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Introduction 
In VLBA Test Memo 57 (hereafter referred to as Memol), I presented some options for 

VLBA antenna surface measurement. As part of Memol, I included a section describing the 
different contributions to the measurement error for antenna holography experiments. In this 
memo, I will present the results of a simulation program which I have created in an attempt 
to test the theoretical values of the measurement error that I presented in Memol. In general, 
I'll investigate the behavior as a function of raster size, wavelength, and the other parameter 
of interest. The types of errors that I will examine are SNR, pointing, amplitude fluctuation, 
phase fluctuation, and polarization. I will not be examining other types of errors, including 
receiver errors (other than amplitude fluctuation), bulk reflector shape change errors, source 
structure related errors, near-field errors, or EM clutter errors (see Memol). I will also not 
be investigating subreflector related errors (either rms or offsets), or errors related to the 
panels themselves (e.g., the effects of panel discontinuities on the determination of offsets, 
etc...) which are inherent in most implementations of the traditional holography technique 
(see James et al. 1993 and Deguchi et al. 1993 for exceptions). Because of this, the simulation I 
present here is simpler than some which have been used to examine holography in general (see 
e.g., Rahmat-Samii 1985; Deguchi et al. 1993; James et al. 1993). I assume throughout that 
phase is being measured for the holography as well as the amplitude (i.e., no phase-recovery 
technique is being used). 

Description of the Simulation 
In order to test how the different sources of error in the measurement of the radiation 

pattern map themselves into error in the derived surface deviation map, I need a way of 
producing the radiation pattern, and the surface deviation pattern from that. I produce the 
radiation pattern by calculating "visibilities" at the sample locations which are determined 
by the wavelength, raster size, and oversampling factor. 

The sample locations (if, v) are given by: 

u,v = k Auv k = —N/2, —N/2 + 1 , . . . ,N/2 — 2 , N / 2 — 1 , (1) 
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where N is the raster size. The spacing between samples is: 

where A is the wavelength, D is the antenna diameter, and k is the oversampling factor. 
The "visibility" can be thought of as being formed between the "test" antenna (the one for 

which a holographic determination of the surface deviation map is desired) and the "reference" 
antenna (the one which is always presumed to be on boresight). This complex visibility is 
comprised of a true signal portion and a noise portion: 

V(u,u) = Vs(M,U)+ n(w,v) . (3) 

I assume that the signal value on boresight is 1.0, i.e., 1^(0,0) = 1.0, and that the noise part 
does not vary as a function of u and v. The noise visibility is determined by calculating its 
real and imaginary parts separately: 

• w - s s s ; ^ = m ' ( 4 ) 

where SNR is the signal to noise ratio on boresight, and and £2 are gaussian random 
variables with unit width and zero mean. 

The amplitude of the signal portion of the visibility is calculated as: 

As(u, v) = Ar(u, v) At(u, u) [1 + f« A0] , (5) 

where Ar is the amplitude of the reference antenna radiation pattern, At is the amplitude of 
the test antenna radiation pattern, Aa is the magnitude of the amplitude errors, and £a is a 
gaussian random variable with unit width and zero mean. The amplitudes of the reference 
and test antennas are determined by the perturbed values of u and v, where the perturbation 
occurs from pointing errors. Consider the perturbation on u for the test antenna. For a 
constant pointing offset (an incorrect global pointing model) of 0Cu t and with the magnitude 
of the rms pointing offset of 0rmSu t , the perturbed value of ut (the t subscript to indicate the 
test antenna) is: 

u't = ut + 0Cu t + f p 0rmSu t , (6) 

where, again, is a gaussian random variable with unit width and zero mean. Given a similar 
perturbation on vt, the amplitude of the test antenna radiation pattern is then: 

where z't is given by: 

zl(u,v)= tK; ; , (8) 
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with r((tt, v) = y/u'tu't -f v'tv't. The amplitude of the radiation pattern for the reference antenna 
is calculated in a similar fashion, given its pointing offsets and rms values. The phase of the 
signal portion of the visibility is calculated as: 

(f>a(u, v) = <f>rma , (9) 

where <j>rms is the magnitude of the phase jitter from point to point between the reference and 
test antennas, and is a gaussian random variable with unit width and zero mean. 

Once the radiation pattern has been calculated, the aperture current distribution is ob-
tained by an inverse Fourier transform of that pattern. If an FFT is used, then the data is 
often oversampled, in order to avoid aliasing (see discussion below). This is where the over-
sampling factor (k) introduced above comes in. If a DFT is used, oversampling is not needed, 
but it is still common to oversample by factors of about 1.2 or so. If a DFT is used in the 
simulation, the values of the aperture current distribution are calculated at positions on the 
aperture x and y via: 

N/2-1 N/2-1 

C(x, y) = C(/Axy, mAxy) = £ £ e~2*ijl<N
 e-2*ikm<N V(jAuv, kAuv) , (10) 

j=-N/2 k=-N/2 

where / and m range from —N/2 to N/2 — 1. The spacing between samples is: 

Of course, for locations in the aperture where y/x2 + y2 > D, the above summation is not 
done, but the current distribution is simply set to 0. If an FFT is used in the simulation, 
the only complication is that a shift must be accounted for. This is because available FFT's 
assume that the input samples go from 0 to TV — 1, rather than —N/2 to N/2 — 1. This means 
that a shift of N/2 samples is introduced, which introduces a multiplicative factor which looks 
like: 

C'(x,y) = e«i«+^C(x,y) , (12) 

where C(x,y) is the matrix returned by the FFT routine. Effectively, this just multiplies 
values in the aperture current distribution by cx* (which is just equal to -1) in a checkerboard 
pattern over the distribution. 

The aperture phase distribution is then the phase portion of the aperture current distri-
bution: 

y) = Phase[C(x, y)] = arctan f . (13) 

In real holography experiments, the aperture phase distribution thus obtained has in it 
the effects of several types of errors, including subreflector offsets and pointing offsets. I'm 
not simulating any of the subreflector effects here. Theoretically, the pointing offsets translate 
exactly into a linear phase gradient across the aperture phase distribution. This can be fit for 
and subtracted out, and I do just that. So, I fit a linear phase gradient of the form: 

V>/(x, y) = ax + by + c , (14) 
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for the coefficients a, 6, and c. I then subtract this from the aperture phase distribution, i.e., 

i/>'(x, y) = ip(x, y) - y) = i/>(x, y) - (ax + by + c) (15) 

The relationship between the surface errors and the aperture phase is given by (see Memol): 

where 7 is the angle formed from feed to subreflector to surface point. For a parabolic reflector 
with an on-axis feed, this reduces to: 

<*.») = i ^ f + ^ T j r - ^ y ) - (17) 

where / is the focal length (8.4 meters for VLBA antennas). 

Implementation and Timing 
I have implemented this simulation in two ways: as a FORTRAN program, and as an 

IDL procedure. The FORTRAN program runs much faster (see next paragraph), so is used 
to investigate the statistics of many simulations of a particular type of error (via multiple 
calls from a Perl script). The IDL procedure, though slower, gives a nice visual display of the 
results, and is good for giving a feel for repeatable non-gaussian types of errors. 

Table 1 shows the results for the time in seconds taken for the different simulations (done 
on my Sparc Ultra-1). Where the dashes appear in the table, the times were too fast or too 
slow to measure reliably. You can see easily that the FORTRAN execution times are much 
faster than the IDL times. This is understandable, since IDL has much more overhead and 
generality and is an interpreted language (rather than FORTRAN which is a compiled lan-
guage), and hence almost always runs slower than the equivalent optimized FORTRAN. The 
slowness of the DFT in comparison to the FFT also comes as no surprise. 

Table 1. Time to run the simulations (in seconds) 

FORTRAN IDL 
N DFT FFT DFT FFT 
16 — — 2 — 

32 1.5 — 30 0.5 
64 20 — 500 2.5 
128 300 0.5 — 10 
256 — 2 — 40 
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Inputs 
The required inputs for the simulations are: the antenna diameter, the wavelength, the 

raster size, the oversampling factor, the SNR, the phase rms, the amplitude rms, the test and 
reference antenna pointing offsets in u and v, the test and reference antenna rms values in u 
and v, the focal length, and the type of transform (DFT or FFT, and whether the data is 
apodized or not prior to transform - see section below). I presume that the focal length is 
constant at 8.4 m. All other inputs are allowed to vary (save the transform variables - again, 
see below). 

Outputs 
Once the map of surface deviation has been obtained, there are several pieces of information 

which can be obtained from it. The two I will report here are the rms deviation and maximum 
deviation across the reflector surface. It is not clear to me which of these is a better indicator 
of the intrinsic measurement error, which is why I report them both. The reason it is not 
clear which is better is that there are systematic (non-gaussian) errors introduced in the 
aperture distribution, and hence simply reporting the rms deviation can be misleading. For 
instance, given a 128X128 raster, with oversampling by a factor of 1.2 (/c = 1.2), there are 
8945 samples on the aperture. For this many samples, you would expect of order 0.5 samples 
with a magnitude of 4-cr, i.e., the maximum deviation across the surface should be of order 
4-er. In fact, depending upon the type of error and other input parameters, it can be much 
higher than this, as will be shown below. For this reason, it seems better to report both pieces 
of information. 

DFT, FFT, oversampling, and apodization 
In these simulations, where a fully regular grid of samples is generated for the radiation 

pattern, there should be no difference between the results for the DFT and the FFT. This is 
indeed what I find in testing, as shown in Table 2. For this reason, all of the simulations I 
present here were done with the FFT. 

In the holography literature, it is common to run across various statements involving 
oversampling. It seems that a lore has arisen where oversampling by large factors (like 1.2) is 
advocated. While the only harm in oversampling is the fact that a penalty is paid in resolution 
on the antenna surface (resolution in worse by the oversampling factor), and there is actually 
a reduction in errors (because of the effective smoothing over the surface), in fact,, it is not 
necessary to oversample by such large factors. In well sampled holography maps, it is sufficient 
to effectively oversample only by 1 sample, i.e., the oversampling factor k = 1 + l/N. This 
has been recognized by others (see e.g. Morris 1984), but doesn't seem to have propagated 
through the holography literature and community. As an example, in the VLA holography ex-
periments, Rick Perley uses as oversampling factor of 1.2. Table 2 shows results of simulating 
the effect of oversampling. This table shows that the improvement in surface deviation error 
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is due almost entirely to the smoothing, i.e., there seems to be little gain from oversampling 
(at least in the larger N maps). This table also shows simulations where apodization was used 
for the FFT (also commonly called windowing or smoothing). This is a common technique 
for suppressing aliasing when dealing with FFT's. The apodization function used was a 2-D 
Hanning (cosine) function. Apodizing the radiation pattern effectively smooths the aperture 
phase map, and hence the surface deviation map. For this reason, the errors are reduced 
in the apodized maps. For Hanning apodization, the smoothing is roughly a factor of 2, so 
resolution on the antenna surface is about a factor of 2 worse (while errors get better by a 
bit better than a factor of 2). Better functions could be investigated which would pay less 
penalty in resolution but still suppress aliasing, but that is beyond the scope of this memo. 
For the simulations presented in this memo, an oversampling factor of 1.05 was used, with no 
apodization. 

Table 2. Error as a function of transform, oversampling, and apodization. 

N K apodized? DFT/FFT rms error (/im) max error (/xm) 
16 1.0 N DFT 19.33±1.1 60.50=fc 8.8 
16 1.0 N FFT 19.38±1.1 60.34± 9.3 
16 1.0 Y FFT 7.48±0.8 24,95± 5.6 
16 1.2 N DFT 13.41±0.8 38.23± 5.8 
16 1.2 N FFT 13.53±0.9 39.50± 6.3 
16 1.2 Y FFT 5.33±0.7 17.67± 4.2 
32 1.0 N DFT 38.38±1.1 138.60± 17.5 
32 1.0 N FFT 38.38±1.1 136.76± 17.6 
32 1.0 Y FFT 14.83±0.7 60.39± 11.1 
32 1.2 N DFT 26.97±0.8 95.25± 12.3 
32 1.2 N FFT 26.91±0.8 95.78± 15.7 
32 1.2 Y FFT 10.47±0.5 41.10± 6.8 
64 1.0 N DFT 77.28±1.1 338.68± 45.3 
64 1.0 N FFT 77.33±0.9 336.33± 52.5 
64 1.0 Y FFT 29.52±0.7 145.08± 22.4 
64 1.2 N DFT 53.91±0.8 225.10± 33.2 
64 1.2 N FFT 53.75±0.8 226.38± 35.4 
64 1.2 Y FFT 20.63±0.6 95.33± 17.4 
128 1.0 N FFT 154.73±1.0 793.45±136.3 
128' 1.0 Y FFT 58.30±0.7 313.32± 42.5 
128 1.05 N FFT 140.36±1.0 739.62±128.3 
128 1.05 Y FFT 52.93±0.8 283.31± 42.6 
128 1.1 N FFT 128.30±0.9 708.83±122.8 
128 1.1 Y FFT 48.38±0.7 264.22± 36.5 
128 1.2 N FFT 107.53±0.9 541.80± 79.3 
128 1.2 Y FFT 40.79±0.6 215.51± 29.5 
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SNR 
In Memol, the theoretical error for a given SNR on boresight was given as: 

A N 
Cerr ~ 3 7r SNR ' 

Table 3 shows the errors for the simulations as a function of A, N, and SNR. For well sampled 
maps with higher SNR, the proper relationship between the error and other parameters seems 
to be: 

TTSNR 
and 

A N 
5 TTSNR 

Pointing 
In Memol, the theoretical error for a given rms pointing error of magnitude (0rms) was 

given as: 
9rms D 

Cerr • ( 1 8 ) 

Table 4 shows the errors for the simulations as a function of A, TV, and 0 rms on the antennas. 
For well sampled maps with relatively good pointing (where the pointing error is roughly 
better than one tenth of the primary beamwidth, or about 11" at 13.4mm, 6" at 7mm, and 
3" at 3.5mm), the proper relationship between the error and other parameters seems to be: 

OrmsD 

and 
"rms D 

rsj 12 
As a test, simulations were also run where constant pointing offsets were present on either or 
both test and reference antenna. Again, when pointing is good (as defined above), the proper 
offsets are always recovered in the reduction. When pointing gets bad, however, incorrect 
constant offsets are derived, and the surface deviation errors go up rapidly. This emphasizes 
the importance of good pointing for holography. 

Amplitude Fluctuations 
In Memol, the theoretical error for a given amplitude fluctuation of magnitude (A0) was 

given as: 

« « = • (is) 
OTT 
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Table 3. Error as a function of SNR. 

A N SNR rms error (/im) max error ( îm) theoretical (/im) max/theoretical rms/ theoretical 
13.5 8 50 144.39±15.0 385.32±75.5 229 1.7 0.63 
13.5 16 50 303.00±19.9 1112.04±300.2 458 2.4 0.66 
13.5 32 50 677.09±24.9 3606.64±313.1 917 3.9 0.74 
13.5 64 50 1292.80±19.0 4142.82±65.1 1833 2.3 0.71 
13.5 128 50 1731.10±9.7 4194.91±28.9 3667 1.1 0.47 
13.5 256 50 1967.37±4.8 4213.17±14.6 7334 0.6 0.27 
13.5 8 100 72.15±9.3 185.80±47.5 115 1.6 0.63 
13.5 16 100 147.99±9.5 520.97± 127.9 229 2.3 0.65 
13.5 32 100 299.62±10.1 1532.55±601.4 458 3.3 0.65 
13.5 64 100 670.10±14.3 3929.86±174.4 917 4.3 0.73 
13.5 128 100 1284.98±10.6 4166.67±28.7 1833 2.3 0.70 
13.5 256 100 1730.79±4.4 4204.13±14.5 3667 1.1 0.47 
13.5 8 200 35.42±4.1 92.42±17.4 57 1.6 0.62 
13.5 16 200 73.61±4.3 252.85±51.4 115 2.2 0.64 
13.5 32 200 144.00±4.0 599.54±111.0 229 2.6 0.63 
13.5 64 200 293.17±5.0 1850.66±512.6 458 4.0 0.64 
13.5 128 200 660.97±6.9 4054.24±84.9 917 4.4 0.72 
13.5 256 200 1283.81±4.8 4188.92±17.1 1833 2.3 0.70 
13.5 8 400 17.68±2.3 47.13±10.6 29 1.6 0.61 
13.5 16 400 36.74±2.4 128.52±29.0 57 2.3 0.64 
13.5 32 400 72.17±2.0 301.79±55.5 115 2.6 0.63 
13.5 64 400 141.92±2.0 688.41±132.2 229 3.0 0.62 
13.5 128 400 287.99±2.4 1991.63±598.3 458 4.3 0.63 
13.5 256 400 660.44±3.6 4135.40±45.0 917 4.5 0.72 
13.5 128 800 140.51±0.9 726.70±119.0 229 3.2 0.61 
13.5 128 1600 69.88±0.5 343.91±43.9 115 3.0 0.61 
13.5 128 3200 34.84±0.2 171.89±26.4 57 3.0 0.61 
13.5 128 6400 17.43±0.1 84.24±12.1 29 2.9 0.60 
7.0 64 50 667.34±10.3 2143.17±36.1 951 2.3 0.70 
7.0 128 50 898.27±5.2 2180.36±15.7 1901 1.1 0.47 
7.0 64 100 348.25±7.1 2034.11±90.1 475 4.3 0.73 
7.0 128 100 667.00±5.4 2165.20±19.5 951 2.3 0.70 
7.0 64 200 152.12±2.5 985.16±348.8 238 4.1 0.64 
7.0 128 200 343.59±3.5 2100.01±49.4 475 4.4 0.72 
7.0 64 400 73.76±0.9 353.07±64.5 119 3.0 0.62 
7.0 128 400 149.36±1.2 1064.07±348.8 238 4.5 0.63 
7.0 64 800 36.69±0.5 170.66±28.6 59 2.9 0.62 
7.0 128 800 72.76±0.5 376.84±60.5 119 3.2 0.61 
7.0 64 1600 18.24±0.2 84.51±13.6 30 2.8 0.61 
7.0 128 1600 36.17±0.3 184.16±31.1 59 3.1 0.61 
7.0 64 3200 9.14±0.1 41.70±6.0 15 2.8 0.61 
7.0 128 3200 18.08±0.1 90.29±12.3 30 3.0 0.60 
3.5 64 50 333.92±4.6 1071.86±16.4 475 2.3 0.70 
3.5 128 50 449.06±2.4 1089.51±8.3 951 1.1 0.47 
3.5 64 100 173.83±3.8 1020.28±48.9 238 4.3 0.73 
3.5 128 100 333.32±2.2 1081.92±8.1 475 2.3 0.70 
3.5 64 200 75.90±1.4 487.93±187.7 119 4.1 0.64 
3.5 128 200 171.96±1.8 1055.92±23.4 238 4.4 0.72 
3.5 64 400 36.95±0.5 172.92±28.4 59 2.9 0.63 
3.5 128 400 74.64±0.5 515.84±164.7 119 4.3 0.63 
3.5 64 800 18.35±0.2 84.15±12.5 30 2.8 0.61 
3.5 128 800 36.39±0.2 185.75±34.0 59 3.1 0.62 
3.5 64 1600 9.15±0.1 43.46±7.4 15 2.9 0.61 
3.5 128 1600 18.10±0.1 91.36±12.8 30 3.0 0.60 
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Table 4. Error as a function of pointing rms error. 

A N 0rm» (asec) rms error (pm) max error (/im) theoretical (/im) max/ theoretical rms/theoretical 
13.5 8 1 9.65±2.7 21.66±7.2 21 1.0 0.46 
13.5 16 1 10.29±2.4 33.01±11.1 21 1.6 0.49 
13.5 32 1 9.92±1.7 37.62±11.6 21 1.8 0.47 
13.5 64 1 10.22±1.9 42.52±11.2 21 2.0 0.49 
13.5 128 1 10.39±2.1 45.86±11.7 21 2.2 0.49 
13.5 256 1 10.07±2.2 46.49±12.4 21 2.2 0.48 
13.5 8 2 18.36±4.5 41.87±12.5 42 1.0 0.44 
13.5 16 2 21.33±4.7 68.50±21.1 42 1.6- 0.51 
13.5 32 2 21.15±4.6 79.06±24.8 42 1.9 0.50 
13.5 64 2 20.30±4.3 85.14±23.9 42 2.0 0.48 
13.5 128 2 20.70±4.7 93.44±28.6 42 2.2 0.49 
13.5 256 2 20.76±4.4 93.96±22.3 42 2.2 0.49 
13.5 8 4 38.54±10.1 86.67±27.4 84 1.0 0.46 
13.5 16 4 42.42±10.9 137.18±46.3 84 1.6 0.51 
13.5 32 4 39.24±8.6 144.38±43.2 84 1.7 0.47 
13.5 64 4 41.54±9.3 177.22±53.7 84 2.1 0.49 
13.5 128 4 40.54±8.7 178.56±51.8 84 2.1 0.48 
13.5 256 4 39.68±8.0 179.70±47.4 84 2.1 0.47 
13.5 64 8 83.91±16.3 374.39±104.5 168 2.2 0.50 
13.5 128 8 80.64±17.8 362.95±122.3 168 2.2 0.48 
13.5 64 16 174.94±38.5 948.58±566.3 336 2.8 0.52 
13.5 128 16 170.11±41.1 882.06±453.1 336 2.6 0.51 
7.0 64 1 10.17±1.9 42.45±11.1 21 2.0 0.48 
7.0 128 1 10.54±2.4 46.30±13.3 21 2.2 0.50 
7.0 64 2 20.75±4.4 88.26±25.1 42 2.1 0.49 
7.0 128 2 20.34±3.9 85.73±20.6 42 2.0 0.48 
7.0 64 4 41.39±9.1 185.52±46.5 84 2.2 0.49 
7.0 128 4 41.47±8.2 183.07±46.3 84 2.2 0.49 
7.0 64 8 86.72±20.7 532.11±359.5 168 3.2 0.52 
7.0 128 8 82.68±17.9 461.82±264.5 168 2.7 0.49 
7.0 64 16 211.12±88.7 1356.08±672.2 336 4.0 0.63 
7.0 128 16 213.87±105.3 1412.1± 735.9 336 4.2 0.64 
3.5 64 1 10.58±2.6 45.78±14.8 21 2.2 0.50 
3.5 128 1 9.75±1.8 43.37±12.1 21 2.1 0.46 
3.5 64 2 20.81±4.5 91.16±29.5 42 2.2 0.50 
3.5 128 2 19.64±3.7 89.15±24.1 42 2.1 0.47 
3.5 64 4 43.26±9.5 221.52±127.9 84 2.6 0.52 
3.5 128 4 41.67±10.3 219.79±101.1 84 2.6 0.50 
3.5 64 8 110.30±44.5 743.71±360.8 168 4.4 0.66 
3.5 128 8 100.55±43.4 662.70±376.4 168 3.9 0.60 
3.5 64 16 283.72±127.9 1265.03±330.4 336 3.8 0.84 
3.5 128 16 294.76±129.3 1314.50±335.2 336 3.9 0.88 
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Table 5 shows the errors for the simulations as a function of A, N, and Aa. For well sampled 
maps, the proper relationship between the error and other parameters seems to be: 

AaX 
tmax — o 

and 
AgX 

C r m S " 15 7T 

Phase Fluctuations 
In Memol, the theoretical error for a given phase fluctuation of magnitude (</>rm«) was 

given as: 
_ <f>rms A 

^err — P 
07T 

Table 6 shows the errors for the simulations as a function of A, TV, and <j>rms. For well sampled 
maps, the proper relationship between the error and other parameters seems to be: 

_ <t>rms A 
^max n 5 

2ir 
and 

_ 4>rms A 
e r m ' " 12 7T ' 

Polarization Effects 
As described in Memol, observing polarized sources with imperfectly polarized feeds for 

holography introduces errors in the surface deviation map. Assuming that a source is tracked 
over a range of parallactic angle that is exactly 90 degrees, and starts perpendicular to the 
minor polarization ellipse axis, then the effective amplitude rms is about 0.3 (0.289) times the 
error in ellipticity of the feeds, yielding a theoretical surface error of: 

_ PeP9 A 
C c r r ~ 10 7T ' 

where Pe is the ratio of major to minor axis of the circular feed (as a fraction), and Ps is the 
linear polarization of the source. Assuming that the polarization of the source is 100% (which 
can be the case when observing celestial maser sources, e.g.), then the errors shown in Table 
7 are derived. 
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Table 5. Error as a function of amplitude fluctuation. 

A N Aa (%) rms error (/im) max error (/*m) theoretical (/*m) max/ theoretical rms/theoretical 
13.5 8 4 10.13±2.4 23.05±6.0 57.3 0.40 0.18 
13.5 16 4 11.66±2.7 37.41±12.3 57.3 0.65 0.20 
13.5 32 4 11.89±2.6 44.16±14.8 57.3 0.77 0.21 
13.5 64 4 12.24±2.1 51.65±13.5 57.3 0.90 0.21 
13.5 128 4 11.72±2.0 51.73±13.2 57.3 0.90 0.20 
13.5 256 4 11.86±2.2 54.02±11.9 57.3 0.94 0.21 
13.5 8 2 5.21±1.3 12.26±3.5 28.6 0.43 0.18 
13.5 16 2 5.84±1.2 18.87±6.1 28.6 0.66 0.20 
13.5 32 2 5.81±0.9 21.29±5.4 28.6 0.74 0.20 
13.5 64 2 5.79±0.9 24.75±6.6 28.6 0.87 0.20 
13.5 128 2 6.23±1.1 26.22±6.9 28.6 0.92 0.22 
13.5 256 2 6.10±1.2 27.97±7.0 28.6 0.98 0.21 
13.5 8 1 2.53±0.6 5.88±1.8 14.3 0.41 0.18 
13.5 16 1 2.97±0.7 9.58±3.1 14.3 0.67 0.21 
13.5 32 1 2.98±0.5 11.36±3.2 14.3 0.79 0.21 
13.5 64 1 3.01±0.5 12.62±3.1 14.3 0.88 0.21 
13.5 128 1 2.92±0.5 12.83±2.9 14.3 0.90 0.20 
13.5 256 1 3.02±0.5 13.85±2.7 14.3 0.97 0.21 
13.5 64 0.5 1.53±0.3 6.42±1.5 7.2 0.89 0.21 
13.5 128 0.5 1.44±0.2 6.64±1.7 7.2 0.92 0.20 
13.5 64 0.25 0.75±0.1 3.21±0.9 3.6 0.89 0.21 
13.5 128 0.25 0.73±0.1 3.26±0.9 3.6 0.91 0.20 
7.0 64 4 6.28±1.1 26.95±7.2 29.7 0.91 0.21 
7.0 128 4 6.05±1.1 27.54±7.0 29.7 0.93 0.20 
7.0 64 2 3.12±0.5 12.77±3.2 14.9 0.86 0.21 
7.0 128 2 3.10±0.6 13.87±3.4 14.9 0.93 0.21 
7.0 64 1 1.56±0.2 6.56±1.4 7.4 0.89 0.21 
7.0 128 1 1.54±0.2 6.96±1.5 7.4 0.94 0.21 
7.0 64 0.5 0.80±0.1 3.43±0.8 3.7 0.93 0.22 
7.0 128 0.5 0.76±0.1 3.28±0.7 3.7 0.89 0.21 
7.0 64 0.25 0.39±0.1 1.64±0.4 1.9 0.86 0.21 
7.0 128 0.25 0.39±0.1 1.71±0.4 1.9 0.90 0.21 
3.5 64 4 3.18±0.6 13.32±3.7 14.9 0.89 0.21 
3.5 128 4 2.99±0.4 13.31±2.9 14.9 0.89 0.20 
3.5 64 2 1.56±0.3 6.54±1.9 7.4 0.88 0.21 
3.5 128 2 1.55±0.3 6.96±1.7 7.4 0.94 0.21 
3.5 64 1 0.77±0.1 3.30±0.9 3.7 0.89 0.21 
3.5 128 1 0.77±0.1 3.39±0.8 3.7 0.92 0.21 
3.5 64 0.5 0.39±0.1 1.62±0.4 1.9 0.85 0.21 
3.5 128 0.5 0.38±0.1 1.67±0.4 1.9 0.88 0.20 
3.5 64 0.25 0.19±0.0 0.79±0.2 0.93 0.85 0.20 
3.5 128 0.25 0.19±0.0 0.86±0.2 0.93 0.92 0.20 
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Table 6. Error as a function of phase fluctuation. 

A N <f>rmt (cleg) rms error (/im) max error (/im) theoretical (/im) max/theoretical rms/theoretical 
13.5 8 60 395.09±379.4 1076.64±1059.9 750 1.4 0.53 
13.5 16 60 422.82±334.1 1615.54±1191.1 750 2.2 0.56 
13.5 32 60 383.82± 162.3 1901.31±1332.4 750 2.5 0.51 
13.5 64 60 367.86±85.6 2086.74±1200.6 750 2.8 0.49 
13.5 128 60 367.89±59.1 2156.85±1229.8 750 2.9 0.49 
13.5 256 60 407.96±294.8 2496.45±1503.8 750 3.3 0.54 
13.5 8 30 174.89±44.7 447.49±121.7 375 1.2 0.47 
13.5 16 30 199.83±39.9 757.48±221.7 375 2.0 0.53 
13.5 32 30 191.02±36.4 879.29±248.0 375 2.3 0.51 
13.5 64 30 193.76±39.8 964.82±251.8 375 2.6 0.52 
13.5 128 30 192.33±42.2 939.95±208.9 375 2.5 0.51 
13.5 256 30 185.46±34.2 1017.97±264.5 375 2.7 0.49 
13.5 8 10 60.10±17.3 142.88±46.6 125 1.1 0.48 
13.5 16 10 65.18±15.0 246.62±89.1 125 2.0 0.52 
13.5 32 10 68.44±15.5 307.60±113.3 125 2.5 0.55 
13.5 64 10 63.57±13.7 327.80± 100.2 125 2.6 0.51 
13.5 128 10 61.96±14.9 332.53±92.6 125 2.7 0.50 
13.5 256 10 62.56±14.3 324.51±93.5 125 2.6 0.50 
13.5 64 5 32.15±7.3 159.83±54.2 63 2.5 0.51 
13.5 128 5 30.55±8.0 155.92±50.0 63 2.5 0.48 
13.5 64 2 12.74±3.3 63.52±22.0 25 2.5 0.51 
13.5 128 2 12.93±3.0 64.05±21.5 25 2.6 0.52 
13.5 64 1 6.64±1.8 31.79±10.6 13 2.5 0.51 
13.5 128 1 6.54±1.8 32.76±11.0 13 2.5 0.50 
7.0 64 60 222.88±187.4 1112.92±708.1 389 2.9 0.57 
7.0 128 60 213.79±103.8 1345.76±857.1 389 3.5 0.55 
7.0 64 30 94.39±16.8 480.26±121.9 194 2.5 0.49 
7.0 128 30 97.02±18.3 487.45± 119.2 194 2.5 0.50 
7.0 64 10 34.24±8.3 177.97±52.8 65 2.7 0.53 
7.0 128 10 32.43±7.7 174.32±57.2 65 2.7 0.50 
7.0 64 5 17.03±4.5 90.60±30.2 32 2.8 0.53 
7.0 128 5 16.61±3.9 85.12±26.7 32 2.7 0.52 
7.0 64 2 6.87±1.6 33.66±11.7 13 2.6 0.53 
7.0 128 2 6.57±1.6 33.52±10.9 13 2.6 0.51 
7.0 64 1 3.35±0.9 16.68±5.2 6.5 2.6 0.52 
7.0 128 1 3.35±0.9 16.67±5.6 6.5 2.6 0.52 
3.5 64 60 111.60±67.1 585.90±403.9 194 3.0 0.58 
3.5 128 60 131.68±129.9 717.19±483.4 194 3.7 0.68 
3.5 64 30 49.46±11.1 250.41±62.0 97 2.6 0.51 
3.5 128 30 46.43±8.8 251.44±58.4 97 2.6 0.48 
3.5 64 10 18.22±4.7 90.23±29.7 32 • 2.8 0.57 
3.5 128 10 17.09±4.6 86.29±26.9 32 2.7 0.53 
3.5 64 5 8.75±2.2 45.01±16.4 16 2.8 0.55 
3.5 128 5 8.12±2.0 42.71±14.7 16 2.7 0.51 
3.5 64 2 3.56±0.8 18.05±5.6 6.5 2.8 0.55 
3.5 128 2 3.26±0.8 15.91±5.2 6.5 2.5 0.50 
3.5 64 1 1.68±0.4 8.34±3.0 3.2 2.6 0.52 
3.5 128 1 1.67±0.4 8.32±2.6 3.2 2.6 0.52 
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Table 7. Error as a function of feed polarization ellipticity error. 

A N Pe(%) rms error (/im) max error (/im) theoretical (/im) max/theoretical rms/theoretical 
13.5 8 8 4.93 +/ - 0.5 11.42 + / - 1.1 34.4 0.33 0.14 
13.5 16 8 5.03 + / - 0.5 21.56 + / - 2.2 34.4 0.63 0.15 
13.5 32 8 4.11 + / - 0.4 26.59 + / - 2.7 34.4 0.77 0.12 
13.5 64 8 3.17 + / - 0.3 28.88 + / - 2.9 34.4 0.84 0.09 
13.5 128 8 2.11 + / - 0.2 29.70 + / - 3.0 34.4 0.86 0.06 
13.5 256 8 1.49 + / - 0.1 28.69 + / - 2.9 34.4 0.83 0.04 
13.5 8 4 2.51 + / - 0.3 5.81 + / - 0.6 17.2 0.34 0.15 
13.5 16 4 2.56 +/ - 0.3 10.98 + / - 1.1 17.2 0.64 0.15 
13.5 32 4 2.09 +/ - 0.2 13.55 + / - 1.4 17.2 0.79 0.12 
13.5 64 4 1.61 +/ - 0.2 14.72 + / - 1.5 17.2 0.86 0.09 
13.5 128 4 1.08 +/ - 0.1 15.15 + / - 1.5 17.2 0.88 0.06 
13.5 256 4 0.76 +/ - 0.1 14.65 + / - 1.5 17.2 0.85 0.04 
13.5 8 2 1.26 + / - 0.1 2.93 + / - 0.3 8.6 0.34 0.15 
13.5 16 2 1.29 +/ - 0.1 5.54 + / - 0.6 8.6 0.64 0.15 
13.5 32 2 1.06 + / - 0.1 6.84 + / - 0.7 8.6 0.80 0.12 
13.5 64 2 0.81 +/ - 0.1 7.44 + / - 0.7 8.6 0.87 0.09 
13.5 128 2 0.54 + / - 0.1 7.66 + / - 0.8 8.6 0.89 0.06 
13.5 256 2 0.38 + / - 0.0 7.43 + / - 0.7 8.6 0.86 0.04 
13.5 8 1 0.63 + / - 0.1 1.47 + / - 0.1 4.3 0.34 0.15 
13.5 16 1 0.65+/-0.1 2.79 + / - 0.3 4.3 0.65 0.15 
13.5 32 1 0.53 +/ - 0.1 3.44 + / - 0.3 4.3 0.80 0.12 
13.5 64 1 0.41 +/ - 0.0 3.74 + / - 0.4 4.3 0.87 0.10 
13.5 128 1 0.27 +/ - 0.0 3.86 + / - 0.4 4.3 0.90 0.06 
13.5 256 1 0.19 +/ - 0.0 3.75 + / - 0.4 4.3 0.87 0.04 
7.0 64 8 1.64 +/ - 0.2 14.97 + / - 1.5 17.8 0.84 0.09 
7.0 128 8 1.10 +/ - 0.1 15.40 + / - 1.5 17.8 0.87 0.06 
7.0 64 4 0.84 +/ - 0.1 7.63 +/ - 0.8 8.9 0.86 0.09 
7.0 128 4 0.56 + / - 0.1 7.85 + / - 0.8 8.9 0.88 0.06 
7.0 64 2 0.42 +/ - 0.0 3.86 + / - 0.4 4.5 0.86 0.09 
7.0 128 2 0.28 + / - 0.0 3.97 + / - 0.4 4.5 0.88 0.06 
7.0 64 1 0.21 + / - 0.0 1.94 + / - 0.2 2.2 0.88 0.10 
7.0 128 1 0.14 +/ - 0.0 2.00 + / - 0.2 2.2 0.91 0.06 
3.5 64 8 0.82 +/ - 0.1 7.49 + / - 0.8 8.9 0.84 0.09 
3.5 128 8 0.55 +/ - 0.1 7.70 + / - 0.8 8.9 0.87 0.06 
3.5 64 4 0.42 +/ - 0.0 3.82 + / - 0.4 4.5 0.85 0.09 
3.5 128 4 0.28 + / - 0.0 3.93 + / - 0.4 4.5 0.87 0.06 
3.5 64 2 0.21 +/ - 0.0 1.93 +/ - 0.2 2.2 0.88 0.10 
3.5 128 2 0.14 +/ - 0.0 1.99 +/ - 0.2 2.2 0.90 0.06 
3.5 64 1 0.11 +/ - 0.0 0.97 +/ - 0.1 1.1 0.88 0.10 
3.5 128 1 0.07 +/ - 0.0 1.00+/- 0.1 1.1 0.91 0.06 
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For well sampled maps, the proper relationship between the error and other parameters 
seems to be: 

_ PePs\ 
C m a X ~ 12 TT ' 

and 
_PePs A 

100 7T 

Summary and VLBA numbers 
Table 8 shows the derived errors (max and rms) from the simulations. What does this 

mean in terms of holography on the VLBA antennas? From examination of the above tables, 
it is clear that of the error terms investigated in this memo, SNR, pointing, and phase fluctu-
ation errors dominate. Let us examine each of these three error terms in turn. 

Table 8. Summary of errors in the simulations. 

type of error rms error (/xm) max error (/im) 

SNR 
A N A N 

SNR 
5TT SNR TTSNR 

pointing OTITIS D 

12 
Qrms D 

3 

amplitude fluctuation 
A Aa 

15?r 
A Aa 

3 TT 

phase fluctuation A firms 

12Tr 
A firms 

2TT 

polarization A PePs 

100 TT 
A PePs 

12 TT 

SNR 

Assume that maser sources are to be used for the holography, and that there is an H2O 
maser available with flux density of 5000 Jy, and an SiO maser available with flux density of 
1000 Jy. Also assume that both 64x64 and 128x128 maps should be investigated. Then the 
errors listed in Table 9 result. This table lists surface deviation errors in /im (max error is in 
brackets). 
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Table 9. SNR errors for VLBA holography. 

H 2 0 maser SiO maser 
(13.4mm) (7mm) 

N = 64 17.5 [85] 70 [350] 

N = 128 70 [350] 280 [1400] 

pointing 

Assume that pointing on the VLBA is currently about 8", but might be improved to 4" 
with reference pointing in the near future. Then the errors listed in Table 10 result. This 
table lists surface deviation errors in nm (max error is in brackets). 

Table 10.. Pointing errors for VLBA holography. 

pointing error error 
(asec) ( H 

8 80 [320] 

4 40 [160] 

phase fluctuations 

Assume that amplitude fluctuations on the VLBA are 40° (typical) or 20° (exceptional). 
Also assume again that observations of SiO masers at 7mm and H2O masers at 13.4mm might 
be attempted. Then the errors listed in Table 12 result. This table lists surface deviation 
errors in /im (max error is in brackets). 

Table 11. Phase fluctuation errors for VLBA holography. 

H2O maser SiO maser 
(13.4mm) (7mm) 

firms = 4 0 ° 250 [1500] 130 [780] 

firms = 2 0 ° 125 [750] 65 [390] 
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Conclusion 
As concluded in Memol, it seems evident that it will be very hard to reach the desired 

accuracy for measurement of the VLBA primary reflector surfaces by using traditional phase-
connected holography. 
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