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1 INTRODUCTION 

This document summarizes the current instrumental status of the Very Large Array. It is intended 
as a ready reference for those contemplating use of the VLA for their astronomical research. The 
information is in summary form - those requiring greater detail should consult the VLA's staff 
members, listed in Section 7, or refer to the manuals and documentation listed in Section 6. Most 
of the information contained here, and much more, is available on the Web, and can be accessed 
through the NRAO home page, at www.nrao.edu. A companion document for the VLBA is also 
available from the same address. 

The Very Large Array is a large and complex modern instrument. It cannot be treated as a 
'black box', and some familiarity with the principles and practices of its operation is necessary 
before efficient use can be made of it. Although the NRAO strives to make using the VLA as simple 
as possible, users must be aware that proper selection of observing mode and calibration technique is 
often crucial to the success of an observing program. Inexperienced and first-time users are especially 
encouraged to enlist the assistance of an experienced colleague or NRAO staff member for advice 
on, or direct participation in, an observing program. Refer to Section 4.11 for details. The VLA is 
an extremely flexible instrument, and we are always interested in imaginative and innovative ways 
of using it. 

2 AN OVERVIEW OF THE VLA 

The VLA is a 27-element interferometric array which will produce images of the radio sky at a wide 
range of frequencies and resolutions. The basic data produced by the array are the visibilities, or 
measures of the spatial coherence function, formed by correlation of signals from the array's elements. 
The most common mode of operation uses these data, suitably calibrated, to form images of the 
radio sky as a function of sky position and frequency. Another mode of observing (commonly called 
phased array) allows operation of the array as a single element through coherent summation of the 
individual antenna signals. This mode is commonly used for VLBI observing and for observations 
of rapidly varying objects, such as pulsars. 

The VLA can vary its resolution over a range exceeding a factor of ~ 50 through movement of 
its component antennas. There are four basic arrangements, called configurations, whose scales vary 
by the ratios 1 : 3.2 : 10 : 32 from smallest to largest. These configurations are denoted D, C, B, 
and A respectively. In addition, there are 3 'hybrid' configurations labelled BnA, CnB, and DnC, 
in which the North arm antennas are deployed in the next larger configuration than the SE and 
SW arm antennas. These hybrid configurations are especially well suited for observations of sources 
south of 5 = -15° or north of S = +75°. 

Beginning in 1998, the standard C configuration was replaced by a slightly modified one, formerly 
known as CS, in which one antenna from the middle of the north arm (N10) is placed at Nl (at the 
center of the array) to give better short-spacing baseline coverage. 

The array completes one cycle through all four configurations in approximately a 16 month 
period. The configuration schedule for 2000 through 2002, and the approximate long-term schedule 
to 2003, are outlined in Tables 1 and 2. Updates to these tables are published in the NRAO and AAS 
Newsletters, and are available through the NRAO home page (www.nrao.edu). Refer to Section 4.1 
for information on proposal deadlines, and on how to submit an observing proposal. 

Observing projects on the VLA vary in duration from as short as 1/2 hour to as long as several 
weeks. Most observing runs have durations of a few hours, with only one, or perhaps a few, target 
sources. However, since the VLA is a two-dimensional array, images can be made with data durations 
of less than one minute. This mode, commonly called snapshot mode, is well suited to surveys of 
relatively strong, isolated objects. See Section 3.16 for details. 

The VLA can be broken into as many as five sub-arrays, each of which can observe a different 
object at a different band. This is especially useful for multi-band flux density monitoring observa¬ 
tions, and for observing compact objects for which the VLA's full imaging capability and sensitivity 
are not required. However, important restrictions apply when multiple sub-arrays are used refer 
to Section 3.8 for these restrictions. 



Table 1: VLA Configurations for 2000 - 2001 

DATES CONFIG Proposal Deadline 
21 Jul 2000 - 01 Oct 2000 D 01 Feb 2000 
21 Oct 2000 - 07 Jan 2001 A 01 Jun 2000 
20 Jan 2001- 04 Feb 2001 BnA 01 Oct 2000 
10 Feb 2001 - 06 May 2001 B 01 Oct 2000 
19 May 2001- 03 Jun 2001 CnB 01 Feb 2001 
08 Jun 2001 - 31 Aug 2001 C 01 Feb 2001 
14 Sep 2001 - 01 Oct 2001 DnC 01 Feb 2001 

Table 2: Approximate Long Term VLA Configuration Schedule 

Tl T2 T3 
2001 B C D 
2002 A B C 
2003 D A B 
2004 C D A 

All antennas are permanently outfitted with receivers for six wavelength bands centered near A 
90, 20, 6, 3.6, 2.0 and 1.3cm. These bands are commonly referred to as P, L, C, X, U, and K bands, 
respectively. One observing band is partially outfitted - 21 antennas are now equipped with 0.7cm 
receivers (Q-band). A joint project between the NSF and Germany's MPIfR to increase to 25 the 
number of antennas outfitted at this frequency will end this year. Completion of this project must 
await new funding. 

A similar project to retrofit the older 1.3-cm receivers ('K-Band') with new receivers with ap¬ 
proximately three times better system temperature and much expanded tuning range is underway. 
This retrofit was 50% complete in mid-2000, but, like the 0.7-cm project, will run out of funds at 
the end of this year. Completion beyond the 16 or 17 antennas which are expected to be retrofitted 
with the current funding must await acquisition of new funding. Although the new receivers will 
operate between 18 and 26.5 GHz, the VLA's LO tuning system will only support a frequency range 
of about 21.5 to 25 GHz. Tests are needed to accurately determine the current tuning range of this 
band. Funding to modify the LO system to permit the full tuning range of the receiver will probably 
have to await the start of the Expanded VLA Project. 

Up-to-date information on the status of these projects will be found from the AOC website: 
www.aoc.nrao.edu/AOC/Socorro.shtml. Note that the sensitivity of the K- and Q-band antennas 
varies greatly, so proper weighting of the data is necessary to obtain optimal sensitivity. MPS now 
supports the necessary weighting schemes. More useful information is on Debra Shepherd's home 
page 
(www.aoc.nrao.edu/~dshepherd/Reduction.html). 

The '4-band' system (better known as the 74 MHz system) is now available on all antennas, but is 
not permanently installed. The long dipoles needed to efficiently illuminate the antennas have been 
shown to reduce the gain and increase the system temperature at 20cm by about 5%. Because of 
this, and the experimental nature of this frequency band, we will continue past practice of mounting 
the dipoles near the end of the D configuration for observations in the D and A configurations, and 
near the end of the B configuration for observations in the B and C configurations. The dipoles 
will be removed after observations are completed in the A and C configurations. 

The array can tune to two different frequencies from the same wavelength band provided the 



frequency difference does not exceed approximately 450 MHz. Right-hand circular (RCP) and left- 
hand circular (LCP) polarizations are received for both frequencies. Each of these four data streams 
is called an IF. These four data streams are known in VLA-ese as IFs 'A', 'B', 'C, and 'D'. IFs A and 
B receive RCP, IFs C and D receive LCP. IFs A and C are always at the same frequency, as are IFs B 
and D. [But the (A,C) frequency is usually different than the (B,D) frequency]. Observations at more 
widely separated frequencies can only be made within the same run by time switching between the 
frequencies. This operation takes less than 30 seconds. The array can also simultaneously observe 
one frequency within L band and one within P band (known as LP band), or one within 4-band 
and one within P band (known as 4P band). These are the only currently supported modes in which 
frequencies within two different bands can be observed simultaneously (others are possible but not 
supported). 

Observations at seven different bandwidths (given by 50/2" MHz, with n = 0, 1, ... 6) are 
possible1. A 200 kHz bandpass is also available in spectral line mode. Continuum mode users 
wishing to use the 200 kHz bandpass should first consult VLA staff. Different bandwidths can be 
used for each of the two separate frequencies. Wider bandwidths provide better sensitivity, but also 
increase the chromatic aberration. Refer to Section 3.4.2 for details. 

A scheme in which the VLA can provide a 70 MHz bandwidth (in continuum mode only) has 
recently been successfully tested. By mid-2000, approximately half the antennas had been modified, 
and it is expected that this upgrade will be completed by the end of 2000. Testing of this new 
observing mode will begin shortly. Contact Ken Sowinski for information. 

The VLA correlator has two basic modes, Continuum and Spectral Line. In Continuum mode, 
the correlator provides the four correlations (RR, RL, LR, LL) needed for full polarimetric imaging 
at both frequencies. This mode is particularly well suited to high sensitivity, narrow field-of-view 
projects. The Spectral Line mode is a spectrum-measuring mode principally intended for observing 
spectral lines. There are many options allowed in this mode. Besides its use for all spectral line 
projects, certain continuum projects which require extremely high dynamic range, or large field-of- 
view at high spatial resolution, will benefit from use of this mode. This mode is also used to great 
advantage when RFI (Radio FVequency Interference) is expected within the bandpass. The Spectral 
Line modes are further described in Section 3.14. 

3    PERFORMANCE OF THE VLA 

This section contains details of the VLA's resolution, sensitivity, tuning range, dynamic range, 
pointing accuracy, and modes of operation. Detailed discussions of most of the observing limitations 
are found elsewhere. In particular, see References 1 and 2, listed in Section 6. 

3.1    Resolution 

The VLA's resolution is generally diffraction-limited, and is thus set by the array configuration and 
frequency of observation. It is important to be aware that a synthesis array is 'blind' to structures 
on angular scales both smaller and larger than the range of fringe spacings given by the antenna 
distribution. For the former limitation, the VLA acts like any single antenna - structures smaller 
than the diffraction limit are broadened to the resolution of the antenna. The latter limitation is 
unique to interferometers - it means that structures on angular scales significantly larger than the 
fringe spacing formed by the shortest baseline are not measured. No subsequent processing can 
fully recover this missing information, which can only be obtained by observing in a smaller array 
configuration, using the mosaicing method, or with an instrument (such as a large single antenna) 
which provides this information. 

Table 3 summarizes the relevant information. This table shows the maximum and minimum 
antenna separations, the approximate synthesized beam size (full width at half-power), and the 
scale at which severe attenuation of large scale structure occurs. 

lThe VLA's maximum bandwidth is commonly referred to as 50 MHz per IF, but the actual effective bandwidth 
is closer to 43 MHz, due to bandpass roll-off. 



A project with the goal of doubling the longest baseline available in the A-configuration by 
establishing a real-time fiber optic link between the VLA and the VLBA antenna at Pie Town is 
nearing completion. It is anticipated that this link will be operational for observations in late 2000. 
Contact Mark Claussen for details, or check the NRAO website. 

Table 3: Configuration Properties 

Configuration A B C D 

Bmax(km) 36.4 11.4 3.4 1.03 
Bminikm) 0.68 0.21 0.035 0.035 

Synthesized Beamwidth 0HPBw(ai"csec) 
400 cm 24.0 80.0 260.0 850.0 
90 cm 6.0 17.0 56.0 200.0 
20 cm 1.4 3.9 12.5 44.0 
6 cm 0.4 1.2 3.9 14.0 

3.6 cm 0.24 0.7 2.3 8.4 
2 cm 0.14 0.4 1.2 3.9 

1.3 cm 0.08 0.3 0.9 2.8 
0.7 cm 0.05 0.15 0.47 1-5 

Largest Angular Scale ^LAsCarcsec) 
400 cm 800.0 2200.0 20000.0 20000.0 
90 cm 170.0 540.0 4200.0 4200.0 
20 cm 38.0 120.0 900.0 900.0 
6 cm 10.0 36.0 300.0 300.0 

3.6 cm 7.0 20.0 180.0 180.0 
2 cm 4.0 12.0 90.0 90.0 

1.3 cm 2.0 7.0 60.0 60.0 

These estimates of the synthesized beamwidth are for a uniformly weighted, untapered map produced from full 
synthesis observations of a source which passes near the zenith. 
Notes: 

1- Bmax is the maximum antenna separation, Bmin is the minimum antenna separation, 0HPBW is the synthesized 
beam width (FWHM), and #LAS is the largest scale structure 'visible' to the array. 

2. The listed resolutions are appropriate for sources with declinations between -15 and 75 degrees. For sources 
outside this range, the extended north arm hybrid configurations (BnA, CnB, DnC) should be used, and will 
provide resolutions similar to the smaller configuration of the hybrid, except for declinations south of -30. No 
double-extended north arm hybrid configuration (e.g., CnA, or DnB) is provided. 

3. The approximate resolution for a naturally weighted map is about 1.5 times these numbers. The values for 
snapshots are about 1.3 times the listed values. 

4. The largest angular scale structure is that which can be reasonably well imaged in full synthesis observations. 
For single snapshot observations these numbers should be divided by two. 

5. The standard C configuration has been replaced by a slightly modified one, formerly known as CS, wherein an 
antenna from the middle of the north arm has been moved to the central pad 'Nl'. This will result in improved 
imaging for extended objects, but will degrade snapshot performance. Although the minimum spacing is the 
same as in D configuration, the surface brightness sensitivity to extended structure isconsiderably inferior to 
that of the D configuration (but considerably better than standard C configuration). 

3.2    Sensitivity 

Table 4 shows the VLA sensitivities expected for natural weighting. The values listed are the ex¬ 
pected r.m.s. fluctuations due to thermal noise on an image made with natural weighting, calculated 
using the standard formulae with the system temperatures and efficiencies listed. These values are 
realized in practice except at P-band and 4-band where the sensitivities are limited by confusing 
sidelobes from objects outside the image, and in imaging very bright objects where the residual 
image noise is due to baseline dependent errors ('closure errors'). 

In general, the expected point-source r.m.s.    noise in mJy on an output image, for natural 
weighting, can be calculated with the following formula: 



Table 4: VLA Sensitivity 

FVequency Band Name System Antenna RMS (10 min) 
(GHz) approximate letter Temperature1 Efficiency2 Sensitivity 

wavelength code (K) (%) (mJy) 
0.073 - 0.0745 400 cm 4 1000-10000 15 150^ 

0.3 - 0.34 90 cm P 150-180 40 1.4<3> 
1.24 - 1.70 20 cm L 35 55 0.056 
4.5 - 5.0 6 cm C 45 69 0.054 
8.1 - 8.8 3.6 cm X 35 63 0.045 

14.6 - 15.3 2 cm U 120 58 0.17 
22.0 - 24.0 1.3 cm K 50-80 40 0.22<4) 
40.0 - 50.0 0.7 cm Q 80 35 0.27(5) 

Frequency RMS Point-Source Untapered Antenna Peak Total 
Sensitivity Brightness Primary Confusing Confusing 
(12 hours) Sensitivity(6> Beam Size Source Flux in 

(D-config) (FWHP) in Beam Primary Beam 
(GHz) (mJy) (mKelvins) OPB (Jy) (Jy) 

0.073 - 0.0745 15<3> 300 700' 20 350 
0.3 - 0.34 0.17(3) 52.0 150' 1.8 15 
1.24 - 1-70 0.0066 1.9 30' 0.11 0.35 
4.5 - 5.0 0.0064 1.9 9' 0.002 0.02 
8.1 - 8.8 0.0053 1.5 5.4' 0.001 — 

14.6 - 15.3 0.020 6.0 3' 0.0001 — 
22.0 - 24.0 0.025(4) 10.0 2' 0.00001 — 

All sensitivity calculations assume 43 MHz bandwidth per IF, (except for P-band and 4-band, where 3.125 MHz 
and 0.78 MHz are used), 27 antennas, two IF pairs (four IFs), natural weighting, and an elevation of 45 degrees. 
Performance will degrade for large zenith angles at high frequencies and for sources close to the galactic plane at low 
frequencies. 
Footnotes: 
(1) Temperature ranges listed at P, K, and Q bands include sky temperature variations due to the galactic plane 
(P-band) or atmosphere (K and Q bands). 
(2) This is the system efficiency without the correlator factor (about 0.78). Efficiencies at U, K, and Q bands at low 
elevations (< 30 degrees) are considerably decreased due to gravitational distortions of the antenna figure. 
(3) Values listed assume observations near the galactic poles, and '3-D' imaging. Snapshot observations will not usually 
reach this level, as the confusion problem is insoluble with only snapshot u,v coverage. Full-beam A-configuration 
deconvolution at 74 MHz remains computer-limited. Moore's law should enable full deconvolution within a few years. 
(4) Listed sensitivity is for El = 45 and very dry atmosphere at 22 GHz, with all antennas retrofitted. A wet 
atmosphere can increase zenith opacity from 5 to 15 percent, and increase the sky temperature from 10 to 40 K. 
(5) Listed sensitivity is for El = 45 and dry atmosphere at 43 GHz with 25 antennas. A wet atmosphere can increase 
zenith opacity from 6 to 8 percent, and increase the zenith sky temperature from 15 to 24 K. Atmospheric attenuation 
and temperature increase dramatically with increasing frequency - sky temperatures exceeding 55 K and zenith 
opacity of 25 percent are expected at 49 GHz. 
(6) Values listed assume a uniform object which just fills the synthesized beam in D-configuration. Realistic objects 
will always have a higher brightness temperature limit - roughly increasing in proportion to the number of synthesized 
beams across the source. 

A/r 
K 

mJy (1) 
y/N(N - l)(NIFTintAuM) 

where N is the number of antennas, Tjnt is the total on-source integration time in hours, AJ/M is 
the effective continuum bandwidth or spectral-line channelwidth in MHz, NJF is the number of IFs 
(from 1 to 4) or spectral line channels (from 1 to 512) which will be combined in the output image". 
K is a system constant, equal to 1500, 50, 8.0, 7.8, 6.6, 27, 163 and 304 for P, L, C, X, U, K, and 

2For most continuum observations, N/p will be either 4 (all IFs), or 2 (one IF pair), and AI/M will be the IF 
bandwidth. Thus, NIF = 2 for Stokes' Q, U and (true) I images at a single frequency. For spectral line work, AI^M 

is the spectral resolution (channel width) in MHz. 
3This value of K is for the retrofitted receivers. The actual value obtained will be roughly: K„et =  "y    aLd-, 

assuming the user uses the appropriate weighting algorithms now available in MPS. 
4The quoted value of K for Q-band assumes a dry and stable atmosphere, and excellent pointing characteristics. 



Q bands respectively. This constant K can also be expressed in terms of system temperature and 
efficiency as: 

F,     0.12TSVS K = —-Si (2) 
'/a 

where TSyS is the system temperature, and r]a is the antenna efficiency, as listed in Table 4. (A 
correlator efficiency of 0.78 has already been incorporated into this expression). For the more 
commonly used uniform weighting employing the robust weight scheme (available in the AIPS task 
IMAGR), the sensitivity will be a factor of about 1.2 worse than the listed values. 

It is important to note that these listed sensitivities are calculated from data taken in optimum 
conditions. For many bands, the system temperature and gain are significant functions of elevation 
and weather conditions (see next section). 

A useful alternate form of the point-source sensitivity equation is 

A/m = 
42.4tf 

mJy (3) 
y/NptsNrFAtintAi/M 

where Npts is the number of visibility points (which is listed in the AIPS header), and A^nf is the 
integration time per visibility in seconds. NIF and Avu and K are defined as above. 

The limiting brightness temperature achievable by an array is a complicated function of the source 
distribution and array configuration. However, for the simplified case of an object approximately 
the size of the synthesized beam, the following relation between brightness temperature and flux 
density can be applied: 

rb = F • 5 (4) 

where T/, is the brightness temperature (Kelvins) corresponding to 5 mJy per beam, and F is 
a constant depending only upon array configuration: F = 300, 30, 3, 0.3 for A, B, C, and D 
configurations, respectively. The limiting brightness can be obtained by substituting the rms noise, 
AIm, for S. A more detailed description of the relation between flux density and surface brightness 
is given in Chapter 7 of Reference 1, listed in Section 6. 

The sensitivity varies across each observing band. Table 5 gives the frequency ranges for each 
band at which the sensitivity degrades by 10% and by a factor of two. Also included are the maximum 
ranges over which the VLA receivers remain operative. At these extreme ends, the system sensitivity 
is typically 10 to 100 times worse than at band center. Furthermore, not all antennas will operate 
at these frequencies. Consult a VLA staff scientist if you wish to observe near these band edges. 

Table 5: Sensitivity ranges of VLA bands 

Band 0.9 x Nominal 0.5 x Nominal Extreme Range 
90 cm 
20 cm 
6 cm 

3.6 cm 
2 cm 

1.3 cm 
0.7 cm 

305 
1240 
4500 
8080 

14650 
22000 
40500 

- 337 MHz 
- 1700 MHz 
- 5000 MHz 
- 8750 MHz 
- 15325 MHz 
- 24000 MHz 
- 44500 MHz 

303 - 342 MHz 
1170 - 1740 MHz 
4250 - 5100 MHz 
7550 - 9050 MHz 

14250 - 15700 MHz 
21700 - 24500 MHz 
39000 - 47500 MHz 

298 - 345 MHz 
1150 - 1750 MHz 
4200 - 5100 MHz 
6800 - 9600 MHz 

13500 - 16300 MHz 
20800 - 25800 MHz 
38000 - 51000 MHz 

In view of the importance of observations at the lower edge of the 20-cm band for studies of 
red-shifted HI, some special words are appropriate to describe the performance of the VLA at 
frequencies below 1250 MHz. The roll-off of this band at the low frequency edge is very gentle, and 

useful observations at 1155 MHz and lower have been made. However, not all frequencies can be 
tuned, as tests have shown there are four 10 MHz wide 'notches', centered at 1212, 1182, 1162 and 
1150 MHz, within which the array can take no useful data. These notches exist in both RR and LL 
correlations. A plot of the relative sensitivity between 1150 and 1250 MHz is shown in Figure 1. 

The sensitivity at the low frequency bands (90cm and 400cm) is difficult to parameterize. There 
are two important effects which limit the sensitivity. 



Figure 1: The Sensitivity of the VLA Between 1150 and 1250 MHz This plot shows the 
relative sensitivity of the VLA at the lower end of the 20cm band. The dashed line represents the 
sensitivity at the center of the band, so it can be seen that serious degradation in sensitivity is not 
notable until below 1190 MHz. The four 'notches' are instrumental in origin. 
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1. The diffuse galactic background contributes an important fraction of the total system tem¬ 
perature - especially at 400cm, where it is the only important contributor. This means that 
the sensitivity will vary by nearly a factor of 10 between locations on the galactic plane and 
locations near the galactic poles. 

2. The primary beam at both bands is very broad, and the sidelobe levels comparatively high, 
resulting in significant sensitivity to objects far from the target object. Because of the difficulty 
in imaging very large fields of view (due to the non-coplanar baseline effect, see Section 3.4.4 
and the non-isoplanicity over large angles), the sidelobes of undeconvolved objects in non- 
imaged areas (essentially the entire 2n steradians visible to the antennas!) will appear in the 
map of the target source. Use of the AIPS program IMAGR will permit removal of the major 
background objects, and should result in a sensitivity not worse than a factor of two higher 
than that expected on the basis of the system temperature. 

3.3    Elevation Effects 

The VLA's antenna performance changes with elevation. These changes are significant at L, U, K, 
and Q bands, and must be corrected for high-precision imaging. 

The loss of performance is due to two different effects: 

1. The sky and ground temperature contributions to the total system temperature increase with 
decreasing elevation. This effect is very strong at L, K, and Q bands, as shown in Figure 2, 
and is relatively unimportant at the other bands. The source of the excess noise at L-band is 
the ground itself ('spillover'), probably due to the microwave lens feed structure. At K and Q 
bands, the extra noise comes directly from atmospheric emission, primarily from water vapor 

9 



at K-band, and from water vapor and the broad wings of the strong 63 GHz O2 transitions 
at Q-band. 

In general, the zenith atmospheric opacity to microwave radiation is very low - typically less 
than 0.01 at L and C and X bands, 0.02 at U band, 0.05 to 0.2 at K band, and 0.05 to 0.1 
at the lower half of Q band, rising to 0.3 by 49 GHz. The opacity at Q and K bands displays 
strong variations with time of day and season, being best at night, and in the winter. 

Observers should remember that clouds, especially clouds with large water droplets (read, 
thunderstorms!), can add appreciable noise to the system temperature. Significant increases 
in system temperature can, in the worst conditions, be seen at wavelengths as long as 6cm. 

Figure 2: Variation of System Temperature with Elevation at L, K, and Q Bands The 
data have been normalized by the system temperature at the zenith - approximately 80K at 43 
GHz, 170K at 23 GHz (these data were taken with the old receivers - note that the variation will 
be dramatically larger with the new receivers), and 35K at 1365 MHz. The observations were taken 
in good weather conditions. 
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2. The antenna figure degrades at low elevations, leading to diminished forward gain at the 
shorter wavelengths. In general, the forward power gain of the antennas can be well fitted by 
a simple parabola of form: G(E) — Go - G2{E - Em)2, where E is the elevation, and Em is 
the elevation of maximum forward gain. The average coefficients Go, G2, and Em are given in 
Table 6. The gain-elevation effect is negligible at frequencies below 8 GHz. 

These power coefficients are not directly useful for correcting the effects of antenna gain loss, 
which require the individual antenna (inverse) voltage correction factors expressed as the coefficients 
of a polynomial fit to the voltage gain as a function of zenith distance. That is, the AIPS suite of 
programs can implement gain corrections of the form 

Vc = Go + GiZ + G2Z
2 + -  -, 

where Vv is the voltage gain corrrection of an antenna-IF, and the Gi are the coefficients of a 
polynomial series.  The preferred method for determining these is through direct measurement of 
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Table 6: Average Power Gain Coefficients for the VLA antennas 

Band Go G2 £m 
Q 1.00 3.0 x lO"4 50 
K 1.00 1.5 x lO"4 58 
U 1.00 3.6 x lO-5 46 

the relative system gain using the AIPS task EL INT on data from a strong calibrator which has been 
observed over a wide range of elevation. If you are unable to determine these coefficients directly 
from your own data, an approximate correction can be obtained using the amplitude coefficients 
given below in Table 7. These are applied using the AIPS task CLCOR. 

Table 7: Average Inverse Voltage Gain Coefficients for the VLA antennas 

Band Go Gi G2 

Q 1.00 -1.29 x lO-* 1.59 x lO-4 

K 1.00 -0.41 x 10"2 0.69 x HP4 

U 1.00 -0.17 x lO-2 0.19 x 10"4 

These coefficients are averages over all the antennas, and are appropriate for an atmosphere of 
zero opacity. Considerable differences exist between antennas, particularly for antennas #1 and #2. 
Contact Rick Perley if you wish to obtain coefficients for individual antennas. 

When using these coefficients, one must first correct for the opacity (typically measured using the 
TIPPER procedure), via the AIPS program CLCOR, then apply the gain coefficients in a subsequent 
run of CLCOR. The TIPPER procedure is an observing mode on the VLA's Modcomps which entails 
a simple measurement of the sky brightness as a function of elevation. The on-line software uses 
these data to derive the atmospheric zenith opacity and system temperature. This observing mode 
is known to the OBSERVE and J0BSERVE programs. Contact Bryan Butler or Rick Perley for advice 
on these techniques. 

3.4    Field of View 

At least four different effects will limit the field of view. These are: primary beam; chromatic 
aberration; time-averaging; and non-coplanar baselines. We discuss each briefly: 

3.4.1 Primary Beam 

The ultimate factor limiting the field-of-view is the diffraction-limited response of the individual 
antennas. An approximate formula for the full width at half power in arcminutes is: 0PB = 45/J/GHZ- 

Objects larger than approximately half this angle cannot be directly observed by the array. However, 
a technique known as 'mosaicing', in which many different pointings are taken, can be used to 
construct images of larger fields. Refer to References 1 and 2 for details, or contact Debra Shepherd. 

3.4.2 Chromatic Aberration (Bandwidth Smearing) 

The principles upon which synthesis imaging are based are strictly valid only for monochromatic 
radiation. When radiation from a finite bandwidth is accepted, aberrations in the image will result. 
These take the form of radial smearing which worsens with increased distance from the delay- 
tracking center.  The peak response to a point source simultaneously declines in a way that keeps 
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the integrated flux density constant. The net effect is a radial degradation in the resolution and 
sensitivity of the array. 

These effects can be parameterized by the product of the fractional bandwidth (AIZ/UQ) with the 
source offset in synthesized beamwidths (0/#HPBW)- Table 8 shows the decrease in peak response 
and the increase in apparent radial width as a function of this parameter. 

Table 8: Bandwidth smearing. The reduction in peak response and increase in width of an object 
due to bandwidth smearing (chromatic aberration). AU/UQ is the fractional bandwidth; 0O/0HPBW 

is the source offset from the phase tracking center in units of the synthesized beam. 

fn   0HPRW 
Peak Width 

0.0 1.00 1.00 
0.50 0.95 1.05 
0.75 0.90 1.11 
1.0 0.80 1.25 

If you wish to obtain maximum sensitivity and resolution over the entire field-of-view of the 
antennas, then the spectral-line modes of the correlator will probably be required. 

3.4.3    Time-Averaging Loss 

The sampled coherence function (visibility) for objects not located at the phase-tracking center is 
slowly time-variable due to the changing array geometry, so that averaging the samples in time will 
cause a loss of amplitude. Unlike the bandwidth loss effect described above, the losses due to time 
averaging cannot be simply parameterized. The only simple case exists for observations at S — 90°, 
where the effects are identical to the bandwidth effect except they operate in the azimuthal, rather 
than the radial, direction. The functional dependence is the same in this case with AU/UQ replaced 
with (jjeAtint, where u;e is the Earth's angular rotation rate, and Atint is the averaging interval. 

For other declinations, the effects are more complicated and approximate methods of analysis 
must be employed. Chapter 13 of Reference 1 considers the average reduction in image amplitude 
due to finite time averaging. The results are summarized in Table 9, showing the time averaging 
in seconds which results in 1%, 5% and 10% loss in the amplitude of a point source located at the 
half-power point of the primary beam. These results can be extended to objects at other distances 
from the phase tracking center by noting that the loss in amplitude scales with {9Atint)2, where 6 
is the distance from the phase center and Atint is the averaging time. 

Table 9: Time averaging smearing The averaging time (in seconds) resulting in the listed ampli¬ 
tude losses for a point source at the antenna half power point 

Amplitude loss 
Configuration 1.0% 5.0% 10.0% 

3.4.4    Non-Coplanar Baselines 

The procedures by which nearly all images are made in Fourier synthesis imaging are based on 
the assumption that all the coherence measurements are made in a plane. This is strictly true for 
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E-W interferometers, but is false for the VLA, with the single exception of snapshots. Analysis 
of the problem shows that the errors associated with the assumption of a planar array increase 
quadratically with angle from the phase-tracking center. Serious errors result if the product of the 
angular offset in radians times the angular offset in synthesized beams exceeds unity. The effects 
are especially severe at A90 cm and A400cm, where standard two-dimensional imaging can only be 
done for D-configuration data. This effect is noticeable at A20 cm in certain instances, but can be 
safely ignored at shorter wavelengths. 

The solution to the problem of imaging wide-field data taken with non-coplanar arrays is well 
known, and has been implemented in the AIPS program IMAGR. This program can now correctly 
image up to 512 subfields, sufficient to handle observations in the B, C, and D configurations. We 
expect that as computer performance continues to improve, full imaging of even A configuration 
data will soon be practical. Refer to the helpfile for this program, or consult with Rick Perley or 
Frazer Owen, for advice. 

3.5 Time Resolution 

The minimum integration time at which all data can be written to tape is a function of the total 
number of channels of data produced by the correlator. This minimum time varies from 1 2/3 seconds 
for the continuum mode to 20 seconds for 512 channel spectral line modes. Note that in order to 
ensure the complete removal of correlator offsets, averaging times should be an integer multiple of 
3 1/3 seconds (which is the period of the Walsh functions that are used to negate cross-coupling 
between antenna signal lines). 

Averaging times less than those listed above can be selected, but only at the cost of removing 
antennas from the array. For the spectral line modes, the approximate relation is that the minimum 
integration time in seconds equals the total number of baselines plus antennas (= N(N + l)/2) 
multiplied by the total number of correlated channels (less than or equal to 512) divided by 10,000. 
A convenient table can be found on the web by going to the NRAO home page, and following the 
link to the VLA. In continuum mode, integration times as short as 0.4 seconds are available, but 
are appropriate only for solar observing. Contact Ken Sowinski for details on their use. 

Users must keep in mind the large data rate of the VLA when planning their observing. The 
array's maximum data rate of more than 3 GByte per day can easily overwhelm some data reduction 
facilities. This rate can be reduced to manageable levels by increasing the averaging time and/or 
decreasing the number of spectral channels. Consult your VLA friend for advice. 

The maximum recommended integration time for any VLA observing is 60 seconds. The maxi¬ 
mum allowable integration time in the spectral line modes is 90 seconds. There is no formal limit 
in the continuum modes. 

See Section 3.19 for a description of the High Time Resolution Processor and correlator gating 
for pulsar observations. 

3.6 Radio-Frequency Interference 

The bands within the tuning range of the VLA which are allocated exclusively to radio astronomy 
are 1400 1427 MHz, 1660 - 1670 MHz, 4990 - 5000 MHz, 15.35 - 15.4 GHz, 22.2 - 22.5 GHz 
and 23.6 - 24.0 GHz. No external interference should occur within these bands. Experience shows 
that RFI is a serious problem only within the 20, 90, and 400 cm bands. At 20 cm, interference is 
most serious to the D configuration, as the fringe rates in other configurations are often sufficient 
to reduce interference to tolerable levels. 

RFI at the VLA is an increasing problem to astronomical observations. To monitor this increase, 
and to provide a rough guide to the severity of this interference, the RFI spectrum at all bands from 
P through K is measured approximately once monthly, using the VLA correlator system. Plots of 
typical spectra in the L and P bands are shown in Figures 3 and 4. 

Downloadable plots of all RFI observations from 1993 onwards are available on the Web. For 
general information about the RFI environment, contact the head of the IPG (Interference Protection 
Group), Raul Armendariz, at rarmenda@nrao.edu, or at the telephone number listed in Table 16. 
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Figure 3: Typical L-band interference spectrum with 6 kHz resolution 
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Figure 4: Typical P-band interference spectrum with 6 kHz resolution. 
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Table 10: VLA RFI Between 1260 and 1740 MHzin 1993. 

FVequency Avg. Flux Pk. Flux Source Comments 
1277 MHz 12mJy 20mJy Aerostat Radar Sometimes absent 

1286 2 5 Farmington Radar Other weak lines nearby 
1300 2 5 Internal RFI 
1310 100 100 ABQ Radar 
1316 ??? ??? ABQ Radar Weaker, often absent 
1330 45 80 ABQ Radar Sometimes absent 
1381 3 100 GPS L3 IONDS On < 3% of the time 
1400 60 60 Internal RFI 

1429-1435 15 130 Military Four separate lines 
1444,1453 5 > 100 Hi altitude balloons NASA/NSBF 

1500 2 5 Internal RFI 
1515 15 > 100 High Altitude Baloons 
1525 6 > 100 High Altitude Baloons 

1530-1544 > 130 >200 INMARSAT Many 'lines' 
1557-1567 10 20 GPS Sidelobe? Wide spectrum 
1570-1580 > 500 > 500 GPS-L2 Wide spectrum 

1600 120 120 Internal RFI 
1602-1616 > 500 >500 GLONASS Many separate 'lines' 

1620 80 300 ? 

1621-1627 >500 >500 IRIDIUM! See text 
1650 13 25 Internal RFI 

1678-1698 50 100 Radiosondes, satellite > 6 variable 'lines'. 
1710 10 10 ? 

1714 > 500 > 500 Forest Service 
1725 10 10 T>   r> 

1730 25 25 n   r> 

Table 10 is a convenient summary of eight such observations taken during the 1993/1994 D- 
configuration. This table lists the 'line' frequency, the average equivalent flux density (in mJy) in 
50 MHz, and the peak flux density, also reduced to 50 MHz equivalent bandwidth. A significant 
difference between these columns indicates that the RFI is intermittent. These equivalent flux 
densities are approximate, and should be used only to give a rough approximation to the severity 
and likelihood of a problem. 

Between 1220 and 1250 MHz, very strong and very broad RFI is always present (apparently due 
to GLONASS satellite transmissions). It may be possible to observe in selected, narrow bandwidths 
in this region. Between 1435 and 1530 MHz, aeronautical telemetry from White Sands Missile 
Range will occasionally interfere with observing. These transmissions are very occasional, and 
unpredictable. They are worst in the spring, during the WSMR wargames exercises. 

Note that the listed RFI signal strengths are appropriate for the D-configuration. These signal 
strengths are considerably reduced in the larger configurations - an average attenuation of perhaps 
a factor of 100 will be obtained in the A-configuration due to fringe phase winding. 

In late 1998, the Iridium constellation of Low Earth Orbit (LEO) satellites was activated. As 
is well known, this venture was not a commericial success, and it now seems probable that these 
satellites will eventually be 'de-orbited'. However, at the time or writing, these satellites are still 
broadcasting, with the result that VLA observations between 1610 and ~1630 MHz are not possible. 
Contact Greg Taylor for advice if you wish to use any frequency between 1590 and 1660 MHz. 

In general, it may be possible to observe in spectral regions containing strong RFI provided: (1) 
That the RFI is not so strong as to cause serious gain compression in the amplifiers, and (2) That the 
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RFI is kept out of the correlator through use of a narrow back-end filter. This latter requirement 
is particularly important for spectral line correlator modes, although use of Hanning smoothing 
is very effective in reducing the Gibbs' ringing. Gain compression in the front-end amplifiers can 
often be prevented by using a narrower (12.5 or 25 MHz) front-end filter, rather than the default 
50 MHz filter. Note that use of these FE filters greatly restricts the range of tunable frequencies. 
The scheduling programs OBSERVE and JOBSERVE are aware of these restrictions, and should be used 
when contemplating use of the narrow front-end filters. 

Observers can use Table 10 to assist in deciding which center frequencies and bandwidths are 
most likely to result in good data. There are very few good combinations for 50 and 25 MHz 
bandwidths. These are summarized in Table 11, which shows the 'statistically' best frequencies to 
use at L-band with the listed bandwidths. Note that the VLA LO system restricts the selection of 
frequencies at both 50 MHz and 25 MHz bandwidths. The restrictions are particularly severe at a 
bandwidth of 50 MHz - the only frequencies (in MHz) which can be observed with that bandwidth 
are those ending in 15, 35, 65, or 85. (For example, between 1400 and 1500 MHz, the only permitted 
frequencies are 1415, 1435, 1465 and 1485 MHz). With the 25 MHz frontend bandwidth filters, 
regions 5 MHz wide centered on 1250, 1300, 1350, ..., cannot be tuned. And when using the 12 
MHz frontend bandwidth filters, 8 MHz wide regions centered at 1225, 1275, 1325, 1375, ..., and 
18 MHz wide regions centered at 1250, 1300, 1350, 1400, ..., cannot be tuned. 

Table 11: Recommended Center Frequency/Bandwidth Combinations for L-Band 

Class A Class B Class C 
BW No RFI Expected Weak/Occas'l RFI 'Tolerable' RFI 

50 MHz none 1365,1435,1465,1485 1335,1385,1415 
25 MHz 1343 - 1347 1290 - 1297 

1353 - 1387 1453 - 1470 Use Table 10 
1413 - 1417 1503 - 1517 

The ubiquity of L-band interference makes it difficult for users wishing high sensitivity to find 
significant bandwidths free of RFI. As a result of monitoring the RFI, we have established a number 
of standard bands which are more likely to be free of significant RFI. These are shown below in 
Table 12. 

Table 12: OBSERVE and JOBSERVE names of L-band 'Standard frequencies'. 

OBSERVE AC BD 
Name Center Frequency Bandwidth Center Frequency Bandwidth 

LL 1464.9 50 1385.1 50 
LI5 1364.9 50 1435.1 50 
L2 1515.9 25 1365.1 25 

At P-band, the RFI situation can be particularly difficult. Interference is relatively infrequent in 
the evenings and on weekends, but during the day, very strong interference - sufficient to saturate 
the receivers is common. The best advice is to arrange observing to fall outside of regular working 
hours. Very sensitive spectral line observations at P-band require special measures at the VLA 
site to turn off known sources of RFI. To implement these measures, contact Raul Armendariz (see 
Table 16). The situation at 4-band is generally better, as nearly all of the RFI is generated by the 
antennas themselves, and can be removed in processing provided the spectral line correlator mode 
is employed. 

5This combination was used for the NVSS and FIRST surveys 
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In the 327 MHz and 74 MHz bands, use of the spectral line correlator modes is strongly recom¬ 
mended for all observations to allow diagnosis and removal of internal and external interference. For 
observations which do not require linear polarization information, use of the correlator modes 'lx', 
'2xy', or '4' are recommended to maximize the spectral resolution. The labels 'x' and y are the IF 
designators, A, B, C, or D. Refer to Section 2 for a description. The current default for 327 MHz is 
now '2AB'. For 74 MHz, it is mode '4'. 

Another important form of RFI consists of signals which are generated by each antenna. These 
signals are picked up by nearby antennas, or by the generating antenna's feed, and produce correlated 
signals in the visibility data. This form of RFI is especially important in the 90 cm and 400 cm bands 
when in the C and D configurations. They appear at all multiples of 5 and 12.5 MHz - frequencies 
divisible by these numbers must be avoided. (It is this spectrum of RFI which limits our P-band 
bandwidth to 3.125 MHz.) Another family of RFI occurs at multiples of 100 kHz - these are much 
weaker and can be ignored for continuum work at 90 cm, but are important on many baselines at 
the 400 cm band. 

For L, C, K, and Q bands, observers should avoid using an L6 setting of 3760 or 3790 MHz, 
due to an internal birdie produced by those LO settings. For X and U bands, avoid using 3840 and 
3810 MHz. The OBSERVE and JOBSERVE programs are aware of these restrictions, so users should 
not inadvertently fall victim to this problem. 

3.7    Antenna Pointing 

The pointing parameters of the antennas are measured monthly under calm nighttime conditions. 
The antenna model, using these parameters, suffices under good weather to allow blind pointing to 
an accuracy of about 10 arcsec rms. The pointing accuracy in daytime is a little worse, due to the 
effects of solar heating of the antenna structures. 

Moderate winds have a very strong effect on both pointing and antenna figure. The advertised 
maximum wind speed for precision operations is 15 mph (7 m/s), and careful observations have 
demonstrated this to be the practical maximum wind speed for useful observing at K and Q bands. 
Observations at these bands in winds significantly in excess of this limit are not advisable, and users 
should consider moving to a lower frequency. Wind speeds near the stow limit (45 mph) will have 
a similar negative effect at X and U bands. 

To achieve better pointing, we have added a capability for repeated calibration and correction 
of the local pointing error during astronomical observations. In this observing mode, known as 
'referenced pointing', a nearby calibrator is observed in interferometer pointing mode every hour 
or so. The local pointing corrections thus measured can then be applied to subsequent target 
observations. Tests show that this mode reduces rms pointing errors to typically 2-3 arcseconds if 
the reference source is within about 10 degrees (in azimuth and elevation) of the target source, and 
the source elevation is less than 70 degrees. The OBSERVE and JOBSERVE programs are aware of this 
observing mode. 

Use of referenced pointing is highly recommended for all K- and Q-band observations, and for 
X- and U-band observations of objects whose total extent is a significant fraction of the antenna 
primary beam. It is usually recommended that the referenced pointing measurement be made at 
X-band, regardless of what band your target observing is at, since X-band is the most sensitive, and 
the closest calibrator is likely to be rather weak. Proximity of the reference calibrator to the source 
position is of paramount importance. The calibrator should have at least 300 mJy flux density and 
be unresolved on all baselines to ensure an accurate solution. 

Measuring the pointing offsets at K-band for subsequent K-band observing is usually successful, 
but should not be attempted on objects of less than 1 Jy flux density (or 300 mJy with the new 
receivers). However, attempting to measure these offsets at Q-band directly is generally not rec¬ 
ommended, since the blind pointing error is often larger than the Q-band half-power half-width - 
which will cause the referenced pointing to fail. 

Secondary referenced pointing (i.e., using X-band referenced pointing to permit subsequent Q- 
band or K-band determination of the residual pointing errors), is recommended only for high preci¬ 
sion observations at Q and K bands when observing extended objects which fill the antenna primary 
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beam. For general observing of small objects, simple referenced pointing using the offsets determined 
at X-band is nearly always sufficient to keep all antennas pointing to within 5 arcseconds. 

Consult with Rick Perley or Ken Sowinski for more information about these modes. There is 
considerable information on the use of this pointing mode on NRAO's website. 

3.8 Subarrays 

The VLA can simultaneously process five different observing programs. However, the subarrays are 
not all fully independent. If use of this capacity is contemplated, the following limitations must be 
understood and followed: 

1. Each subarray uses a different observing file. (Strictly speaking, this is not a requirement, but 
is sensible.) The VLA operator must be told which file is to control which subarray, and which 
antennas are to be in each subarray. Antenna 'shuffling', in which antennas are reassigned 
from one subarray to another after observing has begun, is strongly discouraged. 

2. Only one integration time for the entire array can be defined. Unless told otherwise, this time 
is that assigned for subarray #1. All other requested integration times (which are given on 
the //DS card in the OBSERVE or JOBSERVE file) are ignored. 

3. All subarrays must be in continuum mode, or all must be in spectral line mode. Any spectral 
line/continuum mix will result in no data at all. This is true for both standard observing and 
for a pointing determination. 

4. If an IF (i.e. A, B, C, or D) is used in more than one subarray, it must have the same bandwith 
in each. (This restriction applies only to spectral line observations). 

5. There are only two sets of Fluke synthesizers (the final LOs in the frequency conversion system) 
- hence, only two subarrays can have completely independent frequency selection. If using two 
subarrays, notify the operator about your requirements for synthesizer setting - this selection 
is not made within the observing file. For three or more subarrays, a decision will have to 
be made on which subarrays will be 'slaved'. This will constrain the frequencies used for 
bandwidths other than 50 MHz. 

Note that tipping scans (used to measure the atmospheric opacity) can be done at any time by any 
number of subarrays. If any of the above restrictions confuse you (and we are sympathetic if they 
do), consult your VLA contact, or talk to Ken Sowinski. 

Single-antenna (or multiple-antenna) VLBI programs cause special problems. Such programs 
use one of the Fluke sets, leaving only one for the remaining four subarrays - these must then share 
that single Fluke set, or use the same values assigned to the VLBI run. Generally, VLBI Fluke 
settings are compatible with continuum observing. Fortunately, the correlator restrictions listed 
above (points 3 and 4) do NOT apply to the single-antenna VLBI subarrays. 

3.9 Positional Accuracy 

The accuracy with which an object's position can be determined is limited by the atmospheric 
phase stability, the closeness of a suitable (astrometric) calibrator, and the calibrator-source cycle 
time. Under good conditions, in A-configuration, accuracies of about 0.05 arcseconds can be ob¬ 
tained. Under more normal conditions, accuracies of perhaps 0.1 arcseconds can be expected. Under 
extraordinary conditions (probably attained only a few times per year on calm winter nights in A- 
configuration when using rapid phase switching on a nearby astrometric calibrator - see Section 
3.12.1), accuracies of 1 milliarcsecond have been attained. 

If highly accurate positions are desired, only 'A' code (astrometric) calibrators from the VLA 
Calibrator List should be used. The positions of these sources are taken from lists published by the 
USNO. 
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3.10 Imaging Performance 
Imaging performance can be limited in many different ways. Some of the most common are: 

Image Fidelity: With conventional point-source calibration methods, and even under the best 
observing conditions, the achieved dynamic range will rarely exceed a few hundred. The lim¬ 
iting factor is the atmospheric phase stability. If the target source contains more than 50 
mJy6 in compact structures (depending somewhat on band), self-calibration can be counted 
on in improving the images. Dynamic ranges in the thousands can be achieved using these 
techniques. At this level, the limitations are generally due to errors in the calculation of the 
correlation coefficient ('closure' errors). Recent (1998) software changes in the VLA's calcu¬ 
lation of these coefficients have dramatically reduced the level of these errors for continuum 
observing, particularly for the narrower bandwidths where these errors were larger. 

If the target source is bright enough for dynamic ranges exceeding 10,000 (based on peak/rms 
thermal noise) to be conceivable, use of one of the spectral line correlator modes should be 
considered, since the correlator errors which limit the dynamic range are greatly reduced. 
However, due to inherent limitations in correlator capacity, this will necessarily require a 
reduction in bandwidth by a factor of at least four. If the target source is only slightly 
resolved, use of the continuum mode with phased array observing will reduce the 'closure' 
errors without loss of bandwidth. 

Invisible structures: An interferometric array acts as a spatial filter, so that for any given con¬ 
figuration, structures on a scale larger than the fringe spacing of the shortest baseline will 
be completely absent. Diagnostics of this effect include dark bowls around extended objects, 
and large-scale stripes in the image. Table 3 gives the largest scale visible to each configura¬ 
tion/band combination. 

Poorly sampled Fourier plane: Unmeasured Fourier components are assigned values by the de- 
convolution algorithm. While this often works well, sometimes it fails noticeably. The symp¬ 
toms depend upon the actual deconvolution algorithm used. For the CLEAN algorithm, the 
tell-tale sign is a fine mottling on the scale of the synthesized beam, which sometimes even 
organizes itself into coherent stripes. Further details are to be found in Reference 1. 

Sidelobes from confusing sources: At 90 and 20 cm, large numbers of background sources are 
located throughout the primary antenna beam. Sidelobes from these objects will lower the 
image quality of the target source. Although bandwidth and time-averaging will tend to reduce 
the effects of these sources, the very best images will require careful imaging of all significant 
background sources. The AIPS task IMAGR is well suited to this task at A20 cm. The problem 
at A90 cm is much worse, and is greatly complicated by the non-coplanar nature of the array, as 
described in Section 3.4.4. Table 3 gives the highest flux density expected of these background 
sources, and the total background flux density. 

Sidelobes from strong sources: Another image-degrading effect is that due to strong nearby 
sources. Again, the 20 and 90 cm bands are especially affected. The active Sun will be visible 
to any D configuration daytime spectral line observation at these bands. Even with 50 MHz 
bandwidth in continuum mode, the active Sun can ruin the short spacings of observations 
within about 20 degrees of the Sun. The quiet Sun poses a lesser threat, so the general rule 
is to go ahead and observe, even if the target source is close to the Sun. At 90 and 400 cm, 
observations within approximately 10 degrees of Cygnus A, Cassiopeia A, Taurus A, and Virgo 
A will be greatly degraded. 

3.11 Calibration and the Flux Density Scale 

The VLA Calibrator List contains information on 1148 sources sufficiently unresolved and bright 
to permit their use as calibrators.   Copies of the list are distributed throughout the AOC. The 

6This limiting successful flux density can be considerably less, if the atmospheric coherence time is many minutes, 
or more 
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list is also available within the OBSERVE and JOBSERVE programs and can be accessed on the Web 
(at www.nrao.edu/~gtaylor/calib.html). Also available at this site is the history since Dec. 1996 of 
the flux densities of the calibrators. 

Accurate flux densities are obtained by observing one of 3C286, 3C147, 3C48 or 3C138 during 
the observing run. Not all of these are suitable for every observing band and configuration - consult 
the VLA's Calibrator Manual for advice. These sources are slowly variable, so we monitor and 
update their flux densities when the VLA is in its D-configuration. As the VLA cannot measure 
absolute flux densities, the values obtained must be referenced to assumed or calculated standards, 
as described in the next paragraph. Table 13 shows the flux densities of these sources in April 1999 
at our standard bands. The accuracy of these values, relative to the assumed standards, is set by 
the gain stability of the VLA. The estimated 1-<T errors in the table are less than 1% for frequencies 
up to 25 GHz, and about 2% for the 43 GHz band. 

The flux densities shown in the table for frequencies below 10 GHz are based on the Baars et al. 
value for 3C295. For frequencies above 10 GHz, the flux densities are based on a model of Mars, 
provided by Bryan Butler. The values shown for 3C295 above 10 GHz are based on the Mars model 
- agreement with the Baars et al. scale is better than 1% at 15 GHz. The values shown for Mars 
below 10 GHz are based on the Baars et al. scale, and agree with the model to within 4% at all 
frequencies. There are significant discrepancies between these scales at Q-band (43 GHz), which is 
not surprising. More worrisome is that the measured flux density of the planetary nebula NGC7027, 
using the Mars-based scale, is 8% below that expected from extrapolating the 15 GHz value, where 
it is known to be optically thin, with the expected —O.lorigin of this descrepancy is not understood, 
and users must treat the 43 GHz flux density scale with suitable scepticism. 

Polynomial coefficients describing the derived flux densities for the standard calibrators have 
been determined which permit accurate interpolation of the flux density at any VLA frequency. 
These coefficients are updated approximately every other year, and are implemented into the AIPS 
task SETJY, starting with the July 1996 release. 

Table 13: Flux densities of Standard Calibrators for April 1999 

Source/Frequency 327.5 1465 4885 8435 14965 22460 43340 
3C48 = J0137+331 42.4 15.62 5.40 3.17 1.73 1.13 0.54 
3C138 = J0521+166 18.8 8.16 3.70 2.45 1.49 1.05 0.58 
3C147 = J0542+498 53.6 21.39 7.83 4.72 2.67 1.84 1.00 
3C286 = J1331+305 26.0 14.50 7.47 5.22 3.41 2.54 1.47 
3C295 = J1411-I-522 60.9 21.48 6.53 3.42 1.63 0.96 0.39 

NGC7027 <0.2 1.52 5.53 6.02 5.75 5.57 4.76 

For most observing projects, the effects of atmospheric extinction will automatically be accounted 
for by regular calibration when using a nearby point source whose flux density has been determined 
by an observation of a flux density standard taken at a similar elevation. However, at high frequencies 
(most notably K-band and Q-band), both the antenna gain and the atmospheric absorption may 
be strong enough to make 'simple' flux density bootstrapping unreliable. The AIPS task ELINT is 
now available to permit actual measurement of an elevation gain curve using your own observations, 
and subsequent adjustment of the derived gains to remove these elevation-dependent effects. The 
current calibration methodology does not require knowledge of the atmospheric extinction (since 
the true flux densities of the standard calibrators are believed known). However, if knowledge of 
the actual extinction is desired, a simple antenna tipping procedure is available (and is known to 
the OBSERVE and JOBSERVE programs) which will provide both the vertical extinction and the total 
system temperature. For advice on these procedures, contact Bryan Butler or Rick Perley. 
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3.12    Phase Calibration 

Adequate phase calibration is a complicated function of source-calibrator separation, frequency, 
array scale, and weather. And, since what defines adequate for some experiments is completely 
inadequate for others, it is impossible to define any simple guidelines to ensure adequate phase 
calibration in general. However, some general statements remain valid most of the time. These are 
given below. 

• IVopospheric effects dominate at wavelengths shorter than 20cm, ionospheric effects dominate 
at wavelengths longer than 20cm. 

• Atmospheric (troposphere and ionosphere) effects are nearly always unimportant in the C and 
D configurations at L and P bands, and in the D configuration at X and C bands. Hence, 
for these cases, calibration need only be done to track instrumental changes - once hourly is 
generally sufficient. 

• If your target object has sufficient flux density to permit self-calibration, there is no need to 
calibrate more than once hourly. 

• The smaller the source-calibrator angular separation, the better. In deciding between a nearby 
'S' calibrator, and a more distant 'P' calibrator, the former is usually the better choice. 

• At high frequencies, and longer configurations, rapid switching between the source and nearby 
calibrator is often helpful. See the following section. 

3.12.1    Rapid Phase Calibration and the Atmospheric Phase Interferometer (API) 

For some objects, and under suitable weather conditions, the phase calibration can be considerably 
improved by rapidly switching between the source and calibrator. A new observing technique, 
denoted 'fast switching', has been developed to more conveniently permit the user to implement this 
methodology. Source-Cal observing cycles as short as 40 seconds can now be used - such a short 
cycle is impossible with standard observing techniques. 

This method is not for everyone! Considerable integration time is lost with very short cycle 
times, so it is important to balance this certain loss against a realistic estimate of the possible gain. 
Experience has shown that cycle times of 100 to 150 seconds have been effective for source-calibrator 
separations of less than 10 degrees. The fast switching technique 'stops' tropospheric phase variations 
at an effective baseline length of ~ vat/2 where va is the atmospheric wind velocity aloft (typically 
10 to 15 m/sec), and t is the total switching time. This technique has been demonstrated to result 
in images of faint sources with diffraction-limited spatial resolution on the longest VLA baselines. 
Under average weather conditions, and using a 120 second cycle time, the residual phase at 43 GHz 
should be reduced to < 30 degrees. Further details can be found in VLA Scientific Memos # 169 
and 173. These memos, and other useful information, can also be obtained through the NRAO Web 
page (www.nrao.edu). 

The fast switching system has been implemented in the current version of the OBSERVE and 
JOBSERVE programs. Note that the technique will not work in bad weather (such as rain showers, 
or when there are well-developed convection cells - most notably, thunderstorms). Contact Chris 
Carilli for details and advice. 

The NRAO Atmospheric Phase Interferometer (API) is now operational at the VLA, and software 
has been installed for real time monitoring of the phase stability through the web. This can be 
accessed through the NRAO home page (www.nrao.edu) by following the link to the Phase Monitor 
located on the VLA page. The API continuously measures the tropospheric contribution to the 
interferometric phase using an interferometer comprised of two 1.5 meter antennas separated by 300 
meters, observing an 11.3 GHz beacon from a geostationary satellite. The API data can be used 
to estimate the required calibration cycle times when using fast switching phase calibration, and in 
the worst case, to indicate to the observer that high frequency observing may not be possible with 
current weather conditions. Contact Chris Carilli for further details. 
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3.13 Polarization 

The continuum correlator mode provides full polarimetric information for both observing frequen¬ 
cies. The polarimetric spectral line modes (PA and PB) are also available for observations of linearly 
polarized spectral lines, or for observations of continuum objects where large field-of-view or high dy¬ 
namic range is necessary. Spectral line modes '2AC', '2BD', and '4' provide only circular polarization 
information. 

For each observation requiring polarization information, the instrumental polarization should be 
determined through observations of a bright calibrator source spread over a range in parallactic 
angle. In nearly all cases, the phase calibrator chosen can double as a polarization calibrator. The 
minimum condition that will enable accurate polarization calibration is four observations of a bright 
source spanning at least 90 degrees in parallactic angle. The accuracy of polarization calibration 
is generally better than 0.5% for objects small compared to the antenna beamsize. At least one 
observation of 3C286 or 3C138 is required to fix the absolute position angle of polarized emission. 
3C48 can also be used to fix the position angle at wavelengths of 6cm or shorter. 

High sensitivity linear polarization imaging may be limited by time dependent instrumental 
polarization, which can add low levels of spurious polarization near features seen in total intensity 
and can scatter flux throughout the polarization image, potentially limiting the dynamic range. The 
instrumental polarization averaged among all baselines can vary by 0.3% on timescales of minutes 
to hours, limiting the believable fractional polarization to about 0.1%. 

Wide field linear polarization imaging will be limited by the instrumental polarization beam. For 
a snapshot observation, the spurious linear polarization (after the standard polarization correction 
for the on-axis polarization response is applied) is < 1% at angles less than A/4Z> radians {D is the 
antenna diameter), is 1 - 3% at \/2D, and increases sharply beyond this, reaching 10% at ZX/4D. 
Since the instrumental polarization response is directed radially and rotates with parallactic angle, 
the spurious polarization will tend to average down for long integrations. However, if the object 
being observed is very bright, and has a low degree of linear polarization, errors in the polarization 
calibration will cause flux to be scattered across the polarization image, limiting the polarization 
dynamic range. 

Ionospheric Faraday rotation is always present at 20 and 90 cm. The typical daily maximum 
rotation measure under quiet solar conditions is 1 or 2 radians/m2, so the ionospherically-induced 
rotation of the plane of polarization at these bands is not excessive - 5 degrees at 20cm, and perhaps 
90 degrees at 90cm. However, under active conditions, this rotation can be many times larger, such 
that accurate polarimetry is impossible at 20cm. 

The approximate correction scheme available within the AIPS task FARAD cannot be recom¬ 
mended - it employs an overly-simple uniform ionospheric model and requires TEC (Total Electron 
Content) data in a format which has not been available for many years. The AIPS program TEC0R 
should be considerably better, as it uses currently-available data in IONEX format. A promising 
new method employing a loci GPS receiver and a more sophisticated model is being developed, and 
should be generally available by early 2001. Contact Rick Perley or for advice. 

Circular polarization measurements are limited by the beam squint - the RCP and LCP primary 
beams are separated by 6 percent of the beamwidth along the axis perpendicular to the azimuth 
of the secondary focus feed position. Since circular polarization is determined from the difference 
between RCP and LCP signals, there results an appreciable error in all measurements of circular 
polarization off the pointing axis. The effect is large - the apparent circular polarization is ~10% 
at A/4D, and ~20% at X/2D. This false circular polarization is antisymmetric with respect to the 
center of the antenna beam, so 12-hour observations should partially cancel out the effect - however, 
even so, the residual apparent circular polarization is probably only accurate to a few percent. 

3.14 Spectral Line Modes 

The VLA correlator is very flexible, and can provide data in many ways. The various spectral line 
modes currently available are shown in Tables 14 and 15 and described below. 

Most spectral line modes are distinguished by a code comprising a number followed by zero, one, 
or two letters.   The number refers to the number of spectra being produced; the letters describe 
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Table 14: Available bandwidths and number of spectral line channels in normal mode 

Single IF Mode*1) Two IF Mode*2) Four IF Mode*3' 
BW Bandwidth No. Freq. No. Freq. No. Freq. 
Code MHz Channels*4' Separ. Channels^ Separ. Channels*4) Separ. 

kHz per IF kHz per IF kHz 
0 50 16 3125 8 6250 4 12500 
1 25 32 781.25 16 1562.5 8 3125 
2 12.5 64 195.313 32 390.625 16 781.25 
3 6.25 128 48.828 64 97.656 32 195.313 
4 3.125 256 12.207 128 24.414 64 48.828 
5 1.5625 512 3.052 256 6.104 128 12.207 
6 0.78125 512 1.526 256 3.052 128 6.104 
8 0.1953125 256 0.763 128 1.526 64 3.052 

Notes: 
(1) Observing Modes 1A, IB, 1C, ID. 
(2) Observing Modes 2AB, 2AC, 2AD, 2BC, 2BD, 2CD. 
(3) Observing Modes 4, PA, PB. It is possible to use the output from one, two or four IFs in such a way as to obtain 
different combinations of number of spectral line channels and channel separation. The minimum and maximum 
number of channels is 4 and 512 respectively. 
(4) These are the numbers of spectral line channels produced in the array processor. Any number of spectral line 
channels that is a power of 2, that is less than or equal to the number in the table and that is greater than or equal 
to 2 may be selected using the data selection options available within the OBSERVE and JOBSERVE programs. 

Table 15: Available Bandwidths and Number of Spectral Line Channels in Hanning 
Smoothing Mode 

Single IF Mode*1) Two IF Mode*2) Four IF Mode*3) 
BW Bandwidth No. Freq. No. Freq. No. Freq. 

Code MHz Channels*4) Separ. Channels*4) Separ. Channels*4) Separ. 
kHz per IF kHz per IF kHz 

0 50 8 6250 4 12500 2 25000 
1 25 16 1562.5 8 3125 4 6250 
2 12.5 32 390.625 16 781.25 8 1562.5 
3 6.25 64 97.656 32 195.313 16 390.625 
4 3.125 128 24.414 64 48.828 32 97.656 
5 1.5625 256 6.104 128 12.207 64 24.414 
6 0.78125 256 3.052 128 6.104 64 12.207 
8 0.1953125 128 1.526 64 3.052 32 6.104 

Notes: 
(1) Observing Modes 1A, IB, 1C, ID. 
(2) Observing Modes 2AB, 2AC, 2AD, 2BC, 2BD, 2CD. 
(3) Observing Modes 4, PA, PB. 
(4) These are the numbers of spectral line channels produced in the array processor. Any number of spectral line 
channels that is a power of 2, that is less than or equal to the number in the table, and that is greater than or equal 
to 2 may be selected using the data selection parameters available in the OBSERVE and JOBSERVE programs. 

which IF channels are involved. Recall that each VLA antenna returns four signals: these are the 
RCP and LCP for each of two separately tuned frequencies. These signals are referred to as IFs, 
and are named A, B, C, and D. The first two represent RCP, and latter two LCP. IFs A and C are 
at one frequency (and cannot be different); B and D are at another (and also must be the same). 
In normal usage, the AC pair and the BD pair are at different frequencies within the same band. 
The spectral line modes can subdivide these IFs into four to 512 units, evenly spaced in frequency 
across the bandwidth of the input IF. These narrower units are referred to as spectral line channels. 
In addition to these interferometric spectra, autocorrelation spectra for all antennas are produced. 

The single-IF modes provided by the spectral line correlator are known as 1A, IB, 1C, and ID. 
In these modes, only one spectrum is produced.  These modes give the highest spectral resolution 
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at any given bandwidth. The dual-IF modes are denoted 2AB, 2AC, 2AD, 2BC, 2BD and 2CD, 
and provide spectral information for the two IFs named (e.g. mode 2AC provides AA and CC 
correlations). Linear polarization measurements are not possible with these modes, but circular 
polarization can be determined using the 2AC and 2BD modes. The four-IF modes are known as 4, 
PA and PB. The first of these provides spectra for all four IFs. Circular, but no linear polarization 
measurements are possible in this mode. The other two modes provide full polarimetric information 
- PA provides this for the A and C IFs (that is, it performs the correlations AA, AC, CA, and CC, 
providing a spectrum for each), PB for the B and D IFs. Note that for these polarimetric modes, 
the descriptor 4 is omitted. The characteristics of all of these modes are summarized in Tables 14 
and 15. 

It is also possible to use multiple, independent subarrays in spectral line mode. 
Correlator modes 2AB, 2AD, 2BC and 4 allow the IFs to use different bandwidths as well as to be 

tuned to different frequencies within the same band (e.g., mode 2AB will permit the A A correlations 
to be at a different frequency and bandwidth than the BB correlation). There are other restrictions. 
See Section 3.8, and the Spectral Line Users' Guide (listed in Chapter 6) for details. 

Of central interest to observers is the stability of the spectra. Spectral line dynamic range is 
commonly defined as the ratio of the continuum brightness to the minimum detectable line brightness 
in an image. This ratio is limited by instrumental effects which must be calibrated out. The 
spectral dynamic range depends on bandwidth in a poorly understood way. Applying the on-line 
autocorrelation bandpass correction only should result in about 50:1 dynamic range and is strongly 
discouraged. Values exceeding 10,000:1 at C and X-bands can be achieved but require careful data 
editing and bandpass calibration. A more typical limit is around 1000:1. L-band spectral dynamic 
ranges of 1000:1 can be achieved by observing a suitable bandpass calibrator. Consult with Michael 
Rupen for more details. 

Consult 'A Guide for VLA Spectral Line Observers' for more information. This document is 
available for downloading from the NRAO website - follow the link to 'VLA', then to 'Documenta¬ 
tion'. 

3.15 VLBI Observations 

The VLA often participates in VLBI observations with the VLBA, and in Global Network sessions 
which occur four times per year. The VLA supports VLBI observations in either single-antenna or 
phased-array modes. Data can be recorded in VLBA or Mark III/IV formats. Each type of recording 
makes use of the VLA's VLBA data acquisition system. A comprehensive document entitled 'VLBI 
at the VLA' is available on the Web - point your browser to the NRAO Home Page (www.nrao.edu), 
select 'VLA', then 'Documentation'. 

VLBI at the VLA is overseen by Greg Taylor and Joan Wrobel. Either can be consulted for 
general information regarding matters such as observing in VLBA or Mark III/IV formats; phased- 
array or single-dish observations; or calibration of the VLA for VLBI. However, each VLBI project 
involving the VLA, whether run during or outside of a Network session, will be assigned an AOC 
contact by Barry Clark. Queries from an observer concering specific information about a specific 
project should be directed to the AOC contact assigned to the project. If the project's principal 
investigator is an AOC employee, then that person will be assumed to be the AOC contact. 

See Section 4.12 for information on absentee observing. 

3.16 Snapshots 

The two-dimensional geometry of the VLA allows a snapshot mode whereby short observations can 
be used to image relatively bright unconfused sources. This mode is ideal for survey work where the 
sensitivity requirements are modest. Due to confusion by background sources, use of snapshots is 
not recommended at A90 cm or A400 cm. 

Single snapshots with good phase stability should give dynamic ranges of a few hundred. Note 
that because the snapshot synthesized beam contains high sidelobes, the effects of background 
confusing sources are much worse than for full syntheses, especially at 20 cm in the D configuration 
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for which a single snapshot will give a limiting noise of about 0.2 mJy/beam. This level can be 
reduced by taking multiple snapshots separated by at least one hour. Use of the AIPS program IMAGR 
is necessary to remove the effects of background sources. Before considering snapshot observations 
at 20cm, users should first determine if the goals desired can be achieved with the exiting FIRST 
(B configuration) or NVSS (D configuration, all-sky) surveys. Both surveys can be accessed from 
the NRAO website, at: www.nrao.edu/telescopes. 

3.17 Shadowing and Cross-Talk 

Observations at low elevation in the C and D configurations will commonly be affected by shad¬ 
owing. It is strongly recommended that all data from a shadowed antenna be discarded. This will 
automatically be done within the AIPS task FILLM when using the default inputs. Note that FILLM 
is ignorant of antennas in other subarrays, or antennas which are out of the array, so flagging of 
antennas shadowed by antennas in other subarrays will not occur. 

Cross-talk is an effect in which signals from one antenna are picked up by an adjacent antenna, 
causing an erroneous correlation. At A20cm, this effect is important principally in the D configura¬ 
tion. At A90cm, C and even B configurations can also be affected. And at A400cm, all configurations 
show strong cross-talk on many baselines. Careful editing is necessary to identify and remove this 
form of interference. For the 90 and 400 cm bands, use of the spectral line modes is strongly 
recommended to allow detection and removal of these contaminating signals. 

3.18 Combining Configurations and Mosaicing 

Any single VLA configuration will allow accurate imaging up to a scale approximately 30 times 
the synthesized beam. Objects larger than this will require multiple configuration observations. 
Observers only need ensure that the frequencies used are similar for each configuration. It is not 
necessary that they be identical, but differences greater than 50 MHz could cause errors due to 
spectral index gradients. The different configurations may employ different bandwidths - indeed, 
this is often required to prevent bandwidth smearing (chromatic aberration). Objects larger than the 
primary antenna pattern may be mapped through the technique of interferometric mosaicing. Time- 
variable structures (such as the nuclei of radio galaxies and quasars) cause special, but manageable, 
problems. Consult with Tim Cornwell for details and advice. 

3.19 Pulsar Observing, Gated Correlator, and the High Time Resolution 
Processor 

The VLA's correlator supports gated observations (i.e., the correlator can be configured to accept 
data only when the pulsar's pulse is on) to enhance the SNR for pulsar observing. 

The High Time Resolution Processor (HTRP) is a 14-channel polarimeter designed for obser¬ 
vations of short timescale phenomena such as pulsars and flare stars. The HTRP has been used 
successfully in pulsar polarimetry, pulsar searches, and pulsar timing. The HTRP directs two, op¬ 
positely polarized input signals from the VLA analog sum ports through a dual 14-channel filter 
bank. The bandwidth of each input channel can be set to 0.125, 0.25, 0.5, 1.0, 2.0, or 4.0 MHz. The 
HTRP provides full polarimetry, producing a total of 56 detected outputs. 

The integration times for each output can be individually set to between 25 and 5000 microsec¬ 
onds, and the detector outputs can be individually offset by ±5V. The maximum aggregate sample 
rate is about 200 kilo-samples per second, so the minimum sampling interval for each channel is 
about 5 microseconds multiplied by the number of sampled channels. The HTRP is controlled by 
an IBM compatible PC, and the sampled data are written to the PC hard disk or Exabyte tape. 
Current versions of monitor and control software and data acquisition software are adequate for 
general use. Observers interested in using the HTRP should plan on investing some time in devel¬ 
oping their own data analysis software. The Dartmouth/Princeton MklH Timing System, although 
not supported by the NRAO, is available for general use.   It accepts 32 outputs from the HTRP 
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detectors for time-stamped synchronous signal averaging at aggregate sampling rates up to about 
2.5 MHz. It has been upgraded for Y2K compliance. 

A new Pulsar Timing System, developed jointly with New Mexico Tech, allows more flexible signal 
averaging and correlator gating. It also accepts 32 detector outputs, and forms and displays average 
profiles using a friendly graphical interface written in GLISH. The data acquisition is performed 
by a VME-form factor ADC, CPU and Timing system, and control and display is performed by a 
dual-processor Sparc 20. The system has a maximum aggregate sample rate of 200 kilo-samples per 
second. It can produce up to 9 independent gate signals for correlator gating or operation of other 
pulsar-synchronous back-end systems. A menu-driven program to reduce average profiles to arrival 
times for TEMPO input has also been developed. 

For further information regarding the HTRP, contact Dale Frail or Tim Hankins. 
The HTRP and the timing systems are complicated, special purpose instruments, requiring 

special hardware and software settings. Observers using them are therefore advised to come to the 
telescope at least one full day, and preferably two, in advance of their observing runs. 

3.20    Observing High Flux Density Sources — Special Corrections 

The VLA correlator is a digital device, which causes a small but noticeable error in the calculation of 
the correlation coefficient when this coefficient is high. A recent change to the AIPS program FILLM 
now enables an approximate correction of this error when observations are taken in the continuum 
mode. Users may wish to apply this correction (commonly known as the 'Van Vleck' correction) 
when observing relatively unresolved objects with flux densities exceeding about 100 Jy (depending 
on band). Unfortunately, no correction for this effect for data taken in the spectral line modes is 
yet available. 

4    USING THE VLA 

4.1    Obtaining Observing Time on the VLA 

Observing time on the VLA is available to all researchers, regardless of nationality or location of 
institution. There are no quotas or reserved blocks of time. The allocation of observing time on the 
VLA is based upon the submission of a VLA Observing Application Form obtainable at any NRAO 
office, or via anonymous ftp, or through the NRAO website, as described below. The form consists 
of a cover sheet whereon the proposer must summarize all technical details of the observations, and 
an appended, self-contained, scientific justification of the project not to exceed 1000 words in length. 
Proposals may be sent either by regular mail, or by electronic mail if in Adobe Postscript format. 
Electronic submission is strongly recommended. 

If submitted by regular mail, send the complete observing request (cover sheet plus appended 
justification) to: 

Paul A. Vanden Bout 
Director, NRAO 
Edgemont Road 
Charlottesville, VA 22903-2475. 
Please allow suitable time for delivery - a week from the U.S., two weeks from outside the U.S. 

If using UPS, Fedex, or other private delivery service, it is suggested you allow an extra two days 
over the vendor's promised delivery date. 

These forms can be obtained in a T^jX version via anonymous ftp from the ftp server 
ftp.cv.nrao.edu (192.33.115.50).   Login as 'anonymous', and use your e-mail address as the pass¬ 
word.  In the subdirectory 'proposal' are found a number of files: the files 'instructions' contains 
a detailed up-to-date set of instructions. The file 'covervla.ps' contains a postscript version of the 
VLA application form, which you may copy, print, and submit through the regular mail. 

Alternatively (and probably better), the forms can be downloaded directly through the NRAO 
website. Go to: 'www.nrao.edu/administration/Directors_office', and follow the link to the VLA. 
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For electronic submission, copy the files 'covervla.tex', and 'nraologo.ps' to your computer. Edit 
the former file, inserting the details of your proposal, then run your TeX compiler. E-mail the 
finished postscript version to: propsoc@nrao.edu. This e-mailed postscript file must be printable 
on our systems - if it cannot be printed, it won't be accepted. We will acknowledge the successful 
printing of received proposals, and will work with proposers to modify those files which are received 
but did not print successfully, if the file is received at least 5 days before the actual deadline. If your 
default paper size is not US standard, take care to override your default in your submission. This 
can be accomplished within TeX with the command: \special{papersize 8.5in llin}. 

Submissions by FAX are no longer accepted. 
Students planning to use the VLA for their Ph.D. dissertation may have a problem in that such 

dissertations are frequently composed of pieces of several short proposals which may not be suitable 
for combining into a single proposal for refereeing purposes. In this case, we shall accept, one per 
student, a 'Plan of Dissertation Research', of no more than 1000 words, to be appended to the first 
proposal of the series, and which can be referred to in later proposals. This provides some assurance 
against a dissertation being seriously damaged by adverse referee comments on one component 
proposal, when the referees may not see the whole picture. This facility is offered to students for 
which VLA observations are the most important component of their planned dissertations. 

The VLA is scheduled on a term basis, with each term lasting 4 months. The proposal deadline 
for a particular configuration is 5PM, Eastern time on the 1st of February, June, or October which 
precedes the beginning of that configuration by three months or more. (If the first of the month falls 
on a Saturday or Sunday, the deadline is advanced to the next Monday). Table 1 details the deadlines 
through 2000. It is not necessary to submit a proposal in the preceding term, since all proposals 
will be refereed immediately following the deadline of submission, regardless of the configuration 
requested. Early submissions - more than one deadline in advance of the relevant configuration 
deadline - will benefit from referee feedback and the opportunity for revision and additional review 
if warranted. 

All proposals are externally refereed by several experts in relevant subdisciplines (e.g. solar 
system, stellar, galactic, extragalactic, etc.). The referees' comments and rating are advisory to 
the internal VLA scheduling committee, and the comments of both groups are passed on to the 
proposers soon after each meeting of the committee (3 times yearly) and prior to the next proposal 
submission deadline. 

A special refereeing process has been established for proposals requesting an unusually large 
amount of time - approximately 300 hours for the VLA. Details of this process will be found on the 
web. 

Scheduling the telescope is a non-exact science, and because of competition even highly rated 
proposals are not guaranteed to receive observing time. This is particularly true for programs that 
concentrate on objects in the LST ranges occupied by popular targets such as the galactic center or 
the Virgo cluster. 

4.2 Target-of-Opportunity Observations 
The NRAO provides a means by which observations can be scheduled on the VLA on quite short 
notice. Observations of order one hour, for the current configuration, can often be fitted into the 
established schedule in the interstices between allocated projects. To obtain such an observation, 
send a request to Barry Clark (bclark@nrao.edu), giving the object name, position, and a brief 
justification of why an observation on short notice is required. The requestor must be prepared to 
provide an observe file on short notice. Note that the data resulting from this must be reduced by 
the requestor following the usual procedures. 

4.3 Data Analysts and General Assistance 

General assistance of all kinds is available through the Data Analysts. They can be considered to 
be advocates for all VLA users, and should be consulted first when you encounter any problem. 
Note that they are not available to perform remote data calibration. The e-mail address for all the 
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analysts is: analysts@nrao.edu. Contact the Lead of this group, Meri Stanley (505 835 7238, or 
mstanley@nrao.edu), when you have questions or requests. 

4.4 Observing File Preparation 

To use the VLA, an observing file must be prepared and submitted to the VLA Operators. This 
file may be generated by the NRAO-supplied programs OBSERVE, or by its intended replacement 
JOBSERVE. The latter is a modern Java-based version of OBSERVE, and offers a more modern graphical 
user interface without OBSERVE's keypad mapping problems. More details on these programs are 
provided below. 

After your file is prepared, E-mail it to the operators at observe@nrao.edu. Include the program 
name in the subject line. The operators always acknowledge receipt of the observing file by e-mail. 
If you do not receive a timely response, call the operators at 505 835 7180. Please complete these 
operations at least two working days before your observing. 

4.4.1 OBSERVE 

The NRAO-supplied program OBSERVE is available to all users and can run on most commonly used 
computers. We recommend that all users obtain a copy of this program, and periodically check that 
they have the latest version. The latest version is 4.0.6, dated July 2000. 

At this time, OBSERVE is available for Sun workstations running the Solaris operating system, 
SGI workstations, and PCs running Linux. 

OBSERVE can be obtained by one of these routes - listed in order of preference: 

1. For users with Internet access, use anonymous ftp from directory pub/observe on: 
ftp.aoc.nrao.edu (or 146.88.1.103). 

2. Contact Gayle Rhodes (see Table 16) and specify the machine type (SUN, PC/LINUX) and 
medium (floppy, Exabyte, or DAT), which she will then mail to you. 

A considerable training effort is required to become fully conversant with OBSERVE. For help, call 
the Data Analysts Lead, Meri Stanley, or through E-mail (ajialysts@nrao.edu). 

4.4.2 JOBSERVE 

JOBSERVE is a GUI-based version of the OBSERVE program, written in Java for portability. We intend 
to fully replace OBSERVE with JOBSERVE at some time in the future. New capabilities (such as support 
for VLA observing using the Pie Town antena) will be added to JOBSERVE only. 

JOBSERVE distributions are currently available for Solaris (Sparc) and Linux (i386) with instruc¬ 
tions provided to allow a user to port one of these distributions to any machine which can run the 
Java 2 runtime environment. Work on distributions for SGI workstations and Windows machines is 
currently underway. The latest version of JOBSERVE is 1.6.0, released July 25, 2000, and it can be 
downloaded from: www.aoc.nrao.edu/software/jobserve 

4.5 The Observations and Remote Observing 

Observers need not be present at the VLA to obtain VLA data. However, we encourage VLA users 
to come to Socorro when observing. There is no better way to interact with the data, and to calibrate 
and image data quickly. And coming to Socorro is the best way to benefit from discussions with 
staff members. 

We recommend that observers who are coming to and who intend to set up their observing files 
in Socorro arrive two working days before their scheduled observations to allow sufficient time to 
interact with key staff members. See Section 4.9 for information on coming to and staying in Socorro. 

For those who choose to process their data at home, the data analysts will, upon request, mail 
you a tape (Exabyte or DAT) containing your uncalibrated data in its original Modcomp format. 
The AIPS task FILLM is used to load these data to disk.   For short observations requiring fast 
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turnaround, the data analysts will load your data in FITS format onto a local machine, from where 
you may transfer the data through ftp to your home computer. Contact the Data Analysts for this 
service. 

4.6 Travel Support for Visiting the AOC and VLA 

The NRAO will subsidize travel expenses incurred by a visiting observer to Socorro. Individuals 
eligible for reimbursement are those employed by a U.S. academic or research institution who do not 
receive their salary from any U.S. government agency including NSF, NASA, DOE, etc. Individuals 
affiliated with foreign institutions are not eligible. The subsidy applies only to travel originating 
from within the U.S. (including Puerto Rico and the U.S. territories), and covers air fare only. 

For each observing program scheduled on an NRAO telescope, reimbursement may be requested 
for one of the scientific investigators to travel to the NRAO to observe, and for one of the investigators 
to come to reduce data. Allowance will be made for two observers on a single proposal when one 
of these is a student coming to the NRAO for the first time, and the other is his or her research 
advisor. 

The reimbursement is the actual cost of economy air fare in excess of $150 for air fare up to $300, 
and is $150 plus 75% of the airfare in excess of $300 for air fares over $300, and will be made only 
to the traveller's institution. 

To claim this reimbursement, obtain an expense voucher from Betty Trujillo in Room 338 in the 
AOC. 

4.7 Real-Time Observing 

A Sun Sparc 20 workstation, connected to the on-line computers by an Ethernet link, is now in place 
at the VLA site. A special version of the AIPS task FILLM will fill VLA data into this workstation's 
disks. Each scan is available for editing, calibration, and imaging within a few seconds of the end of 
that scan. Data can also be written to a local Exabyte tape. All regular AIPS tasks are available 
on this workstation. 

The real-time data pipeline has now been extended to the AOC. Any workstation at the AOC can 
now receive VLA data as it is produced by the Modcomps. However, this capacity is not available 
beyond the AOC, as tests have given inconsistent results. 

4.8 Computing at the AOC 

A primary goal of the computing environment at the AOC is to allow every user full access to a 
workstation during his/her visit. There are 14 public workstations available at the AOC for full- 
time data reduction by visitors. Of these, two are dual-processor high-end PCs running Linux, 6 
are Sparc Ultra 10s, and 2 are SGI machines which are dedicated to space VLBI use for part of the 
time. Currently, the two Linux PCs are the fastest, but due to fundamental limitations, they cannot 
handle individual files larger than 2 GB. 

For hardcopy, we have a number of high volume B&W laser printers, one color Postscript laser 
printer which can reproduce on both paper and transparencies, and one wide-bed color printer. 

Visitors may reserve time on these workstations when they make their travel arrangements with 
the Reservationist, Selfa Lucero (see Section 4.9). The reservationist's e-mail is: nmreserv@nrao.edu. 
Meri Stanley schedules all public computers. 

If you require computing assistance while at the AOC, contact the help desk (e-mail nmhelpdesk, 
extension 7213, office 267). 

For a fuller description of computing facilities at the AOC, access the NRAO home page at 
www.nrao.edu, and go to 'Sites and Telescopes', then 'Socorro', then 'Socorro Computing Facilities'. 

4.9 Reservations for VLA and/or AOC 
Advance contact with the Reservationist (Selfa Lucero nmreserv@nrao.edu) at least 1 week prior 
to your visit to the NRAO/NM is required, and 2 weeks' notice is preferred, in order to optimize 
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the logistics of room occupancy, transportation, computer load, and staff assistance. You may now 
book your visit to the AOC through the WWW. From the NRAO home page, press the 'Sites and 
Telescopes' link, then 'Socorro' link, and finally the 'Visitor's Registration Form' link. 

First time visiting students will be allowed to come to the NRAO/NM for observations or data 
reduction only if they are accompanied by their faculty advisor, or if they have a collaborating 
NRAO staff member. 

4.10 Staying in Socorro 

Visitors to Socorro can now take advantage of the NRAO Guest House. This facility contains 8 single, 
4 double, and 2 two-bedroom apartments, plus a lounge/kitchen, terminal facility, and full laundry 
facilities. The Guest House is located on the New Mexico Tech (NMIMT) campus, a short walk from 
the AOC. Reservations are made through the Reservationist, Selfa Lucero (nmreserv@nrao.edu.) 

4.11 Help for Visitors to the VLA and AOC 

We encourage observers to come to Socorro to calibrate and image their data. This is the best way 
to ensure the quickest turnaround and best results from their observing. While in Socorro, each 
observer will interact with members of the AOC staff in accordance with his/her level of experience 
and the complexity of the observing program. If requested on the original VLA application form, the 
visiting observer will be guided through the steps of data calibration and imaging by a prearranged 
staff friend or scientific collaborator. Data Analysts and the computer operations staff are also 
available for consultation on AIPS procedures and systems questions. 

4.12 VLBI Remote Observing 

The VLA supports absentee VLBI observations, whether conducted during, or outside of, a Global 
Network session. Queries from an absentee observer concerning a specfic project should be directed 
to the AOC contact assigned to that project (see Section 3.15). VLA schedule file preparation 
assistance is provided by the Data Analysts (see Section 4.3). Absentee observers must provide the 
Data Analysts with all necessary scheduling information. For a Network project, this information 
is due at least two weeks before the start of the appropriate Network session. For a non-Network 
project, this information is due by the schedule file due date assigned by Barry Clark. 

Although VLA Operations fully supports absentee VLBI observing, visits by observers are wel¬ 
comed and are especially encouraged if the observations are in any way atypical. Included in this 
category are VLBI spectral line projects regardless of recording format, and any phased-array VLBI 
projects for which radio frequency interference is expected. 

For more information, consult 'VLBI at the VLA'. 

4.13 On-Line Information about the NRAO and the VLA 

NRAO-wide information is available on the World Wide Web through your favorite Web browser at 
URL: www.nrao.edu. VLA- and AOC-specific information are available from the Home Page. We 
strongly recommend usage of this on-line service, which is regularly updated by Michael Rupen. 

5    MISCELLANEOUS 

5.1    VLA Archive Data 

The VLA archive contains all VLA data since observing started in 1976. NRAO maintains two copies 
of the Exabyte-based archive, stored at different locations. A catalog describing these observations 
can be accessed from the NRAO home page: go to 'Astronomer Resources', then to 'VLA Archive 
Database Search'. This program allows database searches based on a large number of user-specified 
criteria. 

30 



The actual observing data can be requested by sending e-mail to the data analysts at ana- 
lysts@nrao.edu. Note that the NRAO has the following policy on the extent to which an individual 
or team has exclusive use of the raw data obtained as part of their VLA observations: 

Eighteen months after the end of a VLA observation the raw (uncalibrated visibility) 
data will be made available to other users on request. Miller Goss or Barry Clark must 
first be notified. The end of an observation is defined to be after the last VLA configu¬ 
ration requested, either in the original proposal or in a direct extension of the proposal. 
VLA correlator data taken for VLBI observations are immediately available to all. 

5.2    Publication Guidelines 

5.2.1 Acknowledgement to NRAO 

Any papers using observational material taken with NRAO instruments (VLA or otherwise) or 
papers where a significant portion of the work was done at NRAO, should include the following 
acknowledgement to NRAO and NSF: 

The National Radio Astronomy Observatory is a facility of the National Science Foun¬ 
dation operated under cooperative agreement by Associated Universities, Inc. 

5.2.2 Preprints 

NRAO requests that you submit four copies of all papers which include observations taken with any 
NRAO instrument or have NRAO author (s) to Ellen Bouton in the Charlottesville Library. NRAO 
authors may request that their papers be included in the official NRAO preprint series. Multiple 
author papers will not be included in the series if they are being distributed by another institution. 
All preprints for distribution should have a title page that conforms to the window format of the 
NRAO red preprint covers. Note that preprints will be distributed ONLY when the NRAO author 
so requests; inclusion in the series is not automatic. This action will also cause the paper to be 
included in NRAO's publication lists. 

We encourage everyone whose papers have an NRAO staff author or include original results 
from any NRAO telescope (s) to consider adding the electronic full text of their preprints to the 
NRAO WWW preprint page. For further information, contact the Librarian in Charlottesville (li- 
brary@nrao.edu) or read the instructions on our web page (www.nrao.edu/library/authorJnst.html). 

5.2.3 Reprints 

NRAO no longer distributes reprints, but will purchase the minimum number of reprints for NRAO 
staff members. The NRAO does not want reprints, and will not pay for any reprint costs for papers 
with no NRAO staff author. 

5.2.4 Page Charge Support 

The following URL contains complete information on the observatory's policy regarding page charge 
support: www.cv.nrao.edu/library/intro/pagexharges.html. The following is a summary: 

• When requested, NRAO will pay the larger of the following: 

- 50% of the page charges reporting original results made with NRAO instrument(s) when 
at least one author is at a U.S. scientific or educational institution. 

- 100% of the page charges prorated by the fraction of authors who are NRAO staff mem¬ 
bers. 

• Page charge support is provided for publication of color plates. 

• To receive page charge support, authors must comply with all of the following requirements: 
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— Include the NRAO footnote in the text: 'The National Radio Astronomy Observatory is 
a facility of the National Science Foundation operated under cooperative agreement by 
Associated Universities, Inc.' 

— Send four copies of the paper prior to publication to Ellen Bouton in Charlottesville. 

— Notify Ellen Bouton in Charlottsville of the proposed date of publication and apportion¬ 
ment of page charges so that the necessary purchase orders may be initiated. Convenient 
ways to do this are to send her copies of the completed page charge form, or send her an 
e-mail message (library@nrao.edu), or call her by telephone at (804)-296-0254. 

When filling out page charge forms, use the following information: 

• Contact person for NRAO is Ellen Bouton, 804-296-0254. 

• Billing address for both page charges and reprints is: NRAO Fiscal Division, 520 Edgemont 
Road, Charlottesville, VA 22903-2475. 

• Shipping address for reprints should be the NRAO author. 

• On ApJ and AJ forms, cite the purchase order number as 'NRAO blanket PO'. For all other 
publications, contact Ellen Bouton for a purchase order number. 

6    DOCUMENTATION 

Documentation for VLA data reduction, image making, observing preparation, etc., can be found 
in various manuals. Some manuals are available on-line via the World Wide Web (see Section 4.13). 
Those manuals marked by an asterisk (*) can be mailed out upon request, or are available for 
downloading from the NRAO website. Direct your requests for mailed hardcopy to Gayle Rhodes. 
Many other documents of interest to the VLA user, not listed here, are available from our website. 

1. PROCEEDINGS FROM THE 1988 SYNTHESIS IMAGING WORKSHOP: Synthesis theory, 
technical information and observing strategies can be found in: 'Synthesis Imaging in Radio 
Astronomy'. This collection of lectures given in Socorro in June 1988 has been published by 
the Astronomical Society of the Pacific as Volume 6 of their Conference Series. This book has 
recently been reprinted. 

2. PROCEEDINGS FROM THE 1998 SYNTHESIS IMAGING WORKSHOP: This is an updated 
and expanded version of Reference 1, taken from the 1998 Synthesis Imaging Summer School, 
held in Socorro in June, 1998. These proceedings are published as Volume 180 of the ASP 
Conference Series. 

3. INTRODUCTION TO THE NRAO VERY LARGE ARRAY (Green Book): This manual has 
general introductory information on the VLA. Topics include theory of interferometry, hard¬ 
ware descriptions, observing preparation, data reduction, image making and display. Major 
sections of this 1983 manual are now out of date, but it nevertheless remains the best source 
of information on much of the VLA. Copies of this are found at the VLA and in the AOC, but 
no new copies are available. Much of this document is available for downloading through the 
NRAO's website. 

4. *A SHORT GUIDE FOR VLA SPECTRAL LINE OBSERVERS: This is an important doc¬ 
ument for those wishing to carry out spectral- line observations with the VLA. The revised, 
1995 version now available. 

5. *AIPS COOKBOOK: The 'Cookbook' description for calibration and imaging under the AIPS 
system can be found near all public workstations in the AOC. The latest version has expanded 
descriptions of data calibration imaging, cleaning, self- calibration, spectral line reduction, and 
VLBI reductions. The AIPS COOKBOOK is now produced in a ring binder format for greater 
ease of updating. 
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6. *GOING AIPS: This is a two-volume programmers manual for those wishing to write programs 
under AIPS. It is now somewhat out of date. 

7. *VLA CALIBRATOR MANUAL: This manual contains the list of VLA Calibrators in both 
1950 and J2000 epoch and a discussion of gain and phase calibration, and polarization cali¬ 
bration. 

8. *VLBI AT THE VLA. Everything you ever wanted to know about VLBI at the VLA. 

9. *The Very Large Array: Design and Performance of a Modern Synthesis Radio Telescope, 
Napier, Thompson, and Ekers, Proc. of IEEE, 71, 295, 1983. 

10. *OBSERVE, A GUIDE FOR SPECTRAL LINE OBSERVERS. A tutorial manual for ob¬ 
servers, with special emphasis on spectral line applications. 

7    KEY PERSONNEL 

The following list gives the telephone extensions and AOC room numbers of personnel who are 
available to assist VLA users. In most cases the individuals have responsibilities or special knowledge 
in certain areas as noted in the right hand column. 

You may also contact any of these people through E-mail. The NRAO has adopted a uniform 
standard for E-mail addresses: first initial followed by last name, with a maximum of eight letters. 
Thus, Joseph H. User would be reached at juser@nrao.edu. The VLA control room number is: 505 
835 7180. The AOC's front-desk number is: 505 835 7000. 
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Table 16: List of Key VLA Personnel 
You may e-mail any of the following individuals by addressing your message to 'first initial last name'@nrao.edu. 
Thus, you may contact Chris Carilli at: 'ccarilli@nrao.edu'. The name is truncated to eight characters. The listed 
four-digit numbers are sufficient for calls made from within the AOC. If you are calling from outside, the 4-digit 
numbers must be preceded with: 505-835. 

Name Phone Room Notes 
Lori Appel 7310 340 Scheduling secretary 
Raul Armendariz 7187 144 RFI Monitoring and Mitigation 
Bryan Butler 7261 344 13 and 7 mm observing, planets 
Chris Carilli 7306 356 Q-band support, RFI 
Claire Chandler 7365 360 Q- and K- band support 
Barry Clark 7268 308 Scheduling 
Mark Claussen 7284 268 VLBI, Spectral Line, PT Link 
Tim Cornwell 7333 301 Imaging, aips++, Data management 
Dale Frail 7338 332 Pulsars, HTRP Support 
Miller Goss 7300 336 VLA/VLBA Assistant Director 
Eric Greisen 7236 210 AIPS 
Tim Hankins 7326 278 Pulsar Observing.HTRP 
Phil Hicks 7319 VLA 220 VLA Operations Supervisor 
Bob Hjellming 7273 326 Stellar Observing 
Athol Kemball 7330 309 aips-|—(-, VLBI, polarimetry 
Leonid Kogan 7383 312 AIPS support 
Selfa Lucero 7357 218 NRAO Reservationist 
George Martin 7287 373 Real-time Observing, UNIX support 
Steve Myers 7294 376 snapshot observing, source monitoring 
Peter Napier 7218 250 Technical advice 
Frazer Owen 7304 320 Polarimetry, High dynamic range 
Peggy Perley 7214 282 Scheduling, VLBA Testing 
Rick Perley 7312 362 Calibration, Imaging, Polarimetry, Low-freq. 
Gayle Rhodes 7245 252 Documentation, VLA Archive 
James Robnett 7226 258 Computing Support 
Terry Romero 7315 330 Visitor Support 
Michael Rupen 7248 206 Spectral Line, VLA WebMaster 
Debra Shepherd 7398 266 K- and Q-band support 
Ken Sowinski 7299 375 On-Line Systems 
Dick Sramek 7394 328 Electronics Problems 
Meri Stanley 7238 204 Lead analyst, User support 
Greg Taylor 7237 358 Calibration, Imaging, VLBI 
Jim Ulvestad 7298 256 VLBI, PT Link, Head of Scientific Services 
Gustaaf van Moorsel 7396 348 Spectral Line, Head of Computing 
Stefan Witz 7335 316 JOBSERVE 
Dave Westpfahl 7225 373 Spectral Line Observing 
Joan Wrobel 7392 302 VLBI, VLA/VLBA Head of Operations 
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