daughter Board User's Manual

Service and Repair

3.1 Unpacking Instructions
All Ironies products are manufactured and tested in a static-controlled environment to ensure
minimal degradation of component performance due to electrical discharge. All boards are placed
in an electrically conductive plastic wrapping for static protection during shipping. The following
precautions should be observed during unpacking and installation:

1. All individuals handling Ironies boards should be properly grounded in static-controlled
work areas.

2. Boards must be handled by their edges, avoiding any contact with connector surfaces.
3. A board must never be installed in or removed from a powered-on system.

3.2 Inspection
Inspect the board after removing it from the protective wrapping. Remove any loose packing
material from the board surface. Examine the board for possible shipping damage; check all chips
in sockets (EPROMs, PLAs, etc.) for loose seating. If necessary, reseat loose chips by applying even
pressure to the top of the chip. Verify the integrity of any jumper wires.
Immediately report any shipping damage to Ironies Technical Support as outlined in the following
section

3.3 FV-3272-PIO Daughter Board Installation
If the IV-3272-PIO daughter board is shipped separate from the IV-3272 mother board, the following
procedure must be followed to install the daughter board:

1. On the IV-3272 mother board, remove PLA 594.4 from board location U34 and replace it
with PLA 594.3 shipped with the daughter board

2. Mount the IV-3272-PIO daughter board on the mother board so that board locations U13
and U23 are facing the VMEbus P2 connector on the mother board.

3.4 Getting Technical Assistance
Technical support is available to all Ironies users. Telephone support is available every weekday
between 9:00 am and 5:30 pm EST (other hours may be arranged in advance). Questions may also
be mailed, FAXed, or telexed to Ironies at any time. To contact Ironies Technical Support Services
write, call or FAX:

IV-3272-PIO Daughter Board User's Manual 3-1

Chapter 3 Service and Repair

Ironies, Inc.
Technical Support Services
798 Cascadilla Street
Ithaca, New York
Telephone: (607) 277-4060
Telex: 705-742
FAX: 607-272-5787

In case of a problem operating this board, it is recommended that initial contact with Ironies
Technical Support Services be made by telephone; the problem might well be solvable in a verbal
conversation, especially if Ironics-provided code is installed on the board. For problems involving
code not provided by Ironies, an initial telephone call is especially useful, to determine whether it is
necessary to send the user's code to Ironies. To get maximum effect from an initial telephone call,
follow these guidelines in preparing for the call*

1. Have available the board's model number, purchase date, serial number, and product
description. (These items are printed on the product invoice.) System configuration
information (i.e., boards in the system; board addresses; bus levels; etc.) may also be
necessary. The user’s name, telephone number, address, company name, and department
will be requested.

2. Make sure that the problem is repeatable. Try the operation several times, if possible, to
determine whether the system response is repeatable under identical circumstances. If the
problem is not repeatable, or if the responses vary for multiple attempts, carefully note any
variations in the input process, and try to discern a correlation between those variations and
the differences in system response. In any case, document all parts of the problem
thoroughly, and have written notes handy for the telephone call.

3. Be seated at the system console during the telephone call, and be ready to execute the
problem operation on the machine. Have all pertinent manuals and documentation
immediately available.

If it should become necessary to send to Ironies (e.g., by mail, electronic mail, FAX), the user’s code
under which the board was operating, be sure to include the documentation discussed in item 2
above, as complete a description as is practicable of the system and the circumstances in which the
board was operating, and an explanation of the intended function of the code. Ironies’ response time
will depend on the complexity of the problem and the quality of the information supplied by the user.

3-2 IV-3272-PIO Daughter Board User's Manual

Connector Pin Assignments

Table A-1 VMEbus J2/P2 Row A Pin Assignments

Pin
Number

Schematic
Signal

Signal
Name

Pin
Number

Schematic
Signal

Signal
Name

A1 P2.1 IOBUS15 A17 P2.17 REQ*

A2 P2.2 IOBUS14 A18 P2.18 ACK*

A3 P2.3 IOBUS13 A19 P2.19 Reserved

A4 P2.4 IOBUS12 A20 P2.20 Reserved

A5 P2.5 IOBUS11 A21 P2.21 Reserved

A6 P2.6 lOBUSIO A22 P2.22 Reserved

A7 P2.7 IOBUS9 A23 P2.23 Reserved

A8 P2.8 IOBUS8 A24 P2.24 ENOIR

A9 P2.9 IOBUS7 A25 P2.25 GND

A10 P2.10 IOBUS6 A26 P2.26 Reserved

A11 P2.11 IOBUS5 A27 P2.27 GND

A12 P2.12 IOBUS4 A28 P2.28 Reserved

A13 P2.13 IOBUS3 A29 P2.29 GND

A14 P2.14 IOBUS2 A30 P2.30 Reserved

A15 P2.15 IOBUS1 A31 P2.31 GND

A16 P2.16 IOBUSO A32 P2.32 Reserved

IV-3272-PIO Daughter Board User's Manual A-1

■ Appendvi J4. Connector Pin Assignments

Table A-2 VMEbus J2/P2 Row C Pin Assignments

VME P2
Pin Number

Schematic
Signal

Signal
Name

C1 P2.65 IOBS31

C2 P2.66 KDBUS30

C3 P2.67 IOBUS29
C4 P2.68 IOBUS28

C5 P2.69 IOBUS27

C6 P2.70 IOBUS26

C7 P2.71 IOBUS25

C8 P2.72 IOBUS24

C9 P2.73 IOBUS23

C10 P2.74 IOBUS22

C11 P2.75 IOBUS21

C12 P2.76 KDBUS20

C13 P2.77 IOBUS19

C14 P2.78 IOBUS18

C15 P2.79 IOBUS17

C16 P2.80 IO BUS 16

C17 P2.81 DSPD15/VBUS15 Always outgoing: driven by DSP or

C18 P2.82 DSPD14/VBUS14 VME as set by shunts - J8.

C19 P2.83 DSPD13/VBUS13 VBUS8 -15 equals top eight bits of
IV-3272 Control RegisterC20 P2.84 DSPD12/VBUS12

C21 P2.85 DSPD11/VBUS11

C22 P2.86 0SPD10A/BUS10

C23 P2.87 DSPD9/VBUS9

C24 P2.88 DSPD8/VBUS8

C25 P2.89 OSPD15/VBUS15 Always incoming: readable by both

C26 P2.90 DSPDt4/VBUS14 VME and DSP.

C27 P2.91 DSPS13/VBUS13 VBUS8 * 15 equals top eight bits of
IV-3272 Status Register.C28 P2.92 DSPOt 2A/BUS12

C29 P2.93 0SPDT1/VBUS11

C30 P2.94 DSPDt OA^BUSI 0

C31 P2.95 DSPD9/VBUS9

C32 P.96 DSPS8/VBUS8

A-2 TV-3272-PIO Daughter Board User's Manual

Support Information
P P

B.l Component Layout Diagram

o P4
100
99 Oi

n n n n n n r n n n n n 1 n n n n n n n n n n n n ,

U14 U4 fc
1

tj u u u c r c u u u 1 U u u □ LJ U U U"U U U i
n n n n n n n n n n n n , | n n n n n n n n n n n n , Ul

U1S
£

US
I
flLH
‘ICJ

U U u U u u CHJ □ U U U UUUGCCUG ' U UUU 1 ;

. n n n n n n n n n n

UIG
TJXI UU' UUUUUL'

n n n n n n n n n n

xof
fc!

_n n n n n n n n n r.
US

U17

TI'DU U LTLTU UUU

n n n n n n n n n n

t-

"□"□"LTU'U U L! Li LI U

n n n n n n n n n n

U7
U' U U U Li LJ U U U

uie g
□ □ U U UTJ'U 'U U U ‘Y

n n n n n n n n n n i

U0
U U L) LfCTLIULllJU

n n n n n n n n n n i n n n n n n n n n n i
J a r ~

U19 t},
UTJ CJ U~U TJ U Li U U

n n n n n n n n n n

U9

U20 df

u u u u u u u u u u
n n n n n n n n n n

u u u <J U U LTU U U
U10

u u u U ' U U U U U U

n n n n nj-ui nnr. ^ n n n n n n n nnn _ i £ U3 □
U2! qcu| Uil Q q P

U J u U U L b L L w
n n n n n n n n n n

b u u U"U UUU

.n n n n n n n n n n

U22 flcul U12
U D O i J U'U'U UUU ' i U U U U U 'U'UUUU "1

-QQ Q n n n n n n n n n _i n n n n n n n n n n n r

LJLJi J3 ! f J2
f Jl 1

U23
• q u u u u~n~u~u u u u e

u u u U'U U U □ '□ LI CJ U i

o P3 100

99 oi

B.2 Schematics
The schematics presented here represent board eteh 1.10 of the IV-3272-PIO daughter board.

IV-3272-PIO Daughter Board User's Manual B-1

d

iiO
Bua

f..
31

3»
tOB

USt
fl.
I at

]
Mi>nnnnnnnnir«f««v^iriPinf

TO
>o«*«rtnnn♦ 0333IlflOthDDflflll33333

0 9>*̂ nnfip0̂ i)9>««>ONnfui0h«9«**iifOMiiKh.a)(3 3 *> ti 0i n 0 ft a « n 0 «t «i ♦ u n rt to m a m «i a « •> a,~ o j -* o •-

h h m m m h k h n m Q O Q O O Q O O O O Q O O O O O O O O O Q O

• »«<xnvtn ■ a...._ __________ «« tNSf
C C « C « l < C C C C (t f C C O O O O O O O O O O O O O O O O H O O O « * X \ U >oi&aai&ia&n&&&i4aftaia&>o&ia&^i&&a&niijjQ!M^xz rzi>0itnnnfl«iDf)r)«t«iitinn«)oinnnn̂z«)nnoii)nniiflflSwaoO'*ZJt»'«OOOOOOQOOOQAOOOOQOOOOQO«UOOOOOOOOOOAtaiCOHUwlt

w V 10 « I !MSKS5KCBH5PS555

7

g«mz

/ / / / / / / / / / / / / / / /

D ■■■■■■■■
E K K E R C K R
* ! ! * . * * * ‘t + +c

>ô 0h«ottHnnv0«h«»«««cinvfia>ô «9t«*Niifi»0*ifl«ivn««ifi ■ m > o - - -- -- - - - k w * z
fitn(*(vnnc9t*cM*>-a$)€ODD3c « >iaa&&«.&aa&nu8OIB0Ba hioo>>>><n it

m N H 4 t*<o*
SI «HntrtfN09t««ciwa a * * * mnnfftciAia(7nn£N9Hi)0«)0t.tnr-

• 3 3 » - 1 3 3 3 3 U U U J > 0+ B&& a. &«.*&♦ i&a&ai&aa &o o m o »> hm»
n « a « « N « JK 5S25H 5E5E5BEM ̂■fĵ MBEECSSESKpEPPSME

btt
tit

Qsn
btr

iAc

Jia
aiB

htt
i

Appcndvc/B Support Information

IY-3272-PIO Daughter Board User’s Manual

Table C-l Abbreviations for Manufacturers
Abbreviation Manufacturer

3M 3M

Al Advanced Interconnect

AMD Advanced Micro Devices

AMP Amp

APT Aptronics

AVX AVX

BOU Bourns

EC2 EC2 Incorporated

IRO Ironies Inc.

SIG Signetics Corporation

IV-3272-PIO Daughter Board User’s Manual C -l

C.l Core Assembly

C.1.1 Sockets
Qty Loc. No. Manu Manu. Part No. Inventory Part No. Description

4 U2,
U3.U13.U23

Al KS324-176TG 335231 24-pin low-profile socket
(0.3” spacing)

C.1.2 Integrated Circuits
Qty Loc. No. Manu Manu. Part No. Inventory Part No. Description

1 U1 EC2 MTTLDL-50 621000 Triple 50ns delay line

4 U4,
U5.U14,
U15

SIG 74F543 444543 IC 74F543

3 U6,
U7.U16

SIG 74FCT245 481245 IC 74FCT245

3 U10,
U21.U22

SIG 74FCT244 481244 IC 74FCT244

2 U11,
U12

SIG 74FCT273 481273 IC 74FCT273

1 U20 SIG 74AS757 449757 IC 74AS757

0 U8,
U9.U17,
U18, U19

DO NOT INSTALL 20P SPARE

C.1.3 PLAs
Qty Loc. No. Manu Manu. Part No. Inventory Part No. Description

2 U2, AMD AMPAL22V10ADC 450000 PLA 5A0
U3 PLA 5 A3

2 U13, AMD AMPAL22V10BPC 450033 PLA 5A2
U23 (AMD AMPAL22V10-15PC) PLA 5A1

(AMD AMPAL22V10-15BSB)

C.1.4 Resistor Networks

Qty Loc. No. Manu Manu. Part No. Inventory Part No. Description

1 RN1 BOU 4610X-101-221 604037 10-pin 220 ohm SIP

C-2 TV-3272-PIO Daughter Board User’s Manual

C.1.5 Resistors
Qty Loc. No. Manu Manu. Part No. Inventory Part No. Description

2 R1.R2 ----- 600471 470 ohm 1/4W 5%

C.1.6 Capacitors
Qty Loc. No. Manu Manu. Part No. Inventory Part No. Description

18 C1-C7,
C10-C16,
C20-C23

AVX
(AVX

MD015E104ZAA
MD015E104ZAB

610104

)

0.1 uFdipguard

0 C8, C9,
C17-C19

DO NOT INSTALL SPARE

C.1.7 Miscellaneous
Qty Loc. No. Manu Manu. Part No. Inventory Part No. Description

1 PC IRO 504301 504301 IV-1019 1.1 PC board

1 J1-
J8:1

3M 929800-01-36 334158-08 1 x 8 LP header

1 J1-
J8:2-3

3M 929800-01-36 334162-08 2 x 8 LP header

2 P3,
P4

AMP 104078-8 335101 Receptacle 100 pos.
.050 H. density minimax

IV-3272-PIO Daughter Board User’s Manual

AppcnducC Parts List

C -4 TV-3272-PIO Daughter Board User's Manual

MANUAL EVALUATION FORM
As part of our continuing effort to improve the quality of Ironies products and documentation, we ask that you provide
us with your comments and suggestions for improving this publication. Your response to the questionnaire below
represents a critical link in our manual review and update process, and your contribution is greatly appreciated.

Mflny^l Title: Manual Version:T Manual Part No.:T

t Manual version and part number are given on the back of the title page.

• How are you using this manual?
Q Learning Q Installation Q Operation □ Reference □ Maintenance Q Sales

How do you rate this manual with respect to.. .

EXCELLENT GOOD FAIR POOR VERY POOR
.. .technical completeness? □ □ □ □ □

.. .organization? □ □ □ □ □

...readability? □ □ □ □ □

...accuracy? □ □ □ □ □

.. .usefulness as a reference? □ □ □ □ □

.. .visual presentation? □ □ □ □ □

How do you rate its overall effectiveness? □ □ □ □ □

Ironies has made every effort to ensure the accuracy, completeness, and consistency of the information provided to our
customers; oversights and mistakes, however, can occur. Please inform us of any errors or inconsistencies that you
may have noticed in the text, noting the page and section numbers. We also welcome any general comments or
suggestions for improvement that you might have.

Date:________________ Your Name:
Company:

Mailing Address:

Telephone Number:

Just tear this sheet off at the perforation, fold it as shown on the back, tape it closed (please use transparent tape), and mail it to us. No staples, please. Thanks!

i s \n 3d3H ax>d

*

8066-0S8H AN B3BM1I
l a a i lS b m p b o s b q 86Z

u o |S |A |a siuaisAs jainduioo
jdBeuew suoueonqrid :N11V

peiB JodJO O U i S O IN O U I

33SS3UOOV AS QlVd 38 H IM 30V IS0d

s b iv is craiiNn
3H1NI

obuwi di
AUVSS303N
39ViSOd ON

AN ‘VOVHU W6 ON JJWU3d 11VW SS\nO\LSdld

HVI/M AldBU SSBNISna

f
iSd ld 3U3H a io d

sefdeis asn \ou o p -
/Bos ai edet lu&iedsuBJi esn ■ ■ ■

setv/f eqi uo Aiw bjbopw "
peteopm jepjo eqi ur spfOf eqt eifew"3SV31d

